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Layer undulations induced by a magnetic or electric field in concentric cylindrical layers
of smectic-A liquid crystals

I. W. Stewart*
Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United King

~Received 25 January 1999!

This paper derives theoretical results for the onset of Helfrich-Hurault-type transitions in samples of
smectic-A liquid crystals arranged in concentric cylindrical layers@J. Chem. Phys.55, 839 ~1971!; 59, 2068
~1973!#. A magnetic field is applied in the azimuthal direction, parallel to the layers. The governing equilibrium
equation is solved in order to derive the critical magnitudeHc of the magnetic field above which the onset of
periodic smectic layer distortions is expected. The distortion solution is shown to be energetically favorable for
H.Hc . Some examples of critical thresholds are given, by means of figures, for relevant physical parameters.
The qualitative features of the solution atHc are displayed via the plot of a typical variable solution to the
equilibrium equation in a particular case. The consequences of the results, especially the relationship between
Hc and the radial depth, are explored, and comparisons are drawn with known results for infinite planar aligned
smectic-A samples. The results are also interpreted for the case of an electric field which follows the plane of
the layers in the usual wedge geometry. Critical applied voltage magnitudesUc are derived for various radial
sample depths and wedge angles.@S1063-651X~99!13708-5#

PACS number~s!: 61.30.Cz, 87.22.2q
er
tri
l
or

g
to
ns
e

ti-
e

rs
hi

s.
m
hi

el
vi
cy

he
n
qu
e

n-

ed.
cell

e-
s
e

ire
-

-

I. INTRODUCTION

This paper extends the work of Helfrich@1# and Hurault
@2# for infinite samples of cholesteric liquid crystals und
the influence of a magnetic field to samples of concen
cylindrical layers of smectic-A liquid crystals. Theoretica
results for the Helfrich-Hurault transition are well known f
infinite samples of planar aligned smectic-A liquid crystals
under the application of a magnetic field: at a critical ma
nitude of the field strength the smectic layers begin to dis
or undulate, resulting in one- or two-dimensional patter
Details of this effect, and on the general properties of sm
tic liquid crystals, can be found in de Gennes and Prost@3# or
Chandrasekhar@4#. The present aim is to examine theore
cally the possibility for the onset of a Helfrich-Hurault-typ
transition for concentric cylindrical smectic-A layers, where
the magnetic field is locally parallel to the cylindrical laye
but perpendicular to their common axis; the details of t
geometry are discussed below.

Smectic-A liquid crystals are layered anisotropic fluid
Each layer consists of long molecules whose average
lecular alignment is locally perpendicular to the layers. T
average alignment is denoted by the unit vectorn, called the
director, and it is well known that there are six types of w
behaved surfaces, corresponding to the layers, which pro
static equilibrium configurations. These are the Dupin
clides@5–7#, parabolic cyclides@8–11#, circular tori of revo-
lution @7#, spheres@12#, infinite cylinders@13,14#, and planes.
Our attention is restricted to infinite cylinders and, for t
problem considered here, the sample alignment is show
Fig. 1. The smectic layers are arranged in concentric e
distant cylinders whose common axis coincides with thz
axis of the usual cylindrical polar coordinate system (r ,a,z),
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with r̂ , â, andẑ denoting the basis vectors in ther, a, andz
directions, respectively. The initial average molecular alig
ment, denoted byn05 r̂ in Fig. 1, is perpendicular to the
layers and coincident with the layer normal as indicat
This geometry has also been discussed in the context of
membranes by Das and Schwarz@15#. It is assumed that the
sample is infinite in thez direction, and that the smectic-A
liquid crystal is in a homeotropic alignment contained b
tween two cylindrical boundaries at the radial distancer
5a and r 5b as shown. A magnetic field is applied of th
form

H5
Ha

r
â, ~1.1!

whereH is the magnetic field strength atr 5a. Such a field
may be achieved by passing an electric current along a w
situated along thez axis. To derive the governing equilib
rium equation for the directorn whenHÞ0, we construct the

FIG. 1. The arrangement of concentric cylindrical smecticA
layers with inner radiusa and outer radiusb. The initial alignment
of the director isn0 , coincident with the unit radial vectorr̂ . The
magnetic fieldH is in the azimuthal directionâ, and is locally
parallel to the layers.
1888 © 1999 The American Physical Society
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PRE 60 1889LAYER UNDULATIONS INDUCED BY A MAGNETIC OR . . .
bulk elastic and magnetic energies following the work
Kleman and Parodi@16#, and then minimize the total energ
via the appropriate Euler-Lagrange equation. The total
ergy, equilibrium equation, and boundary conditions are d
cussed in Sec. II. The equilibrium equation is solved in S
III, and a critical field strengthHc is derived for the onset o
layer displacements. An energy comparison in Sec. IV f
ther reveals that the solution for layer displacements is e
getically favourable to the zero displacement solution wh
H.Hc . Some examples of solutions and critical fie
strengths for physically relevant parameters are examine
Sec. V. Section VI interprets the results in the previous s
tions in relation to an electric field applied across a wedge
cylindrical smectic-A layers, the field term in Eq.~1.1! being
suitably modified. The results are particularly relevant
layer undulations near the critical field magnitudes. Sect
VII concludes the article with a discussion of the results.

II. ENERGIES AND EQUILIBRIUM EQUATION

The magnetic field is assumed to be unaffected by
fluid so thatH given by Eq.~1.1! satisfies

¹∧H50, ¹•H50. ~2.1!

It is well known that the magnetic energy can then be writ
as~ignoring a constant contribution to the energy which do
not affect the alignment ofn! ~Ref. @3#, p. 119!,

wm52 1
2 xa~n–H!2, ~2.2!

wherexa is the anisotropy of diamagnetic susceptibility
the liquid crystal. In this casexa is supposed positive, which
indicates that the directorn ‘‘prefers’’ to align parallel to the
magnetic field. Given that the direction of the field is initial
perpendicular ton, the director can only align more with th
field if it tilts with respect to the layer normal, inducing laye
compression. Given the results for planar samples@3,17#, we
expect to find analogous solutions which model undulati
of the layers at a critical field strengthHc.0.

Small deviations inn from n0 will induce a displacemen
of the layers. This displacement is represented in the u
notation by u(r ,a,z), with uuu!1. For notational conve-
nience we follow@16# and define

~¹'u!25uz
21

1

r 2 ua
2, ~2.3!

¹'
2 u5uzz1

1

r 2 uaa , ~2.4!

where subscripts denote partial derivatives with respec
the relevant variables. From Ref.@16# it is known that to
second order inu we may write

n5F12
1

2
~¹'u!2G r̂2

1

r
ua~11ur !â2uz~11ur !ẑ.

~2.5!

The usual smectic-A bulk elastic energy is~Ref. @4#, pp. 98
and 310!
n-
-

c.

-
r-
n

in
c-
f

r
n

e

n
s

s

al

to

wA5
K1

2
~¹–n!2, ~2.6!

whereK1.0 is the splay elastic constant. The elastic ene
corresponding to compression of the layers is~Ref. @16#, p.
680!

wL5
B̄

2
ur

2, ~2.7!

where B̄ is the smectic layer compression constant. Sub
tuting Eq.~2.5! into Eq. ~2.6! yields the total elastic energ
wel in terms ofu as~linear combinations inu are discounted
due to symmetry considerations!

wel5wL1wA5
B̄

2
ur

21
K1

2 S 1

r 2 1~¹'
2 u!22

1

r 2 ~¹'u!2D1S,

~2.8!

whereS is the surface term

S52
K1

r S 1

2

]

]r
~¹'u!21

1

r 2

]

]a
~uaur !1

]

]z
~uzur ! D .

~2.9!

A further substitution of Eq.~2.5! into Eq. ~2.2! gives the
magnetic energy~to second order inu!

wm52
H2a2

2r 4 xaua
2. ~2.10!

Ignoring surface contributions we finally arrive at the to
energy of the system given by the sumw5wel1wm2S of
the elastic and magnetic energies. Hence we take

w5
B̄

2
ur

21
K1

2 S 1

r 2 1~¹'
2 u!22

1

r 2 ~¹'u!2D2
H2a2

2r 4 xaua
2.

~2.11!

The total energy integral, in polar coordinates, over a u
depth inz, is

W5E
V

wr dr da dz, ~2.12!

whereV is the volumea<r<b, 0<a<2p, 0<z<1. The
Euler-Lagrange equation for extremau of an integral whose
integrandw̄ depends on the functionu(x1 ,x2 ,x3) and its
derivatives up to second order~with no mixed derivatives! in
the variablesxi , i 51, 2, and 3, is~Ref. @18#, p. 202!

]w̄

]u
1(

i 51

3 F ]2

]xi
2 S ]w̄

]~uii !
D2

]

]xi
S ]w̄

]ui
D G50, ~2.13!

where, for example,ui denotes partial differentiation ofu
with respect to thei th variable. Settingw̄5wr in Eq. ~2.13!
gives the following governing static equilibrium equation f
the energyW in Eq. ~2.12!
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1890 PRE 60I. W. STEWART
K1¹'
2 S ¹'

2 1
1

r 2Du1
H2a2

r 4 xauaa5B̄
1

r

]

]r
~rur !.

~2.14!

This is an extension of the equation discussed in Ref.@16#.
The energy for each solution of Eq.~2.14! can be calculated
via Eq. ~2.12! and a comparison of energies is then possib
This comparison determines which solution is energetic
favorable, the solution with the least energy being preferr

III. SOLUTIONS FOR u5u„r ,a…

The simplest solutions can be found whenz dependence is
neglected. We shall assume the surface anchoring in
sample is such thatn is equal ton05 r̂ on the boundaries a
r 5a,b. Solutions of the form

u~r ,a!5v~r !sin~ma!, ~3.1!

with m an integer are sought, with the expectation that e
cylindrical layer will undergo a periodic distortion in theâ
direction. The numberm plays a similar roˆle to that of the
wave number considered in Ref.@3#. This is analogous to the
periodic distortions reviewed in Refs.@3,4# for planar aligned
smectic-A samples. The variable separable form for the
lution in Eq. ~3.1! is a standard ansatz for cylinder problem
in liquid crystals@16#. The corresponding boundary cond
tions are

v~a!5v~b!50. ~3.2!

The equilibrium equation~2.14! in this case becomes

K1

r 4 ~uaaaa1uaa!1
H2a2

r 4 xauaa5B̄
1

r

]

]r
~rur !. ~3.3!

Inserting the ansatz~3.1! into Eq. ~3.3! and simplifying
shows that the ordinary differential equation

r 2
d2v
dr2 1r

dv
dr

2
s2~m,H !

r 2 v50 ~3.4!

must be satisfied with

s2~m,H !5
m2

B̄
„K1~m221!2xaH2a2

…. ~3.5!

The quantity s2(m,H) depends on the magnetic fie
strengthH and may be positive, zero, or negative. We co
sider each case separately.

Case (i)s2(m,H)>0. Making the change of variable

s5 i
us~m,H !u

r
, i 2521, ~3.6!

in Eq. ~3.4!, noting thats252s2(m,H)/r 2, gives Bessel’s
equation in the form

s2
d2v
ds2 1s

dv
ds

1s2v50. ~3.7!

Hence the general solution to Eq.~3.7! is
.
y
d.

he

h

-

-

v~s!5C1J0~s!1C2Y0~s!, ~3.8!

whereC1 andC2 are arbitrary constants andJ0 andY0 are
Bessel functions of the first and second kinds, respectiv
of order zero. For realh, the functionsJ0 and Y0 satisfy
~Ref. @19#, p. 375!

J0~ ih!5I 0~h!, ~3.9!

Y0~ ih!5 i I 0~h!2
2

p
K0~h!, ~3.10!

whereI 0 andK0 are the modified Bessel functions of the fir
and second kinds of order zero. The solution in terms ofv(r )
can now be written as~with different constantsC1 andC2!

v~r !5C1I 0S us~m,H !u
r D1C2K0S us~m,H !u

r D . ~3.11!

Applying the boundary conditions~3.2! shows that we re-
quire

F I 0S us~m,H !u
a D K0S us~m,H !u

a D
I 0S us~m,H !u

b D K0S us~m,H !u
b D G FC1

C2
G5F00G .

~3.12!

It is known ~Ref. @19#, pp. 374–376! that I 0 andK0 have no
real zeros and thatI 08(h)5I 1(h).0 andK08(h)52K1(h)
,0 for h.0. Hence

I 0S us~m,H !u
a D.I 0S us~m,H !u

b D.0,

K0S us~m,H !u
b D.K0S us~m,H !u

a D.0. ~3.13!

It follows that

I 0S us~m,H !u
a DK0S us~m,H !u

b D
2I 0S us~m,H !u

b DK0S us~m,H !u
a D.0, ~3.14!

and therefore the determinant of the coefficients on the l
hand side of Eq.~3.12! is always nonzero. ThusC15C2
50 is the only solution of Eq.~3.12!, leading tov(r )[0 as
the only solution to Eq.~3.4! with Eq. ~3.2!. This means that
for s2(m,H).0 there are no real nonzero solutions to t
given boundary value problem.

Whens2(m,H)50, Eq. ~3.4! is easily integrated to find
v(r )5C1 ln r1C2, and a simple application of the bounda
conditions again showsv(r )[0 to be the only real solution
available. It is easily observed from Eq.~3.5! that when no
field is present thens2(m,0)>0 for all integersmand hence,
from the above results only the zero solution is availab
Thus the cylindrical layers, when constructed, are anticipa
to prefer remaining cylindrical when no field is present.
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Case (ii)s2(m,H),0. It is first observed thats2(m,H)
,0 for all H.0 whenm561. Whens2(m,H),0 we can
make a similar change of variable to Eq.~3.6! by setting

s5
us~m,H !u

r
, ~3.15!

leading to Eq. ~3.7! from Eq. ~3.4! again, noting that
2s2(m,H)5us(m,H)u2. The solution corresponding to th
analog of Eq.~3.8! is then, in the variabler,

v~r !5C1J0S us~m,H !u
r D1C2Y0S us~m,H !u

r D . ~3.16!

As in Eq. ~3.12!, the boundary conditions~3.2! force the
following to be satisfied for the constantsC1 andC2 :

F J0S us~m,H !u
a D Y0S us~m,H !u

a D
J0S us~m,H !u

b D Y0S us~m,H !u
b D G FC1

C2
G5F00G .

~3.17!

To simplify the discussion we introduce the parameters

l5
b

a
.1, q~m,H !5

us~m,H !u
b

. ~3.18!

The determinant det„l,q(m,H)… of the coefficient matrix in
Eq. ~3.17! is then

det„l,q~m,H !…5J0„lq~m,H !…Y0„q~m,H !…

2Y0„lq~m,H !…J0„q~m,H !….

~3.19!

For nonzero solutionsC1 andC2 to Eq.~3.17! it is necessary
to find the first zero of det„l,q(m,H)… for fixed l.1, with
q(m,H) treated as a variable essentially dependent upon
magnetic field strengthH ~from the definition ofq ands!. @It
is worth remarking here thatv(r ) can be zero inside the
sample as well as on the boundaries: in such cases we
look for the second, third, or higher zeros of det„l,q(m,H)….
As a first approximation, however, it is expected that a fi
zero will provide an adequate indication of the behavior n
the critical threshold.# Let ql be the first zero of
det„l,q(m,H)… for some fixedl.1. Such a first zero exist
and is positive by the results contained in Ref.@19#, p. 415:
such zeros have to be found numerically, althou
asymptotic formulas are available. It follows thatH must
satisfyql5us(m,H)u/b, and hence

b2ql
252s2~m,H !5

m2

B̄
„xaH2a22K1~m221!….

~3.20!

Since b5la, Eq. ~3.20! can be rearranged to find thatH
satisfies

H5 f ~m![
1

a S K1

xa
D 1/2

~m21Qlm2221!1/2, ~3.21!
he

an

t
r

h

where

Ql5
B̄

K1
a2l2ql

2. ~3.22!

The least value ofH is then given via the functionf (m),
which is at its minimum whenm5Ql

1/4. However,m must
be an integer and thereforeH is minimized at eitherm
5@Ql

1/4# or m5@Ql
1/4#11 where @X# denotes the greates

integer less than or equal toX. If 0,Ql<1, then it is clear
that m51 gives the minimum valueHc found from Eq.
~3.21! @m50 is discounted becauseql in Eq. ~3.20! cannot
be zero#. To ease notation, define

mc5@Ql
1/4# for Ql.1. ~3.23!

For Ql.1 the differencef 2(mc11)2 f 2(mc) can be calcu-
lated to determine whethermc or mc11 gives the minimum
value ofm to provide the minimum valueHc of H5 f (m).
We have that

f 2~mc11!2 f 2~mc!5
1

a2

K1

xa

~2mc11!

mc
2~mc11!2

3„mc
2~mc11!22Ql…, ~3.24!

from which it easily follows that

Hc55 f ~1!5
1

a S K1

xa
D 1/2

Ql
1/2 if 0 ,Ql<1,

f ~mc! if Ql,mc
2~mc11!2,

f ~mc11! if Ql.mc
2~mc11!2.

~3.25!

The quantityQl therefore characterizes the behavior ofHc .
Further, from the property thatql˜` asl˜11 ~Ref. @19#,
p. 374!, it is clear thatHc˜` as l˜11, that is, as the
radius ratio tends to unity. The quantityHc therefore corre-
sponds to the usual interpretation of a critical threshold
the onset of a Helfrich-Hurault-type transition.

The solutionu(r ,a) at H5Hc is found from Eqs.~3.1!
and ~3.16!, and the solution of Eq. ~3.17! with
det„l,q(m,H)…50. In this case, with C15u0 , C2
52u0J0(uscu/a)J0/Y0(uscu/a), u0 an arbitrary constant
the solutions are

u~r ,a!5u0

sin~ma!

Y0~ uscu/a!
V~r !,

~3.26!

V~r !5J0S uscu
r DY0S uscu

a D2Y0S uscu
r D J0S uscu

a D ,

with

uscu5us~m,Hc!u5bql5alql , ~3.27!

m5H 1
mc

mc11

if 0 ,Ql<1,
if Ql<mc

2~mc11!2,

if Ql.mc
2~mc11!2.

~3.28!
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The nature of the solution then depends upon the quantityQl

in Eq. ~3.22!. It is worth noting that the zeros ofJ0 andY0 do
not generally coincide with the zeros of det„l,q(m,H)… so
that the solution in Eq.~3.26! generally exists~this follows
from the fact thatJ0 and Y0 have no common zeros!. The
energy associated with this solution is examined in Sec.
before some examples are given for physical parameter
Sec. V.

IV. ENERGY CONSIDERATIONS

The equilibrium equation~2.14! has both the solutionsu
[0 andu(r ,a) in Eq. ~3.26! satisfying the boundary condi
tions~3.2!. As is common in liquid crystal theory, a compar
son of the energies for such solutions determines which
is energetically favorable: the solution with the least ene
is interpreted as the preferred physical solution. We set

DW5W„u~r ,a!…2W~u[0!, ~4.1!
,
in

e
y

with W being the total energy integral in Eq.~2.12!, and
consider the regiona<r<b, 0<a<2p, 0<z<1. For the
solutionu(r ,a) in Eq. ~3.26! it is found that

S dV

dr D 2

5
uscu2

r 4 XY1S uscu
r D J0S uscu

a D2J1S uscu
r DY0S uscu

a D C2

,

~4.2!

ur
25u0

2 sin2~ma!

Y0
2~ uscu/a!

S dV

dr D 2

, ~4.3!

~¹'u!25u0
2 m2

r 2

cos2~ma!

Y0
2~ uscu/a!

V2~r !, ~4.4!

~¹'
2 u!25u0

2 m4

r 4

sin2~ma!

Y0
2~ uscu/a!

V2~r !, ~4.5!

and hence
DW5
1

2 Ea

bE
0

2pF rB̄ur
21K1r S ~¹'

2 u!22
1

r 2 ~¹'u!2D2
H2a2

r 3 xaua
2 Gdr da

5
p

2

u0
2

Y0
2~ uscu/a!

E
a

bF rB̄S dV

dr D 2

1
1

r 3 „K1m2~m221!2m2H2a2xa…V
2~r !Gdr

5
p

2

u0
2B̄

Y0
2~ uscu/a!

E
a

bF r S dV

dr D 2

1
s2

r 3 V2~r !Gdr, ~4.6!

dV
y,

lt
wheres5s(m,H) is given by Eq.~3.5! above~the value of
m appearing insc , and s is the same!. To evaluate the
integrals in Eq.~4.6! we begin by noting from Eq.~3.27! that
uscu/b5ql and uscu/a5lql . The substitutionx5uscu/r
then shows

E
a

bF r S dV

dr D 2

1
s2

r 3 V2~r !Gdr

5E
ql

lql
xF S dV

dxD 2

1
s2

uscu2
V2~x!Gdx, ~4.7!

with
dx
52J1~x!Y0~lql!1Y1~x!J0~lql! . ~4.8!

SinceV anddV/dx are cylinder functions~linear combina-
tions of Bessel functions! of orders zero and 1, respectivel
we employ the result from Watson~Ref. @20#, p. 135! that for
any cylinder functionCm of orderm

E xCm
2 ~x!dx5 1

2 x2
„Cm

2 ~x!2Cm21~x!Cm11~x!…,

~4.9!

ignoring constants of integration. Application of this resu
gives, noting thatJ21(x)52J1(x), J08(x)52J1(x), and
similar results hold forY0 andY1 ,
E xS dV

dxD 2

dx5
1

2
x2S dV

dxD 2

2
1

2
x2V~x!@Y0~lql!J2~x!2J0~lql!Y2~x!# ~4.10!

E xV2~x!dx5
1

2
x2V2~x!2

1

2
x2@Y0~lql!J21~x!2J0~lql!Y21~x!#[Y0~lql!J1~x!2J0~lql!Y1~x!]

5
1

2
x2V2~x!1

1

2
x2S dV

dxD 2

. ~4.11!

From the boundary conditions,V(lql)5V(ql)50, and hence from Eqs.~4.7!, ~4.10!, and~4.11!, we find that
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E
a

bF r S dV

dr D 2

1
s2

r 3 V2~r !Gdr5
1

2 S 11
s2

uscu2
D Fx2S dV

dxD 2G
x5ql

x5lql

5
1

2 S 11
s2

uscu2Dql
2@l2$Y0~lql!J1~lql!2J0~lql!Y1~lql!%2

2$Y0~lql!J1~ql!2J0~lql!Y1~ql!%2#. ~4.12!
he
s

ius
It is known that@19#, 9.1.16

Y0~h!J1~h!2J0~h!Y1~h!5
2

ph
. ~4.13!

Applying this result reveals that

ql
2l2$Y0~lql!J1~lql!2J0~lql!Y1~lql!%25

4

p2 .

~4.14!

Also, sinceql is a root of the determinant in Eq.~3.19! ~and
assumingJ0(ql)Þ0!,

Y0~lql!5J0~lql!
Y0~ql!

J0~ql!
. ~4.15!

This substitution allows the following term from Eq.~4.12!
to be calculated as

ql
2$Y0~lql!J1~ql!2J0~lql!Y1~ql!%2

5ql
2

J0
2~lql!

J0
2~ql!

@J1~ql!Y0~ql!2Y1~ql!J0~ql!#2

5
4

p2

J0
2~lql!

J0
2~ql!

, ~4.16!

this last step being accomplished by another application
the result in Eq.~4.13!. Insertion of Eqs.~4.16! and ~4.14!
into Eq. ~4.12! now allows the full evaluation ofDW in Eq.
~4.6! to be given as

DW5
1

p

u0
2B̄

Y0
2~lql!

1

uscu2
~ uscu21s2!F12

J0
2~lql!

J0
2~ql! G .

~4.17!

We now prove that 12J0
2(lql)/J0

2(ql) is positive for any
l.1. Substituting forY0(ql) from Eq. ~4.15!, it is seen that

J0
2~ql!1Y0

2~ql!5
J0

2~ql!

J0
2~lql!

@J0
2~lql!1Y0

2~lql!#.

~4.18!

Hence there is the equality

J0
2~lql!

J0
2~ql!

5
M0

2~lql!

M0
2~ql!

, ~4.19!

whereM0 , defined for anyh.0 by
of

M0
2~h!5J0

2~h!1Y0
2~h!, ~4.20!

is the usual modulus function for Bessel functions. T
above result in Eq.~4.19! is not true in general, but depend
on the fact thatql is a zero of the determinant in Eq.~3.19!.
It is well known ~Ref. @20#, p. 446! that M0

2(h) is a positive
and strictly decreasing function forh.0. Hence, sincel.1,
it is easily seen from Eq.~4.19! that

12
J0

2~lql!

J0
2~ql!

.0. ~4.21!

It now follows from Eqs.~4.21! and ~4.17! that DW,0
whenever2s2.uscu2, that is,

FIG. 2. The critical thresholdHc ~G! for the onset of layer
distortions is shown in~a! for 1022<a<2 ~cm! for the particular
physical parameters in Eq.~5.1! @the vertical axis in~a! is on a log10

scale#. Values forHc have been calculated for the sample rad
ratios l, as indicated. The relevant zerosql of determinant~3.19!
are also given. The linked wave numbersm at Hc are given in~b!
for the same values ofl.
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DW,0 wheneverH.Hc , ~4.22!

with Hc defined by Eq.~3.25! @employing Eq.~3.20!#. It is
therefore expected that the variable solutionu(r ,a) will be
preferred to the solutionu[0 for H.Hc .

V. EXAMPLES

We consider the physical values~in cgs units! ~Ref. @3#, p.
363!

K151026, xa51027, B̄52.53107, ~5.1!

and plot the dependence ofHc ~Gauss! upon the inner radius
a for given cylindrical samples with radius ratiosl5b/a.
For convenience,l51.25, 2.5, 5, 10, and 50 are chosen sin
the zeros of det(l,q) are known from tables~Ref. @19#, p.
415!, and we consider feasible values fora by restricting it to
the range 1022<a<2. The relevantQl in Eq. ~3.22! can
then be calculated, which in turn allowsHc in Eq. ~3.25! to
be evaluated. The resulting graphs are shown in Fig. 2~a!.
The corresponding values form in Eq. ~3.28!, which indicate
the numbers of undulations, is a function ofQl and can be
evaluated similarly leading to the plots in Fig. 2~b!; from
Eqs.~3.22! and~3.23! it is clear thatm'LAa for some con-
stantL whenl.1 is fixed. For a given sample radius ratiol
and inner radiusa, the correspondingm andHc can be found
from such graphs, and henceuscu in Eq. ~3.27! can be cal-
culated: this allows the calculation of the complete solut
u(r ,a) at the critical thresholdHc . From the figure, it is
seen thatHc decreases asa and/orl increases;m increases
asa increases but decreases whenl increases.

Figure 3 shows the solutionu(r ,a) in Eq. ~3.26! for the
particular values

l52.5, a50.2, b50.5, ~5.2!

with the physical parameters in Eq.~5.1!. In this case we find

FIG. 3. Plot ofu(r ,a) for a50.2 andb50.5 ~i.e., l52.5! and
the physical parameters in Eq.~5.1! ~in cgs units!. In this caseHc

550907 (G), and the solution is plotted for the rangesa<r
<b and 0<a<2p/m ~radians!, m given by Eq.~5.3!. The con-
stantu0 in Eq. ~3.26! is set to 331023 ~1% of the radial depthb
2a!. The plot should be repeatedm times in thea direction for a
full representation ofu(r ,a).
e

n

ql52.073 228 86, m52276, Hc550 907,

sc51.036 614 43, ~5.3!

and setu05331023 ~that is, we choose to set the arbitra
small constantu0 to 1% of the radial depthb2a!. For clarity
the solution is plotted fora<r<b but with 0<a<2p/m:
the figure is repeatedm times in thea direction to obtain the
full representation of the displacementu at Hc . The critical
current can easily be obtained from the results for the m
netic field by simply converting to appropriate units for cu
rent using tables, for example those contained in Abrah
and Becker~Ref. @21#, p. 251!.

A comparison with the results for planar smecticA
samples is possible if we consider large radiusa and small
radial ratiol5b/a'1. In these circumstances we have~Ref.
@19#!

mc'Ql
1/4, ql'

p

l21
, ~5.4!

and hence

xaHc
2'xaf 2~mc!'

2

a2 K1Ql
1/252

b

a2 ql
AK1B̄'2

p

d
AK1B̄,

~5.5!

whered5b2a. The approximation in Eq.~5.5! is identical
to the result for planar samples~the notationl in Ref. @3#, p.

363 representsAK1 /B̄). Thus the results in this paper co
lapse for thin samples to those for the planar case whena is
large andd is small. In fact,Hc'60 kG in Ref.@3#, and so
the results presented above are in line with those elsewh

VI. CYLINDRICAL WEDGE UNDER AN
ELECTRIC FIELD

The results presented above can be easily reinterprete
the problem of an electric field applied across concen
cylindrical smectic-A layers. Here the geometry is identic
to that in Fig. 1 except that 0<a<b for some fixed
‘‘wedge’’ angleb. The magnetic field is replaced by an ele
tric field E which follows the plane of the layers and is a
plied between bounding plates ata50 anda5b, as depicted
in Fig. 4. This particular wedge geometry has been ext
sively considered in the articles by Carlsson, Stewart,
Leslie @13# and Atkin and Stewart@14# in the context of
smectic-C Freedericksz transitions. The results here pred
critical voltage magnitudesUc for an Helfrich-Hurault tran-
sition to occur for various wedge anglesb.

FIG. 4. The wedge geometry described in the text. The magn
field shown in Fig. 1 is replaced by an electric field given by E
~6.2! applied across the boundaries ata50 anda5b.



on

s

p

ns

n
te

ge

e
ce

e a
e

4.9

on
of
is

c-
lo-
gni-

the

in
nar

m-

PRE 60 1895LAYER UNDULATIONS INDUCED BY A MAGNETIC OR . . .
Solutions are sought such that the ansatz in Eq.~3.1! can
be employed again. To satisfy the zero boundary conditi
at the plates, we setm5p/b. In this case we have that

u~r ,a!5v~r !sinS p

b
a D , ~6.1!

to which is added the zero boundary conditions onv in Eq.
~3.2!. The equations in Sec. II are changed using the sub
tutions ~Ref. @3#, p. 135! ~see also Refs.@13#, @14#!

H˜E5
U

rb
â, xa˜

ea

4p
, Ha˜

U

b
, ~6.2!

whereU is the applied voltage, and the dielectric anisotro
ea is assumed positive. Equations~3.4! and ~3.5! are the
same except thats2(m,H) is replaced by

s2~U !5
p2

b4

1

B̄
S K1~p22b2!2

ea

4p
U2D . ~6.3!

For s2(U)>0 the arguments in case~i! after Eq.~3.5! again
show thatv(r )[0 is the only solution available. Following
through the argument in case~ii ! shows that whens2(U)
,0 a nonzero solution can be obtained forv(r ), provided

b2ql
252s2~U !5

p2

b4

1

B̄
S ea

4p
U22K1~p22b2!D

~6.4!

with l and ql defined as before. It follows from Eq.~6.4!
that the critical voltageUc is found to be

Uc5S 4pK1

ea
D 1/2 S p22b21

b4

p2 QlD 1/2

, ~6.5!

Ql being given by Eq.~3.22!. The rôles of b and the radius
ratio l are evident from the form ofUc in Eq. ~6.5!. Intro-
ducing

uscu5us~Uc!u5bql ~6.6!

results in the solution given by

u~r ,a!5u0

sinS p

b
a D

Y0S uscu
a D V~r !, ~6.7!

with V(r ) given by Eq.~3.26! with uscu appropriately rede-
fined by Eq.~6.6!. The energy argument in Sec. IV remai
unchanged with the obvious modifications for the limits ina,
resulting in

DW,0 whenever U.Uc , ~6.8!

with Uc defined by Eq.~6.5!. It is therefore expected, as i
the magnetic field problem examined above, that the sys
will prefer the variable solutionu(r ,a) to the zero solution
when the magnitude of the voltage exceedsUc .
s

ti-

y

m

Examples of critical applied voltagesUc ~in esu units! are
displayed in Fig. 5 for the same values ofl as in Fig. 2
above. The constants used are those in Eq.~5.1! except that
xa is replaced byea/4p50.2. The inner radiusa is fixed to
be 1021 (cm), and the plots are for values of the wed
angle in the range 0<b<0.1 ~'5.7°!: of course, any other
values forea , a, and b are possible, depending upon th
application considered. This particular choice is of relevan
for samples which have a low wedge angle, for instanc
usual ‘‘bookshelf’’ geometry of layers with one end of th
sample slightly narrower than the other~the arc lengths are
ba2 andbb2 at the inner and outer radii, respectively!. If the
radial depth is defined to beb2a then l51.25, 2.5, 5, 10,
and 50 correspond to depths of 0.025, 0.15, 0.4, 0.9, and
~cm!, respectively, whena51021.

VII. CONCLUSIONS

It has been shown that an Helfrich-Hurault-type transiti
is theoretically possible for concentric cylindrical layers
smectic-A liquid crystal arranged as shown in Fig. 1. It
assumed that the anisotropy of diamagnetic susceptibilityxa
is positive. A magnetic field applied in the azimuthal dire
tion â parallel to the layers induces layer distortions, ana
gous to those for planar aligned samples, when the ma
tude of the field is greater than a critical valueHc , given by
Eq. ~3.25!. The solutionu(r ,a) at the threshold valueHc has
been derived explicitly in Eq.~3.26!, and in Sec. IV it has
been shown to be energetically favorable compared to
zero solution. The variable solutionu(r ,a) at H5Hc has an
r dependence given by Eq.~3.26! with a critical wave num-
ber m ~in the a direction! given via Eqs.~3.23! and ~3.28!.
For a given inner radiusa and outer radiusb the dependence
of the critical behavior upon the ratiol5b/a has been ex-
amined: in particular, the critical threshold result for th
radial samples matches the threshold of the usual pla
aligned samples whena is large, as shown by Eq.~5.5!.

Section V investigated the results for the physical para
eters in Eq.~5.1!, and calculated the correspondingHc for
1022<a<2, l5b/a51.25, 2.5, 5, 10, and 50~cgs units!.
Linked with Hc is the corresponding wave numberm, found
from a minimization of the field strengthH, as discussed in
Sec. III. Graphs ofHc and m as functions ofa and l are

FIG. 5. Critical magnitudesUc ~statvolt! of the applied voltage
for the radial ratiosl as indicated. The inner radius is fixed ata
51021 (cm) and 0<b<0.1 ~'5.7°!. The physical constantsK1

and B̄ are as in Eq.~5.1!, while ea/4p has been set to 0.2.
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given in Fig. 2. Figure 2 provides useful guidance for t
consideration of experimental setups with regard to
choices of inner and outer radii and the resulting poss
critical thresholds and wavenumbers. It is clear from F
2~a! that radially deeper samples always lead to lower thre
olds. Figure 3 is a plot of a particular solutionu(r ,a) in Eq.
~3.26! for the parameters in Eq.~5.1! with l, a, andb given
by Eq. ~5.2!; it is plotted fora<r<b and 0<a<2p/m, as
discussed in Sec. V. The figure displays the typical qual
tive features of such solutions in general: in this particu
example the resulting threshold is given in~5.3! as Hc
550 907 G, similar to that reported for planar samples.

The results for a magnetic field were extended to an e
tric field for the wedge geometry discussed in Sec. VI. T
dependence of the critical applied voltageUc upon the
wedge angleb is given by Eq.~6.5!, and plots ofUc are
displayed in Fig. 5 for the physical parameters used bef
except thatxa is replaced bye0/4p50.2. These results ar
particularly relevant for samples close to a ‘‘bookshelf’’ g
ometry whenb is small ~in Fig. 5, 0<b<5.7°!. In the de-
generate case ofb50, which is of course physically unrea
istic because the sample would have zero volume, it sho
t.
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e
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ld

nevertheless be observed thatUc in Eq. ~6.5! becomes

Uc5pS 4pK1

ea
D 1/2

. ~7.1!

With the obvious change in notationea˜4pe0De, this is
exactly the critical voltage mentioned by Elston@22# for the
usual Fre´edericksz transition in nematic liquid crystals. E
ston went on to discuss layer distortions in planar smectiA
bookshelf layers, and found a critical voltage when t
sample is close toTAC which is identical to that derived by
Kedney and Stewart@23# for the lowest order sine mode fo
layer deformations in smectic-C layers: this critical threshold
voltage is twice that given by Eq.~7.1!. A direct comparison
with the work in Ref.@22# and the wedge results present
here seems to indicate that an experiment of the type
posed for cylindrical smectic-A layers ought to have a lowe
critical voltage for layer distortions than that for planar la
ers when the wedge angleb is small. Consideration of the
factors discussed in this paper will hopefully stimulate fu
ther discussion and interest in possible Helfrich-Hurault tr
sitions for smectic liquid crystals.
s
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