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Layer undulations induced by a magnetic or electric field in concentric cylindrical layers
of smecticA liquid crystals
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This paper derives theoretical results for the onset of Helfrich-Hurault-type transitions in samples of
smecticA liquid crystals arranged in concentric cylindrical laygds Chem. Phys55, 839 (1971); 59, 2068
(1973]. A magnetic field is applied in the azimuthal direction, parallel to the layers. The governing equilibrium
equation is solved in order to derive the critical magnititjeof the magnetic field above which the onset of
periodic smectic layer distortions is expected. The distortion solution is shown to be energetically favorable for
H>H.. Some examples of critical thresholds are given, by means of figures, for relevant physical parameters.
The qualitative features of the solution ldt are displayed via the plot of a typical variable solution to the
equilibrium equation in a particular case. The consequences of the results, especially the relationship between
H. and the radial depth, are explored, and comparisons are drawn with known results for infinite planar aligned
smecticA samples. The results are also interpreted for the case of an electric field which follows the plane of
the layers in the usual wedge geometry. Critical applied voltage magnitlidase derived for various radial
sample depths and wedge angle%1063-651X%99)13708-3

PACS numbeps): 61.30.Cz, 87.22:q

. INTRODUCTION with 7, @&, andz denoting the basis vectors in thea, andz
directions, respectively. The initial average molecular align-

This paper extends the work of Helfrigh] and Hurault  ment, denoted by,=f in Fig. 1, is perpendicular to the
[2] for infinite samples of cholesteric liquid crystals underlayers and coincident with the layer normal as indicated.
the influence of a magnetic field to samples of concentricThis geometry has also been discussed in the context of cell
cylindrical layers of smectié liquid crystals. Theoretical membranes by Das and Schwtb]. It is assumed that the
results for the Helfrich-Hurault transition are well known for sample is infinite in thez direction, and that the smectk-
infinite samples of planar aligned smec#iciquid crystals  liquid crystal is in a homeotropic alignment contained be-
under the app“cation of a magnetic field: at a critical mag_tween two Cylindrical boundaries at the radial distances
nitude of the field strength the smectic layers begin to distort=a andr=b as shown. A magnetic field is applied of the
or undulate, resulting in one- or two-dimensional patternsform
Details of this effect, and on the general properties of smec-
tic liquid crystals, can be found in de Gennes and Hi®lsbr H=—a, (1.1
Chandrasekhdr]. The present aim is to examine theoreti- r
cally the possibility for the onset of a Helfrich-Hurault-type

transition for concentric cylindrical smectikayers, where . . . .
the magnetic field is locally parallel to the cylindrical layers may be achieved by bassing an electric current along a wire
situated along the axis. To derive the governing equilib-

but perpendicul.ar to their common axis; the details of thisrium equation for the directar whenH # 0, we construct the
geometry are discussed below.

SmecticA liquid crystals are layered anisotropic fluids.
Each layer consists of long molecules whose average mo-
lecular alignment is locally perpendicular to the layers. This
average alignment is denoted by the unit vectocalled the
director, and it is well known that there are six types of well
behaved surfaces, corresponding to the layers, which provide
static equilibrium configurations. These are the Dupin cy-
clides[5-7], parabolic cyclide$8—11], circular tori of revo-
lution [ 7], sphere$12], infinite cylinderg 13,14], and planes.
Our attention is restricted to infinite cylinders and, for the
problem considered here, the sample alignment is shown in
Fig. 1. The smectic layers are arranged in concentric equi-
distant cylinders whose common axis coincides with 2he £ 1. The arrangement of concentric cylindrical smestic-

axis of the usual cylindrical polar coordinate systenm(z), |ayers with inner radius and outer radiub. The initial alignment
of the director isng, coincident with the unit radial vectdr. The
magnetic fieldH is in the azimuthal directiorfy, and is locally

*Electronic address; i.w.stewart@strath.ac.uk parallel to the layers.

whereH is the magnetic field strength at=a. Such a field
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bulk elastic and magnetic energies following the work by K, 5
Kleman and Parodil6], and then minimize the total energy wWa=— (V-n)7, (2.6
via the appropriate Euler-Lagrange equation. The total en-

ergy, equilibrium equation, and boundary conditions are disWhereK >0 is the splay elastic constant. The elastic ener
cussed in Sec. Il. The equilibrium equation is solved in Sec ! piay ) oy

o . : ding t i f the | f. [16], p.
[ll, and a critical field strengtid is derived for the onset of cog)espon Ing to compression of the layersRef. [16], p

layer displacements. An energy comparison in Sec. IV fur-

ther reveals that the solution for layer displacements is ener-

getically favourable to the zero displacement solution when w, =

H>H.. Some examples of solutions and critical field

strengths for physically relevant parameters are examined in o

Sec. V. Section VI interprets the results in the previous secwhereB is the smectic layer compression constant. Substi-

tions in relation to an electric field applied across a wedge ofuting Eq.(2.5) into Eq. (2.6) yields the total elastic energy

cylindrical smecticA layers, the field term in Eq1.1) being  wy, in terms ofu as(linear combinations i are discounted

suitably modified. The results are particularly relevant fordue to symmetry considerations

layer undulations near the critical field magnitudes. Section

VII concludes the article with a discussion of the results. B Ky
We|=w,_+wA=§u,2+ -

2, (2.7)

1 2, 1\2 1 2
5| 2 H (VW= (Vw2 |+,
II. ENERGIES AND EQUILIBRIUM EQUATION (2.8

The magnetic field is assumed to be unaffected by the hereSis th f ¢
fluid so thatH given by Eq.(1.1) satisfies wheresis the surface term

VOH=0, V-H=0. (2.) __Kiflad 2, 19 7
S r 2 ar (VLU) + r2 &a(uaur)_" az(uzur) .
It is well known that the magnetic energy can then be written (2.9
as(ignoring a constant contribution to the energy which does o . _
not affect the alignment af) (Ref.[3], p. 119, A further substitution of Eq(2.5) into Eq. (2.2 gives the
magnetic energyto second order im)
Wm=—3xa(n-H)?, (2.2
H%a®
where y, is the anisotropy of diamagnetic susceptibility of W=~ -7 Xalg- (2.10

the liquid crystal. In this casg, is supposed positive, which
indicates that the director “prefers” to align parallel to the  |gnoring surface contributions we finally arrive at the total
magnetic field. Given that the direction of the field is initially energy of the system given by the swr=wg+w,,—S of

perpendicular ta, the director can only align more with the e elastic and magnetic energies. Hence we take
field if it tilts with respect to the layer normal, inducing layer

compression. Given the results for planar samfes7], we =
: ; . : B K,
expect to find analogous solutions which model undulations vy = _ 2+ —=~
of the layers at a critical field strengtt,> 0. 2 2
Small deviations im from ny will induce a displacement (21Y
of the layers. This displacement is represented in the usual
notation by u(r,a,z), with |u|<1. For notational conve-
nience we follow[16] and define

1 1 232
r—2+(VfU)2— r—z(VLU)Z) - W)(aui-

The total energy integral, in polar coordinates, over a unit
depth inz, is

1 _
(VLu)2=u§+ r_2u§u (2.3 W= QWr drdadz (2.12

1 where() is the volumea<r<b, O<a<2w, 0<z<1. The
V2U=U,+ 5 Upuq, (2.9 Euler-Lagrange equation for extremeof an integral whose
' integrandw depends on the function(x;,X,,X3) and its
derivatives up to second ordewith no mixed derivativesin
the variabless;, i=1, 2, and 3, igRef.[18], p. 202

oW
du;

(2.5  where, for exampley; denotes partial differentiation aof
with respect to theth variable. Settingv=wr in Eq. (2.13
The usual smectiéx bulk elastic energy isRef. [4], pp. 98  gives the following governing static equilibrium equation for
and 310 the energyW in Eq. (2.12

where subscripts denote partial derivatives with respect t

the relevant variables. From RdfL6] it is known that to

second order i we may write T
w

oY =0, (2.13

3 2 —
J IwW J
=1 [ oxi \d(uy) ) ax

1 1
n=|1-— E(VLU)2 P —Ua(1+ U @—uy(1+up)2.
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1 H%a? —19 v(s)=C1Jo(8)+C,Y(9), (3.9

K]_VJZ_ Vf_‘l‘rz u-+ r—4XaUaa:BT a—r(rur). .
(2.14 whereC, andC, are arbitrary constants ald andY, are

This is an extension of the equation discussed in Ri].
The energy for each solution of E(R.14) can be calculated

Bessel functions of the first and second kinds, respectively,
of order zero. For real, the functionsJ, and Y, satisfy
(Ref.[19], p. 375

via Eq.(2.12 and a comparison of energies is then possible.

This comparison determines which solution is energetically

Jo(in)=1o(7), (3.9

favorable, the solution with the least energy being preferred.

Ill. SOLUTIONS FOR u=u(r,a)

2
Yoli ) =ilo(7) = —Ko(7), (3.10

The simplest solutions can be found wiwstependence is \yherel , andK , are the modified Bessel functions of the first

neglected. We shall assume the surface anchoring in thg,
sample is such that is equal tony=f on the boundaries at

r=a,b. Solutions of the form

u(r,a)=v(r)sin(ma), (3.1

d second kinds of order zero. The solution in termg(o}
can now be written aéwith different constant€; andC,)

|0(m,H)|) |0(m,H)|)
r r

V(I’)IC1|O< +C2Ko . (311)

with m an integer are sought, with the expectation that each

cylindrical layer will undergo a periodic distortion in the
direction. The numbem plays a similar tte to that of the

wave number considered in REB]. This is analogous to the

periodic distortions reviewed in Ref8,4] for planar aligned

smecticA samples. The variable separable form for the so-
lution in Eq.(3.1) is a standard ansatz for cylinder problems
in liquid crystals[16]. The corresponding boundary condi-

tions are
v(a)=v(b)=0. (3.2
The equilibrium equationi2.14) in this case becomes
H2a2

19
1
r—4(Uaaaa+ Uye) T r—4)(auw— B? E(rur). (3.3

Inserting the ansat£3.1) into Eq. (3.3) and simplifying
shows that the ordinary differential equation

,d%v  dv  ¢*(mH) o 2z
r W‘f‘rm TV— ( . )
must be satisfied with
m2
o?(mH)=— (Ky(m?—1)— y,H%a?). (3.5
B

The quantity o?(m,H) depends on the magnetic field

Applying the boundary condition&3.2) shows that we re-
quire

IO(Ia(m,H)l) KO(Io(m,H)l

T

(3.12

It is known (Ref.[19], pp. 374-37Bthatl, andK, have no
real zeros and that)(z)=1.(7)>0 andKy(7)=—K(7)
<0 for >0. Hence

(m,H) (m,H)
KO(|0(m’H)|)>KO(|U(m’H)|)>o. (3.13
b a
It follows that
(m,H) (m,H)
o 7l
_|0<|0(rE’H)| Ko<|0(:’H)| >0, (3.14

strengthH and may be positive, zero, or negative. We con-and therefore the determinant of the coefficients on the left-

sider each case separately.
Case (i)o®(m,H)=0. Making the change of variable

_JotmH)]

’ |2:_11
r

(3.6

in Eq. (3.4), noting thats?= — o?(m,H)/r?, gives Bessel's
equation in the form

2d2v+ dv+ 2 —0
F S& s“v=0U.

3.7

S

Hence the general solution to E®.7) is

hand side of Eq(3.12 is always nonzero. Thu€,=C,
=0 is the only solution of Eq(3.12), leading tov(r)=0 as
the only solution to Eq(3.4) with Eq. (3.2). This means that
for o?(m,H)>0 there are no real nonzero solutions to the
given boundary value problem.

When o?(m,H)=0, Eq.(3.4) is easily integrated to find
v(r)=C;Inr+C,, and a simple application of the boundary
conditions again showg(r)=0 to be the only real solution
available. It is easily observed from E@.5 that when no
field is present then?(m,0)=0 for all integersmand hence,
from the above results only the zero solution is available.
Thus the cylindrical layers, when constructed, are anticipated
to prefer remaining cylindrical when no field is present.
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Case (i) 0?(m,H)<0. It is first observed that?(m,H)
<0 for all H>0 whenm= +1. Wheno?(m,H)<0 we can
make a similar change of variable to E§.6) by setting
lo(m,H)|

r_ 1

(3.19

leading to Eg.(3.7 from Eq. (3.4) again, noting that
—o?(m,H)=|o(m,H)|2. The solution corresponding to the
analog of Eq(3.8) is then, in the variable,

(lU(m,H)I Ia(m,H)l)
r r

V(r):C]_JO +C2YO . (316)
As in Eq. (3.12, the boundary condition$3.2) force the
following to be satisfied for the constar@y andC,:

m,H m,H
Jo<|0( )|) YO(|a’( )|
a o[ 1€1-lo
lo(m,H)| lo(m,H)|\ [[C2)|O)
JO(T Yo —5
(3.17
To simplify the discussion we introduce the parameters
b |o(m,H)]
AN=2>1 gmH)=———. (3.18

The determinant déx,q(m,H)) of the coefficient matrix in
Eqg. (3.17) is then

—Yo(Ag(m,H))Jo(a(m,H)).
(3.19

For nonzero solution€, andC, to Eq.(3.17) it is necessary
to find the first zero of dék,q(m,H)) for fixed A>1, with

g(m,H) treated as a variable essentially dependent upon th

magnetic field strengthl (from the definition ofg ando). [It

is worth remarking here that(r) can be zero inside the
sample as well as on the boundaries: in such cases we ¢
look for the second, third, or higher zeros of @eg(m,H)).

As a first approximation, however, it is expected that a firs
zero will provide an adequate indication of the behavior nea
the critical threshold. Let g, be the first zero of
det(\,q(m,H)) for some fixed\>1. Such a first zero exists
and is positive by the results contained in Réf], p. 415:
such zeros have to be found numerically,
asymptotic formulas are available. It follows thidt must
satisfyg, =|o(m,H)|/b, and hence

m2
g(xaHzaz—Kl(mz—l)).

(3.20

Sinceb=\a, Eqg. (3.20 can be rearranged to find thet
satisfies

b2q§= —a?(m,H)

1/2
H ) (m*+Q,m2-1)¥2  (3.21)

a
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where

szKEazxzqi. (3.22

1

The least value oH is then given via the functiori(m),
which is at its minimum whem=Q>*. However,m must
be an integer and thereford is minimized at eitherm
=[QY¥" or m=[Q¥*+1 where[X] denotes the greatest
integer less than or equal X If 0<Q, <1, then it is clear
that m=1 gives the minimum valud, found from Eq.
(3.2) [m=0 is discounted becausg in Eq. (3.20 cannot
be zerd. To ease notation, define

m.=[QY4 for Q,>1. (3.23

For Q,>1 the differencef?(m,+1)— f?(m,) can be calcu-
lated to determine whethen, or m.+1 gives the minimum
value of m to provide the minimum valuél. of H=f(m).
We have that

1 K, (2mg+1)

a2 2( 1)2

2 + — 2 — JE—
Pmer D= o=~ ae

X (MA(m.+1)2-Q,), (3.24

from which it easily follows that

1Ky 12 12 j
=—|— f 0<Q, =<1,
f(1) 3 Xa) L Qx
He=1 f(mg) if Qu<mZ(me+1)2,
f(me+1) if Qy>m2(m.+1)2.

(3.2

The quantityQ, therefore characterizes the behaviotHyy.
Further, from the property thaf, —o asA—1" (Ref.[19],
p. 374, it is clear thatH,—« as\A—1", that is, as the
Fadius ratio tends to unity. The quantity, therefore corre-
sponds to the usual interpretation of a critical threshold for
the onset of a Helfrich-Hurault-type transition.

The solutionu(r,«) at H=H, is found from Eqgs.(3.1)
and (3.16, and the solution of Eg.(3.17) with
Fiel()\,q(m,H))zo. In this case, with C;=uy, C,
=—UgJo(|o/a)do/Yo(locl/a), ug an arbitrary constant,
the solutions are

r.@ sin(ma) Vi)
u(r,a)=ug——7—V(r),
R (PAIEY
(3.2
|0'c| |0'c| |0'c| |0'c|
V(r)—\]()(T Yo a =Yy p Jo it
with
loc|=|o(m,H)[=bg,=a\q,, (3.27)
1 if 0<Q,<1,
m=1{ mg if Qu=mi(mc+1)%  (3.29
me+1 if Qu>mi(m.+1)2
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The nature of the solution then depends upon the qua@iity with W being the total energy integral in Eq2.12, and
in Eq.(3.22. It is worth noting that the zeros df andY,do  consider the regiom<r=<b, O<a<2m, 0<z=<1. For the
not generally coincide with the zeros of @etq(m,H)) so  solutionu(r,a) in Eq. (3.26 it is found that

that the solution in Eq(3.26 generally existgthis follows ) ) 5
from the fact thatl, and Y, have no common zerpsThe d_V _ﬂ( @ 3 ol _3 ol v ol )
energy associated with this solution is examined in Sec. IV, \ dr) ~— r* \" r /"0 a HWor )% all’
before some examples are given for physical parameters in (4.2
Sec. V.
, , Sif(ma) dv)2 43
IV. ENERGY CONSIDERATIONS Ur=Yovz (| J7ay | dr | 4.3

The equilibrium equatiori2.14) has both the solutions m? cof(ma)
=0 andu(r,«) in Eq. (3.26 satisfying the boundary condi- (V u)?=ud—5 57— VA(r), (4.9
tions(3.2). As is common in liquid crystal theory, a compari- r* Yollod/a)
son of the energies for such solutions determines which one
is energetically favorable: the solution with the least energy (Viu)zzu
is interpreted as the preferred physical solution. We set

4 .
,m sif(ma)
0r4 Y(2)(|O_C|/a)v (r), (45)

AW=W(u(r,a))—W(u=0), (4.1) and hence

1(bfael — 5 1 HZa? 2
AW=§L fo rBu;+Kyr (Vlu)z—r—z(VLU)2 ~ 3 Xala drda
2 2
G g o ]+ et -t v
0 C
o ugB (o [dV)|? Uzvz g 46
=2 lodia L[| T VO o

\Y
whereo= o(m,H) is given by Eq(3.5) above(the value of ax - I100Yo(AA) +Y1(X)Jo(AGy) - “.8

m appearing ino., and o is the samg To evaluate the ) ) ) _
integrals in Eq(4.6) we begin by noting from Eq3.27) that ~ SinceV anddV/dx are cylinder functionslinear combina-
locl/b=q, and |oc/a=\q,. The substitutionx=|co|/r  tions of Bessel functionsof orders zero and 1, respectively,
then shows we employ the result from WatsdRef.[20], p. 135 that for

any cylinder functionC,, of order u
fb dv
2L dr

2 0_2
RV
TV (”}dr f XC2(x)dx=2x2(C2(x)~C, 1(X)C,u41(X)),

aay, [(dV\2 o2 (4.9
= R __y\/2
J'qA X (dx * |ac|2V Cojdx, (4.7 ignoring constants of integration. Application of this result
gives, noting thatd_;(x)=—J;(x), Jo(x)=—J1(x), and
with similar results hold foryy andY,
dvi? 1 [(dV\* 1
J X| 5] 9x=5%| 5| = 5XVOOIYo(Aa)Ia(x) ~ Jo(A ) Yo(x)] (4.10

1 1
f xV2(x)dx= EXZVZ(X) - EXZ[YO()\qx)‘Jfl(X)_JO()\q)\)Yfl(X)][YO()\q)\)Jl(X)_‘JO()\q)\)Yl(X)]
1 1 ./dV\2
:EXZVZ(X)‘F EXZ(&) . (41])

From the boundary condition¥,(\q,)=V(q,)=0, and hence from Eq$4.7), (4.10, and(4.11), we find that
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dr=2[1+ o’
T2 el

+~F;vzu) ax

[

2 0_2 }
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X=N0)

X=0q,

1 o’ 2ry 2 2
:§(1+|_ AN Yo(Nay)J1(Nay) —Jo(Nay) Y1(AGy)}

0'c|2

—{Yo(Agy)J1(dy) = Jo(Nay) Y1(ay) 2]

It is known that[19], 9.1.16

2
Yo(17)d1(7) —Jo(n)Y1(n) = P (4.13

Applying this result reveals that

2y 2 ,_ 4
AN Yo(hay)J1(NGy) —Jo(Aay) Y1(NQy)} T2
(4.14

Also, sinceq, is a root of the determinant in E¢3.19 (and
assumingly(q,) #0),

Yo(ay)
Jo(ay)

This substitution allows the following term from E@.12
to be calculated as

Yo(Aay)=Jo(Aay)

(4.195

a2 Yo(Aay)I1(ay) — Io(Nay) Y(ay)}2

J5(Nay)
= Q2 [35(a0) Yo(dh) — Y1(ay) Jo( ) 12
Ja(ay)
4 J3(\qy)
7 e (449

this last step being accomplished by another application of

the result in Eq(4.13. Insertion of Eqs(4.16 and (4.14)
into Eq. (4.12 now allows the full evaluation cAW in Eq.
(4.6) to be given as

1 uB 1 JS(Aqu
W=— 57— —(log|*+ o) 1— ——|.
T Yo(Nd)) loe (loel*+ o™ Jo(an) 417
4.1

We now prove that +J2(\q,)/J3(q,) is positive for any
A>1. Substituting forYy(q,) from Eq. (4.15), it is seen that

J3(an)

SHENERGCNE Z0nay

[I5(Na) +Y5(ha)].
(4.18
Hence there is the equality
JB(na)  Ma(Nay)
JS(%) MS(QA) '

whereM, defined for any»>0 by

(4.19

(4.12

M3(7)=33(7)+Y3( ), (4.20

is the usual modulus function for Bessel functions. The
above result in Eq(4.19 is not true in general, but depends
on the fact that), is a zero of the determinant in E(8.19.

It is well known (Ref.[20], p. 446 thatM2(7) is a positive
and strictly decreasing function fay>0. Hence, sinca>1,

it is easily seen from Eq4.19 that

_J5ay)
‘]g(%)

It now follows from Eqgs.(4.21) and (4.17) that AW<O0
whenever— o?>|o|?, that is,

>0. (4.2)

r=b/a

\ =125 q, = 1255847031
i —---a= 25 g = 207322886

B s {\ ------- A=50 q,= 076319127
4 107 Ry —m= =100 q = 033139387
8 KN cem 32500 g, = 0.05768450
e
T

ol 1 L

00 0.2 04 06 08 1.0 1.2 14 16 1.8 2.0
14000'|'|'|'|'|'|'|'|'|'_
—— =125

12000

10000 [
8000 |
6000 |-
4000 |

2000
(b) OW' L I I I 1 I 1

§ 1 1 . ' ! L PR " {
0.0 02 04 06 08 1.0 1.2 14 1.6 1.8 2.0

Inner radius a (cgs)

FIG. 2. The critical threshold. (G) for the onset of layer
distortions is shown ir{a) for 10" ?<a<2 (cm) for the particular
physical parameters in E¢.1) [the vertical axis in@) is on a log,
scald. Values forH. have been calculated for the sample radius
ratios \, as indicated. The relevant zerqs of determinant3.19
are also given. The linked wave numbensat H are given in(b)
for the same values of.
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FIG. 3. Plot ofu(r,«) for a=0.2 andb=0.5(i.e., A=2.5 and
the physical parameters in E.1) (in cgs unit3. In this caseH,
=50907 (G), and the solution is plotted for the rangesr
<b and G<a<2#/m (radiang, m given by Eq.(5.3. The con-
stantug in Eq. (3.26) is set to 3x 107 % (1% of the radial depttp
—a). The plot should be repeatend times in thea direction for a
full representation ofi(r,«).

AW<O0 wheneverH>H_, (4.22
with H defined by Eq(3.25 [employing Eq.(3.20]. It is
therefore expected that the variable solutigm,«) will be
preferred to the solution=0 for H>H..

V. EXAMPLES

We consider the physical valués cgs unitg (Ref.[3], p.
363
K,=10% y,=107, B=25x10,, (5.1
and plot the dependence ldf, (Gaus$ upon the inner radius
a for given cylindrical samples with radius ratios=b/a.

I. W. STEWART

PRE 60

N>
Q

1l
=

FIG. 4. The wedge geometry described in the text. The magnetic
field shown in Fig. 1 is replaced by an electric field given by Eq.
(6.2 applied across the boundariesaat0 anda=3.

0,=2.07322886, m=2276, H.=50907,

0.=1.036614 43, (5.3

and setuy=3x10 2 (that is, we choose to set the arbitrary
small constantiy to 1% of the radial depth—a). For clarity
the solution is plotted foa<r<b but with O<a<2x/m:
the figure is repeatech times in thea direction to obtain the
full representation of the displacemantat H.. The critical
current can easily be obtained from the results for the mag-
netic field by simply converting to appropriate units for cur-
rent using tables, for example those contained in Abraham
and Becker(Ref. [21], p. 25).

A comparison with the results for planar smedic-
samples is possible if we consider large radduand small
radial ratioh =b/a=~1. In these circumstances we ha{ref.

[19])

~Ol4
A0

ar
me D~y (5.9

and hence

2 b — T —
XaHE= xaf?(mo)= 7 K1Q1*=2 50\ VK;B~2 5 VKB,
(5.5

For conveniencey=1.25, 2.5, 5, 10, and 50 are chosen sincewhered=b—a. The approximation in Eq(5.5) is identical

the zeros of del(,q) are known from tablegRef. [19], p.
415), and we consider feasible values &by restricting it to
the range 10°<a<2. The relevanQ, in Eq. (3.22 can
then be calculated, which in turn allows. in Eq. (3.25 to
be evaluated. The resulting graphs are shown in Fig). 2
The corresponding values farin Eq. (3.28, which indicate
the numbers of undulations, is a function@f and can be
evaluated similarly leading to the plots in Figb2 from
Egs.(3.22 and(3.23 it is clear thatm~L \/a for some con-
stantL when\>1 is fixed. For a given sample radius rakio
and inner radius, the correspondingrandH_. can be found
from such graphs, and hen¢e.| in Eq. (3.27 can be cal-

to the result for planar sampléghe notation\ in Ref.[3], p.

363 represents/K,/B). Thus the results in this paper col-
lapse for thin samples to those for the planar case vehisn
large andd is small. In fact,H.~60kG in Ref.[3], and so

the results presented above are in line with those elsewhere.

VI. CYLINDRICAL WEDGE UNDER AN
ELECTRIC FIELD

The results presented above can be easily reinterpreted for
the problem of an electric field applied across concentric
cylindrical smecticA layers. Here the geometry is identical

culated: this allows the calculation of the complete solutionto that in Fig. 1 except that Qa<p for some fixed

u(r,a) at the critical thresholdH.. From the figure, it is
seen thaH . decreases a& and/or\ increasesm increases
asa increases but decreases wheincreases.

Figure 3 shows the solution(r,«) in Eq. (3.26 for the
particular values

N=25, a=0.2, b=0.5, (5.2

with the physical parameters in E&.1). In this case we find

“wedge” angle 8. The magnetic field is replaced by an elec-
tric field E which follows the plane of the layers and is ap-
plied between bounding plates@t0 anda=, as depicted

in Fig. 4. This particular wedge geometry has been exten-
sively considered in the articles by Carlsson, Stewart, and
Leslie [13] and Atkin and Stewarf14] in the context of
smecticC Freedericksz transitions. The results here predict
critical voltage magnitudedl. for an Helfrich-Hurault tran-
sition to occur for various wedge anglgs
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Solutions are sought such that the ansatz in(Bd) can
be employed again. To satisfy the zero boundary conditions 50 -
at the plates, we seh=7/3. In this case we have that

a
u(r,a)=v(r)sin 39/ (6.1 E 30

. . . . DQ 20
to which is added the zero boundary conditionsvoim Eq.
(3.2). The equations in Sec. Il are changed using the substi- 0
tutions (Ref.[3], p. 135 (see also Refd.13], [14])

U . €3 U 8.00 0.01 002 003 0.04 005 006 007 008 009 0.10
H—E= ma, Xa= 7 Ha— E, (6.2 B (radians)

. . . . . FIG. 5. Critical magnitude$); (statvoly of the applied voltage
Wh‘?reU is the app"‘?‘?' voltage, gnd the dielectric anisotropYsy; the radial ratiosk as indicated. The inner radius is fixed at
€, is assumed positive. Equatiori3.4) and (3.5 are the ~10"(cm) and B<8<0.1 (~5.79. The physical constants,

2 ; -
same except that“(m,H) is replaced by andB are as in Eq(5.1), while €,/47 has been set to 0.2.

2

Z(U) 7 1
o - -
BB

K, (m2— B2)— EUZ _ (6.3 . Examplgs of critical applied voltagés, (in esu 'unitg are
4 displayed in Fig. 5 for the same values »fas in Fig. 2

above. The constants used are those in(Ed) except that

For o%(U)=0 the arguments in ca$® after Eq.(3.5 again  Xa IS replaced bye,/4m=0.2. The inner radiua is fixed to
show thatv(r)=0 is the only solution available. Following be 10 ~(cm), and the plots are for values of the wedge
through the argument in cag@) shows that whernr?(U)  angle in the range 94<0.1 (~5.79): of course, any other

<0 a nonzero solution can be obtained ¥dr), provided  values fore,, a, and B are possible, depending upon the
application considered. This particular choice is of relevance

€a for samples which have a low wedge angle, for instance a
—U2—K1(772—,82)) usual “bookshelf’” geometry of layers with one end of the
4m sample slightly narrower than the othghe arc lengths are
(6.4 pa? andBb? at the inner and outer radii, respectivielif the
radial depth is defined to be—a then\=1.25, 2.5, 5, 10,

with X andq, defined as before. It follows from EG6.4) 5,4 50 correspond to depths of 0.025, 0.15, 0.4, 0.9, and 4.9
that the critical voltagéJ . is found to be (cm), respectively, whem=10"* ' T

2

w1
b%ai=—o4(U)=— =
" BB

4’7TK1 1/2 34 1/2

Uc:< ) (772—,82+ _2Q>\) , (6.5 VII. CONCLUSIONS
€ ar

: It has been shown that an Helfrich-Hurault-type transition

Q, being given by Eq(3.22. The rdes of 8 and the radius is theoretically possible for concentric cylindrical layers of
ratio N are evident from the form of); in Eq. (6.5). Intro-  smecticA liquid crystal arranged as shown in Fig. 1. It is
ducing assumed that the anisotropy of diamagnetic susceptikyility
is positive. A magnetic field applied in the azimuthal direc-
loe|=[o(Ug)|=bay (6.0  tion & parallel to the layers induces layer distortions, analo-
. _ . gous to those for planar aligned samples, when the magni-
results in the solution given by tude of the field is greater than a critical valde, given by
Eq.(3.295. The solutioru(r,«) at the threshold value . has
Sin(za) been derived explicitly in Eq(3.26), and in Sec. IV it has
v(r) 6.7 been shown to be energetically favorable compared to the
' ' zero solution. The variable solutiar(r,«) atH=H_ has an
r dependence given by E@.26 with a critical wave num-
ber m (in the « direction given via Egs.(3.23 and(3.28.
with V(r) given by Eq.(3.26 with |o| appropriately rede- For a giv_e_n inner radiua and outer radiub the dependence
fined by Eq.(6.6). The energy argument in Sec. IV remains Of the critical behavior upon the ratio=b/a has been ex-
unchanged with the obvious modifications for the ||m|t3yln amined: in particular, the critical threshold result for thin

u(r,a)=ug
Yo

ol
a

resulting in radial samples matches the threshold of the usual planar
aligned samples wheais large, as shown by E@5.5).
AW<0 whenever U>U,_, (6.9 Section V investigated the results for the physical param-

eters in Eq.(5.1), and calculated the correspondihty for
with U, defined by Eq(6.5). It is therefore expected, as in 10 °<a<2, A=b/a=1.25, 2.5, 5, 10, and 5(@gs units.
the magnetic field problem examined above, that the systerninked with H is the corresponding wave number found
will prefer the variable solutiomi(r,«) to the zero solution from a minimization of the field strengtH, as discussed in
when the magnitude of the voltage exceélls Sec. lll. Graphs oH. and m as functions ofa and A\ are
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given in Fig. 2. Figure 2 provides useful guidance for thenevertheless be observed thit in Eq. (6.5 becomes
consideration of experimental setups with regard to the
choices of inner and outer radii and the resulting possible
critical thresholds and wavenumbers. It is clear from Fig.
2(a) that radially deeper samples always lead to lower thresh-
olds. Figure 3 is a plot of a particular solutiofr,«) in Eq.  With the obvious change in notatiof,—4meyAe, this is
(3.26 for the parameters in E@45.1) with \, a, andb given  exactly the critical voltage mentioned by Elstf®2] for the
by Eq.(5.2); it is plotted foras<r<b and O<a<2w/m, as  usual Fredericksz transition in nematic liquid crystals. El-
discussed in Sec. V. The figure displays the typical qualitaston went on to discuss layer distortions in planar sme&tic-
tive features of such solutions in general: in this particularbookshelf layers, and found a critical voltage when the
example the resulting threshold is given (6.3 as H.  sample is close t@ s which is identical to that derived by
=50907 G, similar to that reported for planar samples. Kedney and Stewaf®3] for the lowest order sine mode for
The results for a magnetic field were extended to an eledayer deformations in smectiC-layers: this critical threshold
tric field for the wedge geometry discussed in Sec. VI. Thevoltage is twice that given by Eg7.1). A direct comparison
dependence of the critical applied voltage, upon the  with the work in Ref.[22] and the wedge results presented
wedge angles is given by Eq.(6.5), and plots ofU. are  here seems to indicate that an experiment of the type pro-
displayed in Fig. 5 for the physical parameters used beforgyosed for cylindrical smectié-layers ought to have a lower
except thaty, is replaced byey/47w=0.2. These results are critical voltage for layer distortions than that for planar lay-
particularly relevant for samples close to a “bookshelf’ ge- ers when the wedge angeis small. Consideration of the
ometry wheng is small (in Fig. 5, 0<3<5.7°. In the de- factors discussed in this paper will hopefully stimulate fur-
generate case @ =0, which is of course physically unreal- ther discussion and interest in possible Helfrich-Hurault tran-
istic because the sample would have zero volume, it shoulditions for smectic liquid crystals.

47K )12

€a
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U.= 7T<
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