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Expansion in width for domain walls in nematic liquid crystals in an external magnetic field
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The improved expansion in width is applied to curved domain walls in uniaxial nematic liquid crystals in an
external magnetic field. In the present paper we concentrate on the case of equal elastic constants. We obtain
an approximate form of the director field up to second order in the magnetic coherence length.
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[. INTRODUCTION real liquid crystals one can use, for example, the following
two strategies: a perturbative expansion with respect to de-
Liquid crystals are probably the best materials for experi-viations of the elastic constants from their mean value, or the
mental and theoretical studies of topological defects. A vari€xpansion in width generalized to the unequal constants case.
ety of defects, relatively simple experiments in which oneln the former approach, the equal constant approximate so-
can observe them, and soundness of theoretical models Bftion obtained in the present paper can be used as the start-
dynamics of relevant order parameters make liquid crystal#1g point for calculating corrections. The case of unequal
unique in this respect. The literature on topological defects irglastic constants we will discuss in a subsequent paper.
liquid crystals is enormous, therefore we do not attempt to The plan of our paper is as follows. We begin with a
review it here. Let us only point out Refsl—3] where one  general description of domain walls in uniaxial nematic lig-
can find lucid introductions to the topic as well as collectionsuid crystals in Sec. Il. Next, in Sec. Ill, we introduce the
of references. special coordinate system comoving with the domain wall.
Our paper is devoted to dynamics of domain walls inSection IV contains the presentation of the improved expan-
uniaxial nematic liquid crystals in an external magnetic field.sion in width. In Sec. V we discuss consecutive terms in the
Static planar domain walls were discussed for the first timeexpansion up to the second order §p. Several remarks
in Ref. [4]. We would like to approximately calculate the related to our work are collected in Sec. V.
director field of a curved domain wall. We use a method,
called the improved expansion in width, whose general the-
oretical formulation has been given in R€fS,6]. Appropri-
ately adapted expansion in width can also be applied to dis- In this section we recall basic facts about domain walls in
clination lines[7]. uniaxial nematic liquid crystal§1,2]. We fix our notation
The expansion in width is based on the idea that transand sketch background for the calculations presented in the
verse profiles of the curved domain wall and of a planar oneext two sections.
differ from each other by small corrections which are due to We parametrize the director field(X,t) by two angles
the curvature of the domain wall. We calculate these correc® (X,t), ®(X,t):
tions perturbatively. Formally, we expand the director field
in a parameter which gives the width of the domain wall, that

1. DOMAIN WALLS IN NEMATIC LIQUID CRYSTALS

) . . sin® cos®
is the magnetic coherence length in the case at hand, but | sin® sind 1
in fact terms in the expansion involve the dimensionless ra- n= c0s® ' (1)

tios &,,/R;, whereR; are (local) curvature radia of the do-
main wall. Therefore, our expansion is expected to provide a
good approximation when the curvature radia of the domairin this way we get rid of the constrairit=1.
wall are much larger than the magnetic coherence length. For We assume that the splay, twist and bend elastic constants
the planar domain walls the perturbative solution reduces tare equal K;;=K,,=K33=K). In this case the Frank-
just one term which coincides with a well-known exact so-Oseen-Zaher elastic free energy density can be written in
lution. As we shall see below, the improved expansion inthe form
width is not quite straightforward—certain consistency con-
ditions appear and a special coordinate system is used—but K
that should be regarded as a reflection of nontriviality of J”-‘e:E((?C,@ 3,0+sif0 d,» d,P). 2
evolution of the curved domain walls. Nevertheless, several
first terms in the expansion can be calculated without much
difficulty, and the whole approach looks quite promising. Our notation is as followse=1,2,3,d,= d/ x*, x* are Car-

In the present paper we consider the simplest and rathéesian coordinates in the usual three-dimensional spdce
elegant case of equal elastic constants. In order to take into=(x“). In formula (2) we have abandoned a surface term
account the differences of values of the elastic constants fowhich is irrelevant for our considerations.
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In order to have stable domain walls it is necessary to Let us recall the static planar domain wgl,2]. We as-
apply an external magnetic field, [1,2]. We assume that Sume that it is parallel to the'=0 plane. Then
H, is constant in space and time. Without any loss in gener-

ality we may take ©=0o(x"), Po=const, 8)
0 where
Ho=| O
0 HO ®0|Xl—>—°°:0’ ®O|Xl—>+°°:7T' (9)

One could also consider the “antidomain wall” obtained by
interchanging 0 andr on the right-hand sidéRHS) of
boundary condition$9). Equation(5) is now reduced to the
following equation:

Then the magnetic field contribution to the free energy den
sity of the nematic is given by the following formula:

1
Fon=— EXaHg cog 0. €)

1
n_— 2 o
Here x, is the anisotropy of the magnetic susceptibility. It K®O_2)(a|_|osm(2®°)’ (10

can be either positive or negative. For concreteness, we as-
sume thaty,>0. Our calculations can easily be repeated ifwhere primes denote/dx*. This equation is well-known in
Xa<0. The ground state of the nematic is double degenerat&oliton theory as the sine-Gordon equation, see, e.g., Ref.
®=0 and® = 7 give the minimal total free energy density [8]. It is convenient to introduce the magnetic coherence
F=Fe+ Fy. Itis due to this degeneracy that the stable dodengthé&,,,
main walls can exist.

The dynamics of the director field is mathematically de- Em=(K/xaH3)*2. (11
scribed by the equation

. The functions
on N oF 5 4
" TR @ .

3

(12

Oy(xt)=2 arctaré exp
where

5 with arbitrary constanlxé obey Eq.(10) as well as the
F:f d>x F. boundary conditiong9). The planar domain wall$8) are
homogeneous in the'=0 plane. Their transverse profile is
The constanty, is the rotational viscosity of the liquid crys- parametrized byx'. Width of the wall is approximately
tal, and &/ 8n denotes the variational derivative with respectequal toé,, in the sense that fx* — x3|> &, values of®,
to n. Equation(4) is equivalent to the following equations differ from 0 or 7 by exponentially small terms.

for the ® and® angles: The planar domain wall solutio(8) contains the two ar-
0 K 1 bitrary constants®d andxé. The arbitrariness ob is due
yl‘;_t —KA® — 55"1(2@)% Pa,d— EXaH(Z) sin(20), to the assumption that the elastic constants are equal. Then,

the free energy densityF is invariant with respect to the
(5 transformationsb—® +const. If the elastic constants are
not equal this invariance is lost, and in the case of planar
=Ka,(sirf @4,D), (6) domain walls®, can take only discrete valqesw/_Z, n
=0,1,2,3. The constam(l) appears because of invariance of
; ; 1
. + .
whereA=4.4. | Egs.(5), (6) with respect to the translationgd— x*+ const

The domain walls arise when the director field is parallel Notice tha@O(X(l)_ m/2. Hence, ak=x, the dlr.e.ctom
to the magnetic field:|0 in one part of the space and anti- is perpendicular tdo. In fact, the boundary condition8)

parallel to it in another. In between there is a Iayer—theimpgIy that for any domain wall there’s a surface on which

domain wall—across whichi smoothly changes its orienta- ﬁ'hHOZO- Su.chfsurface is called the ﬁore ﬁf the domain wall.
tion from the parallel td:|0 to the opposite one, that ® The magnetic free energy densify, has the maximum on

; ; the core.
varies from O tor or vice versa. The angl® does not play : .
an important role. The ansatz The planar domain wall8), (12) plays a very important

role in our approach. In a sense, it is taken as the zeroth order
b=, (7)  approximation to the curved domain walls. The trick consists
in using the special coordinate system comoving with the
with constani® trivially solves Eq.(6). Then, Eq(5) isthe  curved domain wall. This coordinate system encodes shape
only equation we have to solve. In the following we assumeand motion of the domain wall regarded as a surface in the
the ansatZ7), hereby restricting the class of domain walls space. Internal dynamics of the domain wall, in particular
we consider. It is clear from formulg) that domain walls orientation of the director inside the domain wall, is then
with varying® have higher elastic free energy than the wallscalculated perturbatively in the comoving reference frame
with constantd. with the function(12) taken as the leading term.
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Ill. THE COMOVING COORDINATES

The first step in our construction of the perturbative solu-, _ . .
hi K, I,r=1,2. Simple calculations give

tion consists in introducing the coordinates comoving wit
the domain wall. The two coordinates{,c%) parametrize
the domain wall regarded as a surface in ftfespace, and

one coordinate, sa§, parametrizes the direction perpendicu-
lar to the domain wall. For convenience of the reader we

quote below main definitions and formulgg.
We introduce a smooth, closed or infinite surf&m the

usualR3 space. It is supposed to lie close to the domain wall,
and its shape mimics the shape of the domain wall. In par-

ticular we may assume th& coincides with the core at

certain timet,. Points ofS are given byX(c',t), whereg'
(i=1,2) are the two intrinsic coordinates 8nandt denotes
the time. We allow for motion o8 in the space. The vectors

)?,k, k=1,2, are tangent t8 at the point)?(a‘,t) (we use the
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Ni= 01— £Kj,

JG=1gN,

where G=det(G,4), g=det@), andN=det(N}). For N we
obtain the following formula:

1 ) )
N=1- K+ 5 £(KK|~KiK).

Componentss*# of the inverse metric tensor iR® have the
form

G33:1, ng:Gk3:0, Gik:(N_l)igrl(N_l)r,

notation f'ksaf/ao"). They are linearly independent, but where

not necessarily orthogonal to each other. At each poirg of
we also introduce a unit vectgi(o',t) perpendicular tcS,
that is,

p-X, =0, p?=1.

The triad X ,,p) forms a local basis at the poibt of S.
Geometrically, the surfac is characterized by the induced,
positive definite metric tensor

Oik=Xi- Xk
and by the extrinsic curvature coefficients
Ki=p-X

bl

—1i:£ _ ey i
(N9 = [(1— €K &+ EK .

We see that dependence on the transverse coordinate
explicit, while o*,0® appear through the tensogsk,K'r
which characterize the surfa&

The comoving coordinatess(*) have, in general, certain
finite region of validity. In particular, the range gfat fixed
(ot,0?) is determined from the conditio&>0. It is clear
that it increases with decreasing extrinsic curvature coeffi-
cients K:, reaching infinity for the planar domain wall for
which K}=0. We assume that the surfaBghence also the
domain wal) is not curved too much. Then, that region is
large enough, so that outside it there are only exponentially
small tails of the domain wall which give negligible contri-

wherei k,| =1,2. They appear in Gauss-Weingarten formu-y, sions to physical characteristics of the domain wall.

las

X,ij:Kijﬁ+F!j)z,lv ﬁ,i:_ngKliX,j- (13
The matrix @) is by definition the inverse of the matrix
(gw). i.e., g g= 46, andT’}, are Christoffel symbols con-
structed from the metric tensa@;j,. The two eigenvalues
ki,ko of the matrix K)), whereK}zg"K,j , are called the
extrinsic curvatures o§ at the point)?. The corresponding
main curvature radia are defined Rs= 1/; .

The comoving coordinatesof,o?,&) are introduced by
the following formula:

x=X(o" 1)+ £p(a' 1), (14)

whereé is the coordinate in the direction perpendicular to the
surfaceS. In the comoving coordinates this surface is given

by the simple conditiorF=0. We will use the compact no-
tation: (o!,02,€)=(0%), wherea=1,2,3 ando®=¢. The

coordinates ¢“) are just a special case of curvilinear coor-
dinates in the spack®. In these coordinates the metric ten-

sor (G,p) in R® has the following components:
Gas=1, Ga=Gys=0, Gy=Nig; N},

where

The comoving coordinates are utilized to write ES). in
the form suitable for calculating the curvature corrections.
Let us start from the Laplaciah®. In the new coordinates it
has the form

_l 0
_\/600'“

The time derivative on the left-hand sideHS) of Eq. (5) is
taken under the condition that af are constant. It is con-
venient to use time derivative taken at constafit The two
derivatives are related by the formula

AO

o

rraal
doP

J J acPl o
J— [p— +_ -— 3,
ot| ., at| . at| ,doP
X (o8 X
where
dE = : s L
_ = _ —1\I ~kr =2
—| =—p- — =-— (X+
7t p-X, ., (NTIG"X - (X+p),

the overdots stand fa#/dt|,i. Let us also introduce the di-
mensionless coordinate

s=¢l&.
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Now we can write Eq(5) transformed to the comoving co- Because alread¥), interpolates between the ground state

ordinates ¢',s) [with the ansat7) taken into account solutions 0 andr, the correction®,, k=1 should vanish in
the limits s— * oo,
ﬁgz @ _ ifr '*@ Equations for the correction®,, k=1 are obtained by
K>™M at] . ém as expanding both sides of E{¢L5) and equating terms propor-
tional to £5,. These equations can be written in the form
. - % - 06
_ —1\i ~kr . Ay A
(N )kg X,r (X+§m5p) (90.|> L®k:fka (19)
R )t 1 N 90 with the operatoi
=57 2SOt g 55 TS 7 7
, 1 a8 L=5g 7008200 = 50  oeps ~ L (20
\/§N The last equality in Eq(20) can be obtained, e.g., from Eq.

(17): inserting®, given by formula(18) on the LHS of Eq.
(17) we find that sin(®g)=—2 sinhs/coslts and cos(®)
=1-2/cosKs. The expression$, on the RHS of Eqs(19)
depend on the lower orders contributidds, | <k. Straight-
forward calculations give

Equation(15) is the starting point for our construction of the
expansion in width.

IV. THE IMPROVED EXPANSION IN WIDTH

We seek the domain wall solutions of E45) in the form

of expansion with respect 4, that is, flzﬁs@o< K — %r))z) 21)
. i Vi, o
Inserting formula(16) in Eq. (15) and keeping only terms of 2= —Ssin(20,)® 7+ 53,0 oK;K] +351( Ki— ?ﬁ-x),
the lowest order(vgf’n) we obtain the following equation: (22)
(9260 ) ‘yl - o
52~ 25IN200), D 1= (001~ 'K - X0 1) ~ 2 5iM200) 0,0,

which coincides with Eq(10) after the rescaling= £,,s. 2 o
Its solutions - §cos{2®0)®§+ 5340 ,KiK]
0, (s)=2 arctafiexp(s—Sp) ],
i - 352(9 OKT(KH2—-3KiKI]— ia-(@gikak(a )
have essentially the same form as the planar domain walls 27 PO g !
(12), but nows gives the distance from the surfage This

. : : V1. S
surface will be determined later. We shall calculate the cur +as®2( KM— —lp-X) (23
vature corrections to the simplest solution K

Oq(s) =2 arctafexp(s)]. (18 and

—ﬁ Q) . — ikp . % (R _ﬁjka v . e —qj 2 A _E 4
f4—K((9t2 Sgp- X kdi®1) Kg Xk X(9j0,+5Kjd01)—sin(204)| O5+20,03 3®1

2

o 1 o S ) o
—2c0$200)070,+ 500 KKl +539,0,4| (K[)*+ E(K;Kf)z—2(K;)2K'j|<{ —§&s®lK{((K:)2—3K}K{)

1 . 2s . . =
- =3(Vgg*a0,) - —aj<@Klkak@)l)+sgﬂk<ajK:>ak®l+as®3(K:— %ﬁ-x), (24
Vo Vg

whered,=dldt, d;=adldo'. We have taken into account the |t js very important to observe that the operafohas a

fact that®, does not depend on'. zero mode, that is, the functiogy(s) which quickly van-
Notice that all Eqs(19) for ©®, are linear. The only non- ishes in the limitss— =, and which obeys the equation

linear equation in our perturbative scheme is the zeroth order R

equation(17). Lo=0.
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Inserting ®50(s) in Eq. (17), differentiating that equation
with respect tcs,, and puttings,=0 we obtain(as the iden-
tity) that L /o=0 where

1
Yo(s)= Coshs® (25

S
f dx ¢ofy

vanish in that limit due to the consistency conditidi2$).
Moreover, qualitative analysis of Eq15) shows thatf,
~ (polynomial ins) X exp(—|g)) for large|s|, hence those in-
tegrals behave as (polynomialshx exp(—2|s]) for large|s|.

The presence of this zero mode is related to the invariance afhis ensures that alG[ f,] exponentially vanish whens|

Eq. (17) with respect to translations &) therefore it is often

— 0,

called the translational zero mode. Let us multiply both sides

of Egs.(19) by (s) and integrate oves. Integration by
parts gives

f m¢£&;f dsO,Lyy=0.

Hence, we obtain the consistenégr integrability condi-
tions

| dsuos-o. (26

where f| are given by formulas of the typ@1)—(24). We

V. THE APPROXIMATE DOMAIN WALL SOLUTIONS

In this section we discuss the approximate solutions ob-
tained with the help of the perturbative scheme we have just
described. We present formulas for the first two corrections

®, and®,, an equation foD?(oi,t) which determines mo-
tion of the surface5, as well as equations for the functions
Cl!CZ'

The zeroth order solution is already known, see formula
(18). This allows us to discuss the consistency condition with
k=1. Substitutingf, from formula(21) and noticing that

1
shall see in the next section that these conditions play a cru- (?S®O=m = to(s)

cial role in determining the curved domain wall solutions.
Using standard method®] one can obtain the following
formulas for vanishing in the limits— * o solutions®, of
Eqgs.(19):
0, =G[f ]+ Ci(a" 1) o(9), (27

where
G[fi]l=—o(s) fo dxfry (X) Fie(X)

Fiao) [ dxioof0. (28

Here iy(s) is the zero modé25) and

Yi(s)= %(sinher ) (29

coshs

is the other solution of the homogeneous equation
Ly=0.

The second term on the RHS of formu[27) obeys the ho-
mogeneous equatidb@kzo. It vanishes wheis— +o.

The solutions(27) contain the function<,(o',t) which
are still arbitrary. AIso)Z(cr‘,t) giving the comoving surface
S has not been specified. It turns out that the conditi@&s

we find that the consistency conditi¢®6) is equivalent to

|2
v

p-X=K'. (30)

This condition is in fact the equation fot. It is of the same
type as Allen-Cahn equatiofilQ], but in our approach it
governs the motion of the auxiliary surfaBe

Let us now turn to the perturbative corrections. After tak-
ing into account Allen-Cahn equatigi80) we havef;=0.
Therefore, the total first order contribution has the form

Ci(o')
1™ coshs - 3

The second order contributidf, is calculated from for-
mula (28) with f, given by Eq.(22). Using the result$30),
(31) we obtain the following expression:

2, i i Cyo(a' )
©2=2(5)Ci(0', ) + Ya(S)KKH+ —— =, (32
where
B sinhs
V2(S)= = 5 oshs’

are so restrictive that they essentially fix those functions. Thand

extrinsic curvature coefficientl{i and the metricg;, will

follow from X(o' ).
One can worry thaG[f,], k=1, given by formula(28)

do not vanish whes— *+« because the second term on the

RHS of formula(28) is proportional tog,, which exponen-
tially increases in the limits— *=«~. However, the integrals

1 S
Pa(s)= Escoshs— > cosls 1(s)In(2 coshs)

+szsinhs 1 J'sd X2
4cosifs 4 coshs Jq X Cosix”
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The integral ing;(s) can easily be evaluated numerically. 1 1 1
Due to the consistency conditions, the functid®sg,C, in V"R TR (35
formulas(31), (32) are not arbitrary, see below. o
The consistency conditio26) with k=2 does not give
any restrictions—it can be reduced to the identity @
More interesting is the next condition, that is the one with
k= 3. Inserting formula23) for f5 and calculating necessary
integrals ovess, we find that it can be written in the form of
the following inhomogeneous equation 6 (o',t)

wherev is the velocity in the directio perpendicular t&
at the point)?, andR,,R, are the main curvature radia 8f
at that point.
As an example, let us consider cylindrical and spherical
domain walls. IfS is a straight cylinder of radiu® then

R;=%, R,=—R(t), v=R and Eq.(35) gives

Y1 - - 1 : .
?(&Cl_ger,r'XﬁkCﬂ_ \/—631( JagkaCy)—KiKIC, R(t)= \/R2— i,_K(t_to)a (36)
1

2
:W_Kf[(Ki)Z_gKiKJ]. (33) WwhereRy is the initial radius. The origin of the Cartesian
24" i i . . .

coordinate frame is located on the symmetry axis of the cyl-
inder S (which is thez axig), p is the outward normal t&,

We have also used Allen-Cahn equati@®). Equation(33) and s=[\/r2—zz— R(t)]/&,,, wherer is the radial coordi-

determinesC, provided that we fix initial data for it. Simi- nate inR3. As o',0? we take the usual cylindrical coordi-

larly, the consistency condition coming from the fourth ordernatesz, ¢. Equations(33), (34) reduce to

(k=4) is equivalent to the following homogeneous equation

for C,: Y1 5 1, 1 w1
?&tcl— 95;C1+ Q%Cl _ECJ':E@’ (37)
Y1 .- 1 : S
?wtcz—gk'xyxakcz)—Ta,-(fgg'kakca—K;Kfcz 7 L1, 1
g ?atC2_ (?ZCZ"‘ ¥a¢C2 _ECZZO (38)
=0. (34)

If at the initial timet, the functionsC,,C, have constant

Formulas(16), (18), (31), and (32) give a family of do-  valuesC,(0),C,(0) all over the cylinder, then
main walls. To obtain one concrete domain wall solution we 5
have to choose the initial position of the auxiliary surf&:e ™ Ro

Its positions at later times are determined from Allen-Cahn Cuh= 12R(t) IN[Ro/R(]+ R(t) C.(0),
equation(30). We also have to fix the initial values of the
functionsC,,C,, and to find the corresponding solutions of Ry

Egs.(33),(34). Notice that we are not allowed to choose the Cy(t)= WCZ(O). (39
initial profile of the domain wall because the dependence on

the transverse coordinaieis explicitly given by formulas . .
(18), (31), and(32). The choice of the initial data should not Gengrql ::‘oIlIJ:t|on§ of qun'f? can bhe ;‘Iounf[:i by Spl'ttt'?r?
lead to large perturbative corrections at least in certain finitg”1’ -2 Into Fourier modes, but we shall not present them
time interval. Therefore we require that at the initial time efl_er'] f spherical domai Il is quite similar. N&
&nCi<1, §§1C2<1, ng'j<1. The domain wall is Iocgted < th € cise 0 fsp de'[:;a (;)Ir?na_lanil iqw_e;m;l ar. . W
close to the surfac& because for largés| the perturbative 'S the sphere of raditR andR; =R,= —R, v=R. Equation
contributions exponentially vanish and the leading term(39 gives

2 arctang’) is close to one of the vacuum valuesr0,

Notice that Eqgs(30), (33), and(34) imply that the planar R() = /RZ— ﬁ(t—t ) (40)
domain wall q<;=0) cannot move, in contradistinction with o 0
relativistic domain walls for which uniform, inertial motions
are possible. The origin is located at the center of the spheses[r

In our approach the evolution of the domain wall is de- —R(t)]/¢,,, andp is the outward normal t&. As o we
scribed in terms of the surfa& and of the function€,,C,  take the usual spherical coordinates. Then, E2B),(34) can
which can be regarded as fields definedSorin some cases be written in the form
Egs. (30), (33), (34) for S, C;, andC, can be solved ana-

lytically, one can also use numerical methods. Anyway, -, 1/ 1 _ 5 2

these equations are much simpler than the initial (Bj. KIC1 g2 mag(sm 094C1)+ siF g1 T g&
The presented formalism is invariant with respect to

changes of the coordinates',o®> on S. In particular, in a w2 1

vicinity of any point)? of Swe can choose the coordinates in 6 R3 (42)
such a way thagj; = 5, at X. In these coordinates E30)

has the form and
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Y1 1 _ 1, 2 (1) In the approach presented the dynamics of the curved
K Cam 2| Gipg?e(SiN09eCa) + 5o 94Ca| — 2 Co2 domain wall in the three-dimensional space is described in
terms of the comoving surfacg and of the functionsC,,
=0. (42 k=1, defined ors. The profile of the domain wall has been
) . ) explicitly expressed by these functions, the transverse coor-
General solution of these equations can be obtained by exinate¢ and the geometric characteristics®fThe surface

pandingC,,C, into spherical harmonics. In the parfcicular Sand the function€, obey Eqs(30),(33),(34) which do not
case wherC,,C, are constant on the spheBethe solutions  contain & In particular cases these equations can be solved

C,(t) have the same forrt89) as in the previous case except analytically, and in general one can look for numerical solu-
that nowR(t) is given by formula(40). In both cases our tions. Such numerical analysis is much simpler than it would
approximate formulas are expected to be meaningful as longe in the case of the initial equatia®) for the angle®,

asR(t)/Em>1. . precisely because one independent variable has been elimi-
Because we have found the transverse profile of the dohated.
main wall explicitly, we can express the total free eneFgy  (2) we have used,, as the formal expansion parameter.

by geometric characteristics of the domain wall. One shouldrhis may seem unsatisfactory because it is a dimensionful
insert our approximate solution fé in formulas(2) and(3)  quantity, hence it is hard to say whether its value is small or
for 7. and 7, and to perform integration ovex The vol-  |arge. What really matters is smallness of the corrections
ume element®x is taken in the form §m®,1,§§1®2- This is the case whef},C,<1, £2C,<1, and
i< i .
e syl ot <L 1 hovs T i, 010
For simplicity, let us consider curved domain walls for core for all times in general would not be compatible with

which the expansion in width. If we assume th@j=0=C, at

certain initial timety, Eg. (33) implies thatC,#0 at later

C,=0=0C,. times (unless the RHS of it happens to vanisfhen, it

) ) ) follows from formulas(16), (18), and (31) that ® # 77/2 at

Straightforward calculation gives s=0, that is, onS.

KV 2K 72 (4) In the present work we have neglected effects which
F=—=—>+—|9— _Kgmf d?o\g could come from perturbations of the exponentially small
2&n ém 6 tails of the domain wall. For example, consider a domain

wall in the form of an infinite straight cylinder flattened from
+(terms of the ordergfn) , two opposite sides. Its front and rear flat sides have vanish-

ing curvatures, and according to E85) they do not move.

(43) In our description the flattened domain wall shrinks from the

edges where the mean curvaturB4 1/R, does not vanish.
where|S| denotes the area of the surfs8eandV is the total ~ Now, in reality the front and rear flat parts interact with each
volume of the liquid crystalline sample. The first term on theother. This interaction is exponentially small only if the two
RHS of this formula is a trivial bulk term which appears parts are far away from each other. We have neglected it
because the smallest value of the magnetic free energy deakogether assuming the exact 2 arcén@symptotics at
sity has been chosen to be equal—tda(/(zgﬁq). The proper large s. In this sense, our approximate solution takes into
domain wall contribution starts from the second term. Thisaccount only the effects of curvature.
term gives the main contribution of the domain wallFo (5) Finally, let us mention that the dynamics of the do-
One can think about the corresponding constant free energyain walls in nematic liquid crystals can also be investigated
2K/ &, per unit area. The third term on the RHS of formula with the help of another approximation scheme, called the
(43) represents the first perturbative correction. It is of thepolynomial approximation. In the first paptrl] it has been
order (¢,,/R;))?> when compared with the main term, and applied to the cylindrical domain wall, and in the second one
within the region of validity of our perturbative scheme it is to a planar soliton. Comparing the two approaches, the poly-
small. One can easily show that this term is negative or zercnomial approximation is much cruder than the expansion in
Hence, it slightly diminishes the total free energy. In thiswidth. It also contains more arbitrariness, e.g., in choosing a
sense, the domain walls have negative rigidity—bendingoncrete form of boundary conditions k| —. On the
them without stretchingi.e., with |S| kept constantdimin-  other hand, that method is much simpler and it can be useful
ishes the free energy. for rough estimates.

1 1

X| =+ 5=
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