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Analytic approach to the critical density in cellular automata for traffic flow

M. Gerwinski and J. Krug*
Fachbereich Physik, Universita¨t GH Essen, D-45117 Essen, Germany

~Received 12 February 1999!

The jamming transition in the stochastic traffic cellular automaton of Nagel and Schreckenberg@J. Phys. I2,
2221~1992!# is examined. We argue that most features of the transition found in the deterministic limit do not
persist in the presence of noise, and suggest instead to define the transition to take place at that critical density
rc at which a large initial jam just fails to dissolve. We show thatrc5vJ /(vJ1vF), wherevF is the velocity
of noninteracting vehicles andvJ is the speed of the dissolution wave moving into the jam. An approximate
analytic calculation ofvJ in the framework of a simple renormalization scheme is presented, which explicitly
displays the effect of the interaction between vehicles during the acceleration stage of the Nagel-Schreckenberg
rules with maximum velocityvmax.1. The analytic prediction is compared to numerical simulations. We find
a remarkable correspondence between the analytic expression forvJ and a phase diagram obtained numerically
by Lübecket al. @Phys. Rev. E57, 1171~1998!#. @S1063-651X~99!05907-3#

PACS number~s!: 05.40.2a, 89.40.1k, 05.60.2k
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I. INTRODUCTION

The quantitative modeling of social processes is a conc
tually challenging but also somewhat problematic ta
Given the richness and unpredictability of human behavio
seems that real progress can be expected foremost in s
tions where the actors’ options are severely restricted.
example, a driver on a single lane road can react to
environment only by changing her speed, and she is fur
constrained by considerations of safety and traffic regu
tions. For this reason traffic simulations are a promising te
ing ground for attempts to extend statistical mechanics
an interdisciplinary science of complex, natural, and so
systems. Previously the exclusive domain of engineers
traffic planners, the massive recent efforts in the statist
physics community have revealed fascinating analogies
tween vehicular traffic and other instances of nonequilibri
transport, most notably granular flow@1–3#.

Much of this work has been devoted to understanding
qualitative difference between the regimes of high and l
traffic density, and the possibility of a phase transition se
rating the two. Apart from the obvious practical interest
avoiding the spontaneous formation of traffic jams in t
high density phase, the existence of a phase transitio
one-dimensional, noisy nonequilibrium systems is a no
worthy feature in itself, since such transitions are imposs
in thermal equilibrium@4#.

In this paper we address the transition between the
gimes of high and low density in the framework of a stoch
tic cellular automaton~STCA! for traffic flow originally pro-
posed by Nagel and Schreckenberg@5#. In this model cars
move on a single-lane road with periodic boundary con
tions. Each cari has a discrete velocityv iP$0, . . . ,vmax% and
location xi . The algorithm is described by the followin
rules.

~1! All cars with v i,vmax accelerate by 1:v i→v i11.

*Author to whom correspondence should be addressed. Electr
address: jkrug@theo-phys.uni-essen.de
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~2! Define theheadway gi5xi 112xi21 as the number of
empty cells in front of the car; then all cars withv i.gi slow
down tov i5gi .

~3! With probability p, each car withv i.0 slows down
by 1: v i→v i21.

~4! All cars move according to their current speed:xi

→xi1v i .
Here,vmax is the maximum velocity cars are able~or al-

lowed! to drive, whereas the randomization step involvingp
describes the tendency of drivers to delay acceleration o
overreact in braking;p will be referred to as thedelay prob-
ability. Typical values to model highway traffic arevmax

55, p50.3. In addition to the model parametersvmax andp,
the behavior depends on the car densityr5N/LP@0,1#,
whereN is the number of cars on the ring andL the number
of lattice sites. Despite its simplicity, this algorithm alrea
shows a lot of features observed in real traffic@1,2,5,6#.

In the deterministic limit (p50) the Nagel-
Schreckenberg model displays a sharp transition betw
free and congested flow at a densityrc

051/(vmax11) @7#.
The main features of this transition are summarized in
next section, along with some new conjectures and res
pertaining to the relaxation behavior into the~periodic!
steady state. Section III critically examines the~currently
open! question of how much of the transition in the dete
ministic cellular automaton survives in the presence of no
and some obvious ways of characterizing the transition in
noisy STCA are ruled out. In Sec. IV A we suggest a de
nition of the critical densityrc in terms of the dissolution of
a large traffic jam~a ‘‘megajam’’!, which applies to the
noisy as well as to the deterministic model. We derive
expression forrc containing two characteristic velocities
The free-flow velocityvF , and the jam dissolution speedvJ .
Section IV B is devoted to an approximate calculation ofvJ
using a simple renormalization argument to treat the inter
tions between vehicles leaving a jam. Subsequently, the
lytic results forrc are compared with numerical data in Se
IV C, and the paper is concluded with a discussion of o
results in comparison to other recent approaches.
ic
188 ©1999 The American Physical Society
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PRE 60 189ANALYTIC APPROACH TO THE CRITICAL DENSITY . . .
II. DETERMINISTIC CELLULAR AUTOMATON

A. Steady state

When the random braking probabilityp is set to zero, the
STCA becomes a deterministic cellular automaton~CA!.
Starting from an arbitrary initial condition on a finite lattic
a time-periodic steady state is reached in finite time@7#. The
dynamical rules forp50 can be written as

v i~ t !5min@vmax,v i~ t21!11,gi~ t !#,
~1!

xi~ t11!5xi~ t !1v i~ t !.

Two types of steady state solutions exist, depending on
value of the densityr. For densities below the critical den
sity

rc
05

1

vmax11
~2!

one may choose thegi such thatgi>vmax for all i, and hence
Eq. ~1! is satisfied by

v i~ t ![vmax, r,rc
0 . ~3!

For r.rc
0 the relevant solutions are characterized by

v i~ t !5gi~ t !, r.rc
0 . ~4!

This solves Eq.~1! provided gi<vmax for all i, and also
v i(t)<v i(t21)11. The latter condition is simplified by
noting that Eq.~4! impliesv i(t)5v i 11(t21), i.e., the entire
velocity configuration is shifted to the left in each time st
@7#. Thus a steady state solution of the type~4! is realized if
and only if the configuration of headways satisfiesgi

<min@vmax,gi 2111#. Note that at the critical densityrc
0 the

only steady state solution~up to translations! is the ordered
configuration with all headways equal tovmax.

The critical densityrc
0 is thus seen to separate two qua

tatively different flow regimes: Forr,rc
0 the cars move

freely at the velocityvF5vmax, while for r.rc
0 their speed

is completely determined by the headways@Eq. ~4!#. A natu-
ral order parameter distinguishing the two regimes is
fraction of jammed vehicles~defined, e.g., as vehicles wit
velocities less thanvmax @8#!. Unfortunately in the determin
istic model this and related quantities depend on the in
spatial distribution of cars. In contrast, the average velo
v(r) and, correspondingly, the steady state current~or fun-
damental diagram@1–3#! j (r)5rv(r) can be read off from
eqs.~3! and ~4! by noting that the average headway equ
1/r21. The result@7#

j ~r!5min@vmaxr,12r# ~5!

is a piecewise linear function with a singularity~a disconti-
nuity in the first derivative! at the critical densityrc

0 , which
coincides with the density of maximum flow. An order p
rameterf(r) can then be defined as the deviation of t
average velocity from the velocityvF5vmax of freely mov-
ing cars,

f~r![vF2v~r!5min@0,~r2rc
0!/rrc

0#. ~6!
e

e

l
y

s

B. Relaxation dynamics

While the steady state behavior of the deterministic CA
simple, the relaxation from general~random! initial condi-
tions shows a certain complexity. The casevmax51, where
the model reduces to the elementary CA No. 84 in W
fram’s classification@9#, has been analyzed in great deta
@10–12#. The key step is a transformation in which adjace
pairs of vacant lattice sites map to particles moving ballis
cally at velocity11, and pairs of sites occupied by cars m
to antiparticles moving at velocity21. Particles and antipar
ticles annihilate upon collision. The initial condition dete
mines the initial densitiesr1 and r2 of particles and anti-
particles. The ‘‘charge density’’r12r2 is conserved unde
collisions, and is related to the densityr of the CA through
r12r2;rc

02r. At the critical pointr15r2 the pairwise
annihilation proceeds to completion, while forr,rc

0 (r
.rc

0) an excess of particles~antiparticles! remains.
Translating known results for the ballistic annihilatio

process@10,13# leads to a number of predictions for the r
laxation behavior of the CA in the case of random init
conditions with short-ranged correlations. In the infinite sy
tem the approach of the order parameter~6! to its steady state
value is exponential with a characteristic time scalet(r)
which diverges as

t;ur2rc
0u22, r→rc

0 ~7!

while at the critical point

f~ t !;t21/2, r5rc
0 . ~8!

Finite size effects are governed by the ratio of the syst
sizeL to a dynamic correlation length which grows linear
in t. Consequently the relaxation time is affected by the s
tem size whent(r);L or ur2rc

0u;L21/2; at the critical
point t;L. These relations can be summarized in a fin
size scaling form, which is expected to hold forL@1 and
ur2rc

0u!1,

t~r,L !5LF„L~r2rc
0!2

…, ~9!

with F(0)5const andF(s→`);1/s.
It is not known if an exact mapping to ballistic annihila

tion exists for other values ofvmax. However, inspection of
the time evolution of the CA suggests a similar scenario a
the casevmax51: When viewed as ‘‘defects’’ in the ordere
steady state configurationgi[vmax, which the system ap-
proaches atr5rc

0 , clusters of vacancies move forward
speedvmax and clusters of excess cars move backwards
speed 1. Due to the existence of several velocity states
clusters of excess cars have a more complicated inte
structure, and the collisions with vacancy clusters are d
cult to entangle. Nevertheless the basic features of a ball
annihilation process with two velocities@14# are still present,
and it seems likely that the relaxation process can still
described in terms of the scaling laws~7!-~9!. Indeed, the
numerical data for the relaxation timet(r,L) presented by
Nagel and Herrmann@7# for vmax55 appear to be consisten
with the scaling form ~9!, in particular, the relation
t(rc

0 ,L);L was verified. In Fig. 1 we show simulation re
sults for the relaxation of the number of jammed cars at



i-

s

rs

e

t
s

n
ue
a
is

ll
-

se
D

s
r,

io
f

ow
iz

s-

w

r

he

is

in
ry
-

a-
he

on
of

e

190 PRE 60M. GERWINSKI AND J. KRUG
critical point for vmax51, 2, and 5, which support the un
versality of the power law~8!.

III. CRITERIA FOR A PHASE TRANSITION
IN THE PRESENCE OF NOISE

We have seen above that the deterministic CA display
phase transition at a well-defined critical densityrc

0 , which
can be identified through the following three features.~1!
The fundamental diagramj (r) has a singularity atrc

0 , which
also coincides with the density of maximum flow.~2! An
order parameterf(r) related to the density of jammed ca
exists, which vanishes forr,rc

0 . ~3! The relaxation time
into the steady state diverges~or rather, becomes system-siz
dependent! at r5rc

0 .
The key question, which has been intensely debated in

recent literature@15–22#, is whether any of these feature
persist in the presence of stochasticity (p.0), and if so,
whether they can be taken as an indication for the existe
of a sharp phase transition. In the following we will arg
that the answer to both questions is probably negative,
that therefore another definition of the critical density
called for. This will then be provided in Sec. IV A. We wi
discuss the three features~1!-~3! separately. Some other re
cent attempts to characterize the transition, which are clo
related to our own approach, will be mentioned in Sec. III

A. Fundamental diagram

The exact solution for the casevmax51 @23,24# shows
that the fundamental diagramj (r) becomes analytic for any
nonzero random braking probabilityp.0. Mean field calcu-
lations@25# and numerical measurements indicate that thi
true also forvmax.1. Two cautionary remarks are, howeve
in order. First, a weak singularity inj (r) may be difficult to
detect numerically, as is illustrated by the case of exclus
models with random jump rates, for which the existence o
phase transition is rigorously established@26#. Second, nu-
merical measurements ofj (r) at large values ofvmax tend to
show spurious features near the density of maximum fl
which seem to be caused by surprisingly strong finite s
effects~Fig. 2!.

FIG. 1. Simulation data for the numberNJ of jammed vehicles
~vehicles with velocityv,vmax) for the deterministic CA with
vmax51, 2, and 5. The initial condition was a random distributi
of cars with densityrC

0 . The data were obtained in single runs
systems of sizeL5105. The full line indicates the predictedt21/2

decay.
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Even if the fundamental diagram is smooth, it always po
sesses a maximum at some densityrmax, which is an obvi-
ous candidate for a critical density separating different flo
regimes. In the deterministic case we have seen thatrmax

5rc
0 , and in generalrmax is distinguished as the density

where the drift velocityc5 j 8(r) of perturbations changes its
sign @27#. We will return to the question of the relationship
betweenrmax andrc below in Sec. IV A.

B. Order parameter

According to the STCA rules, a freely moving ca
switches randomly between the velocitiesvmax andvmax21.
States with lower velocities can be reached only through t
mutual interactions between cars: To slow down tovmax
22 an encounter with one randomly braking car ahead
required, to reachvmax23 two cars have to be within inter-
action range, and so on. Due to the random fluctuations
the motion of individual cars close encounters of an arbitra
number of vehicles occur with finite probability. More pre
cisely, the probability forn cars to be found in close vicinity
of a given car is proportional torn, and consequently the
probability Pv(r) of finding a car with velocityv,vmax
21 should behave as

Pv~r!;rvmax212v ~10!

for r→0. This rough argument illustrates that any order p
rameter related to the fraction of jammed vehicles—e.g., t

FIG. 2. Numerically determined fundamental diagrams of th
STCA with vmax57 and p50.7. Comparison of the data forL
51280 ~upper panel! and L52560 ~lower panel! shows that the
sharp feature near maximum flow is a finite size effect.
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PRE 60 191ANALYTIC APPROACH TO THE CRITICAL DENSITY . . .
fraction of standing cars@15,16# or the fraction of cars with
velocity below vmax21—is nonzero at any densityr.0,
and hence cannot be used to identify a possible phase
sition @16#. Since the average velocityv(r) is determined by
the velocity distributionPv(r), the same is true for the orde
parameterf(r) defined in Eq.~6!.

C. Relaxation time

Csányi and Kertész pointed out that a suitably define
relaxation time shows a sharp peak near but below the d
sity of maximum flow@17#. Subsequent work has confirme
this behavior, but the nature of the divergence and its dep
dence on system size seems difficult to determine@16,18#. In
fact, using the divergence of the relaxation time to identif
phase transition is problematic for a fundamental reason:
stochastic model with a conservation law, the relaxation ti
~properly defined, e.g., through the gap in the spectrum
the time evolution operator! depends on the system size
t;Lz for any nonzero density. Herez is the dynamic expo-
nent, which for driven diffusive systems in one dimensio
such as the STCA, takes the valuez53/2. This result has
been derived in the framework of a nonlinear fluctuati
continuum equation for the particle density@28#, which is
equivalent to the one-dimensional noisy Burgers equa
@29# also known as the Kardar-Parisi-Zhang~KPZ! equation
of surface growth@30#; some numerical evidence for KP
scaling in the STCA has been presented by Sasva´ri and
Kertész @18#. The valuez51 of the dynamic exponent of th
deterministicmodel atr5rc

0 @Eq. ~9!# is related to the cusp
of the fundamental diagram; for a smooth fundamental d
gram and random initial conditions one expectsz53/2 in-
stead, see@10# for a detailed discussion.

Thus, the density dependent features oft observed nu-
merically @16–18# are due partly to a nonstandard definitio
of the relaxation time, and partly reflect the density dep
dence of the prefactor in the relationt;Lz. They should not,
however, be interpreted as a critical slowing down analog
to the scaling laws~7! and ~9! in the deterministic case.

D. Spatial structure

Several recent papers have attempted to distinguish
tween the high and low density flow regimes by direc
characterizing the spatial structure as a function of the glo
density. Eisenbla¨tter et al. @16# measured the density-densi
correlation function. The correlation lengthj(p,r) was
found to be finite for allp.0, with a maximum valuejmax
attained nearrmax which diverges in the deterministic limi
as

jmax;p21/2. ~11!

This behavior, which can be derived analytically forvmax
51 @16#, has a simple interpretation in terms of the ballis
annihilation picture proposed in Sec. II B. For small valu
of p and densities nearrc

0 the random braking events crea
pairs of defects @31#—a small jam and a cluster o
vacancies—in the ordered structure of equally spaced
which constitutes the steady state atp50, r5rc

0 . The
analysis of two-species ballistic annihilation with pair cr
ation @32# shows that the stationary defect density scales
n-

n-

n-

a
a
e
f

,

n

-

-

s

e-

al

s

rs

s

the square root of the defect creation rate. Identifying
correlation lengthjmax with the average spacing between d
fects, Eq.~11! follows. The fact that Eq.~11! holds indepen-
dent of the value ofvmax @16# lends further support to the
applicability of ballistic annihilation for generalvmax.

The visual appearance of space-time plots showing
trajectories of cars forvmax.1 and r.rmax indicates the
spatial coexistence of freely flowing and jammed regio
@6,25#. Some quantitative support for this view has been p
vided in recent work by Chowdhuryet al. @19# and Lübeck
et al. and Roters@20,21#, who found double-peaked prob
ability distributions of headways@19# and local densities
@20,21# for a range of global densities. Lu¨beck et al. and
Roters@20,21# used the first appearance of the double-pe
structure to identify a critical density, which will be com
pared to our definition ofrc below in Sec. V.

The analogy to thermodynamic phase coexistence s
gests definingrc as the density at which droplets of th
congested phase—that is, traffic jams—are margina
stable. This picture forms the basis of the analytic appro
to be described in the next section.

IV. DISSOLUTION OF A MEGAJAM

A. The critical density

Our goal in this section is to provide a simple and una
biguous distinction between the free-flow low density regim
and the interaction-dominated regime at high densities.
intuitively plausible criterion for interaction-dominated flo
is the existence of traffic jams which never dissolve. W
postpone a detailed discussion of jam dissolution times
Sec. IV C, and consider here a simplified situation where
system is started in a ‘‘megajam’’ initial condition@8,33#: At
time t50, a block ofN sites is filled with cars at velocity
v i50, while the remainingL2N sites are empty. Assuming
uniqueness of the stationary state of the STCA, the surv
of such a megajam should be equivalent to the occurrenc
jams with infinite lifetimes for arbitrary initial conditions.

Space-time plots of the time evolution for different valu
of r5N/L are shown in Fig. 3. Obviously a sufficient con
dition for the megajam to dissolve is that the last car in
jam has started to move before the first car reaches the
end of the jam. The dissolution can be described in term
a dissolution wave which moves into the jam at velocityvJ .
The position of the dissolution wave marks the transiti
between standing and moving cars; for a precise defini
see Sec. IV B. The first car moves freely, and therefore~after
a finite acceleration period! its speed isvmax (vmax21) with
probability 12p (p), leading to the averagefree-flow veloc-
ity

vF5vmax2p. ~12!

We conclude that the condition for the first car to reach
back end of the jam at the same time as the dissolution w
reads (L2N)/vF5N/vJ . This will be taken as the definition
of the critical densityrc , which is therefore given by

rc5
vJ

vJ1vF
5

vJ

vJ1vmax2p
. ~13!
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192 PRE 60M. GERWINSKI AND J. KRUG
The nontrivial quantity in this equation is the jam dissoluti
velocity vJ . If the acceleration tovmax occurred instanta-
neously, as is the case forvmax51, we would simply have
vJ512p ~see Sec. IV B!, and Eq.~13! would reduce to

rc
.5

12p

vmax1122p
. ~14!

However, due to delays in the acceleration phase,vJ is gen-
erally smaller than 12p, and consequently Eq.~14! provides
only anupperbound on the true critical density. This will b
explicitly displayed by the approximate calculation in t
next section. Here we remark that the expression~14! has a
number of features in common with the true critical dens
~i! It reduces to Eq.~2! in the deterministic limitp→0. ~ii !
For vmax51 it yieldsrc51/2 independent ofp, which should
be true because of particle-hole symmetry in that case.~iii !
At fixed vmax>2 it shows the numerically observeddecrease
of rc with increasingp.

Equation~14! also has a natural interpretation in terms
the fundamental diagramj (r). Note thatj (r) is known ex-
actly in the limitsr→0 andr→1 @15#: For low densities

FIG. 3. Space-time diagrams for the STCA withvmax55, p
50.3, starting from a megajam initial condition. The mean dens
r5N/L in the three panels is~a! r50.8rc , ~b! r5rc , and ~c! r
51.2rc , where rc'0.1097 is the theoretically predicted critica
density~21!. The depicted time evolution starts at the timeN/vJ at
which the jam dissolution wave reaches the end of the initial jam
the upper left corner of~a! the last piece of the dissolving jam ca
be seen. Subsequently the system evolves into a block of cars
density nearrc which move freely, and a gap of vacancies whi
will eventually close due to fluctuations. In~b! a thin trace of the
jam is seen to survive in the right part of the figure throughout
depicted time evolution, while in~c! the initial jam clearly does no
dissolve.
.

f

cars do not interact, hencej 'vFr for r→0, while for very
high densities only single vacancies move backwards
speed 12p, and thereforej '(12p)(12r) for r→1. Ex-
trapolating these two relations up to their crossing point
obtain a piecewise linear fundamental diagram, which g
eralizes Eq.~5! to p.0; providedj (r) is convex, this func-
tion is an upper bound to the true fundamental diagram,

j ~r!<min@~vmax2p!r,~12p!~12r!#. ~15!

The maximum of the right hand side occurs precisely atrc
. ,

which should therefore be close to the density of maxim
flow rmax at least for smallp. This is confirmed by the data
in Table I, where numerically determined values ofrmax are
compared to the expressions~14! and~21!. It is interesting to
note thatrmax tends to decrease relative torc

. and rc with
increasingp. Table I also contains the expression

rmax
(E) 5

12p

vmax11
~16!

due to Eisenbla¨tter @34#, which was quoted by Lu¨becket al.
@20#. Equation ~16! describes the numerical data forrmax
quite well for largevmax (vmax54,5) but our expressions
~14! and ~21! are superior for smaller values ofvmax.

B. Renormalization of the dissolution speed

To compute the jam dissolution speedvJ we first require
a reasonable definition of the jam dissolution wave and, c
sequently, a reasonable definition of a jam. Here we will c
a car ‘‘jammed’’ if it is moving at any velocityv,vmax @8#.
This is motivated by the observation that a car withv
5vmax cannot interact with cars behind it, while a slower c
can make them decelerate in order to avoid a crash. Thus
definition amounts to calling a car jammed, if it is able
jam other cars itself. Correspondingly, we say that a
leavesthe megajam when it first reaches velocityvmax, start-
ing from velocity 0. The location of the jam dissolution wav
is therefore defined as the location of the car which is c
rently leaving the jam.

y

n

t a

e

TABLE I. Numerical results for the density of maximum flow
rmax, in comparison with the approximate analytic expressions~14!
and~21! for the critical density for jam dissolution, and the expre
sion ~16! for the density of maximum flow.

vmax p rc
. rc rmax rmax

(E)

2 0.3 0.292 0.254 0.303 0.233
2 0.5 0.250 0.216 0.259 0.167
2 0.7 0.188 0.168 0.202 0.100
3 0.3 0.206 0.177 0.204 0.175
3 0.5 0.167 0.142 0.159 0.125
3 0.7 0.115 0.103 0.110 0.075
4 0.3 0.159 0.135 0.145 0.140
4 0.5 0.125 0.106 0.110 0.100
4 0.7 0.0833 0.0737 0.0691 0.0600
5 0.3 0.130 0.110 0.113 0.117
5 0.5 0.100 0.0843 0.0770 0.0833
5 0.7 0.0652 0.0576 0.0500 0.0500
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PRE 60 193ANALYTIC APPROACH TO THE CRITICAL DENSITY . . .
We first adopt the following simplified view of jam dis
solution: At timet50 all cars are standing in a megajam
unit density. Each car starts with a time delaytD after the car
ahead is gone, and then accelerates constantly. Then th
locity of the jam dissolution wave is simplytD

21 . For the
STCA with vmax51, this scenario is exactly realized: Eac
car at rest with an empty cell in front of it has a probabil
of q512p to start in the next time step, thus the avera
waiting time istD5q21 and

vJ5q512p. ~17!

In the followingq will be referred to as theacceleration rate.
For vmax.1 the situation is more complicated: Because

the finite acceleration times, interaction may arise betw
the cars before reachingvmax, so the assumption of consta
acceleration is invalidated. We can nevertheless calculate
average acceleration timeT it takes a car to reach maximum
velocity, and define aneffective acceleration ratethrough

qeff5
vmax

T
. ~18!

For the first car leaving the jamqeff5q, while for subsequen
carsqeff decreases because their acceleration is impede
the car ahead; correspondingly the jam dissolution w
slows down as it moves into the megajam. The macrosco
jam dissolution velocityvJ entering Eq.~13! is determined
by the limiting valueq* of qeff deep inside the jam.

Our approximate computation ofq* proceeds iteratively.
Let us label the cars byi 51,2,3 . . . , from the front of the
megajam backward. We assume that the effective acce
tion rate qeff( i ) of car i can be obtained from its intrinsi
acceleration rateq512p and the effective acceleration ra
qeff( i 21) of the car ahead by treating the latter as afreecar
with delay probabilityp8512qeff( i 21). In essence, we as
sume that the effects of the cars further ahead in the jam
be lumped into a single,renormalizeddelay probability. This
reduces the calculation to a two-particle problem, which c
be solved analytically~see Appendix A!. For vmax52 one
obtains the recursion

qeff~ i !52qS 12
1

22q1qqeff~ i 21! D . ~19!

It is easy to check that the map~19! has a unique, attractive
fixed point q* <q, which defines the acceleration rate de
inside the jam and is given by

q* 5
1

2q
@A~22q22q2!218q2~12q!2~22q22q2!#.

~20!

The functionq* (p) is displayed in Fig. 4. It joins the line
q512p tangentially atp51 but at a finite angle atp50.
Expanding Eq.~20! yields q* '(12p)2(12p)2/2 for p
→1 andq* '122p for p→0. Our final prediction forrc is
obtained by settingvJ5q* in Eq. ~13!,

rc~vmax,p!5
q* ~p!

q* ~p!1vmax2p
. ~21!
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Equations~20! and ~21! constitute the central results of th
paper.

Higher values ofvmax can in principle be treated in a
similar way, but we have not pursued this because the c
plexity of the two-particle problem grows as 4vmax. As we
will see below, the jam dissolution speedvJ depends only
weakly onvmax ~providedvmax.1), and therefore Eqs.~20!
and~21! provide a useful approximation also forvmax.2. In
the next section Eqs.~20! and ~21! will be compared to nu-
merical data.

C. Numerical simulations of jam dissolution

We have numerically determined the jam dissoluti
speedvJ through simulations of megajams of lengthN
55000 in an infinite system~see Appendix B!. The results
are presented in Fig. 4, along with the analytic express
~20!. As expected,vJ512p for vmax51 ~data not shown!
andvJ,12p for vmax>2. The quantitative agreement wit
the analytic expression~20! is best forvmax53, while for
vmax52 ~the case actually considered in our calculation! it
seems to overestimate the reduction ofvJ due to vehicular
interactions. Simulations for largevmax indicate the existence
of a limiting curve vJ(p) for vmax→`, implying that the
acceleration timeT scales asvmax for largevmax.

In Fig. 5 we show numerical results for the jam disso
tion timetJ ~defined precisely in Appendix B! for the case of
periodic boundary conditions. The observed behavior
rather more complicated than the simple picture adopted
Sec. IV A: WhiletJ displays a sharp increase near the cr
cal densityrc predicted by Eq.~21!, it becomes ‘‘infinite’’
~in the sense that the jam does not dissolve within the m
surement time! only beyond a second limiting densityrc8
which is considerably larger than the maximum flow dens
rmax @35#. In the intermediate density rangerc,r,rc8 the
jam does not dissolve during the first lap~after a time of the
order of L), but it dissolves later due to fluctuations of th
two ends of the jam. This is consistent with the observat
of Nagel@8# of a size independent, large cutoff in the lifetim
distribution for traffic jams at densities far beyondrmax. For
densities betweenrc8 andrc other jams have usually forme

FIG. 4. Numerical data for the jam dissolution speedvJ com-
pared to the analytic prediction~20! ~shown as a solid line!. The
measurement algorithm is described in Appendix B. Each data p
is an average over 100 runs.
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by the time the megajam dissolves. Therefore our expres
~21! nevertheless provides a good estimate for the onse
congested traffic.

V. DISCUSSION AND SUMMARY

The occurrence of two characteristic velocities in the c
gested phase of the STCA was observed recently by Ro
and co-workers in an analysis of the dynamic structure fa
S(k,v) of the model@21,22#. Two propagating modes ap
pear as ridges in the (k,v) plane. The speed of the forwar
propagating mode was identified as the free-flow veloc
~12!, while the speedv j of the backward propagating wav
seems to be closely related to the jam dissolution speevJ

considered in the present work. In particular, the numeric
determined dependence ofv j on the delay parameterp is
remarkably similar to that of the functionq* (p) derived in
Sec. IV B: v j is less than 12p and joins the line 12p tan-
gentially atp51 but at a finite angle atp50. The quantita-
tive agreement is less impressive, since Roterset al. find v j

to be essentially independent ofvmax, while our data indicate
a clear decrease ofvJ with increasingvmax ~which, however,
saturates for largevmax). Nevertheless it is clear that close
related processes must take place both in the dissolution

FIG. 5. The numerically determined megajam dissolution ti
tJ(r) for vmax54 andp50.3 ~top panel!, p50.5 ~middle!, andp
50.7 ~bottom!. The system size wasL51280. The numerical pro-
cedure is described in Appendix B. Data for the fundamental
gram j (r) are included to illustrate the vicinity ofrc andrmax. For
densities belowrc the dissolution time is essentially zero on th
scale of the figure.
on
of

-
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r

y

y

f a

megajam, and in the inhomogeneous steady state flow in
congested phase.

Lübeck et al. and Roters@20,21# have presented a phas
diagram for the STCA based on an analysis of the distri
tion of density fluctuations~see Sec. III D!. The critical den-
sity at which this distribution first displays a bimodal stru
ture characteristic of two-phase coexistence was found to
of the form

rc5
f ~p!

vmax11
, ~22!

wheref depends on the delay parameterp but not on vmax.
Our expression~13! can be brought into the form~22! only at
the expense of adopting a rather awkward dependence ovJ
on vmax andp, and it is clearly inconsistent with this form i
vJ is assumed to be independent ofvmax. Nevertheless Eq
~13! approaches the form~22! for large vmax, with f (p)
5vJ . Motivated by this observation, we compare in Fig.
the numerically determined functionf (p) @20,21,34# to our
expression~20! for vJ(p). The excellent agreement is prob
ably fortuitous, but nevertheless intriguing. Perhaps
analysis of the limitvmax→` would clarify its significance.

In conclusion, we have shown how quantitative estima
for the critical densityrc separating free and congested flo
can be obtained from simple considerations of jam disso
tion. While the nature of the transition occurring atrc has
not been addressed in this work, we feel that our analy
does shed some light on the role that the microscopic p
cesses of acceleration and stochastic delay play in deter
ing the critical density, and, thus, the maximum flow capa
ity of the model.
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FIG. 6. The figure superimposes numerical data for the crit
densityrc obtained from the density dependence of the relaxat
time @34# ~triangles! and from an analysis of local density fluctua
tions @21# ~all other symbols! with the analytic expression~20!, to
illustrate the remarkable similarity betweenq* (p) and the function
f (p)5rc(vmax11) @Eq. ~22!#.
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APPENDIX A: SOLUTION OF THE TWO-VEHICLE
PROBLEM

To derive the recursion relation~19! we consider a~free!
leading car with delay probabilityp8 ~acceleration rateq8
512p8) followed by atrailing car with delay probabilityp
~acceleration rateq512p). Our goal is to compute the av
erage number of time stepsT(p,p8) required for the trailing
car to first reach the maximum velocityvmax52, given that
at t50 it was able to move for the first time. This implie
that att50 the leading car has moved one step, and thus
velocity isv851 and it is separated from the~standing! trail-
ing car by a gap of sizeg51 ~Fig. 7!.

The subsequent time evolution of the two-vehicle syst
is a Markov chain in the space of variables (v,v8,g) with the
transition probabilities given in Fig. 7. We note that the g
g cannot decrease during the acceleration period~i.e., before
v5vmax for the first time!. This is because a decrease in t
gap requiresv.v8, and since the leading car is free, i
velocity satisfiesv8>vmax2151 for all times. On the other
hand, an interaction between the two cars occurs onlyg
,vmax. Since three of the four transitions depicted in Fig
lead tog>vmax52 in the first time step, in these cases t
subsequent acceleration of the trailing vehicle is free, and
time required is simply@vmax2v(1)#/q, wherev(1) is the
velocity of the trailing vehicle after the first step.

The only case where the vehicles continue to interac
when the trailing car accelerates but the leading car does
~the second transition in Fig. 7!. In that case the resulting
configuration after one time step is in factequivalentto the
initial configuration~I!, since the velocity of the trailing ve
hicle will be set tog51 after the acceleration step, an
hence it will be the same as if the car had started atv50 and
accelerated. More generally, two configurations of the tw
vehicle system can be seen to be equivalent in this sen

FIG. 7. Probability tree for the calculation ofqeff for the STCA
with vmax52. The figure illustrates the possible time evolution h
tories starting from the initial condition~I!. Each car is denoted by
a number giving its current velocity, and empty sites are denote
dots.
g
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~1! the gap sizeg and the velocityv8(t) of the leading car
are the same in both configurations, and~2! the trailing car
has velocityv(t)>g21 in both configurations. Since th
acceleration time out of two equivalent configurations is
same, the acceleration time out of the configuration .1.1 . . . is
equal to the acceleration timeT from the initial configura-
tion.

Summing over the four possible transitions in Fig. 7 w
thus arrive at the equation

T511qq8~1/q!1qp8T1pq8~2/q!1pp8~2/q!

511q81qp8T12p/q ~A1!

for the acceleration timeT, which gives

1

T
5

12qp8

11q812p/q
5qS 12

1

22q2qq8
D . ~A2!

Inserting this into Eq.~18! yields the recursion~19!.

APPENDIX B: NUMERICAL ALGORITHMS

(a) Measurement ofvJ . To measurevJ , a megajam of
length N55000 was watched during dissolution on an in
nite road. The measuring timet was set to zero, when th
first car had reachedv5vmax. The dissolution timeTJ was
the time when the last car reachedv5vmax. vJ was then
calculated asvJ5N/TJ .

(b) Measurement oftJ . To measure the megajam diss
lution timetJ , the system has to be initialized with megaja
initial conditions, i.e., all cars standing in one big cluster
density 1. Starting from these conditions, we now ke
watching the indexf of the foremost car and the lengthl of
the megajam. Each time step the following algorithm is e
ecuted.

~1! If the car behind the last car of the megajam has a
g,vmax ahead, it is added to the jam→ the jam length is
increased by 1. This is repeated down to the first car wit
gapg>vmax.

~2! If the first car of the jam reachesv5vmax, it leaves
the jam;f and l are both decreased by 1.

~3! If the jam has decayed to length 0, the measuremen
finished, andtJ is set to the current time; else, return to st
1.

If the megajam did not dissolve after a certain cutoff tim
tcut, the algorithm was stopped, andtJ was set totcut. For
each value ofr, the measurement was averaged overM runs.
In the case of the data presented in Fig. 7, the values w
tcut530L andM5100.

y

@1# Traffic and Granular Flow, edited by D.E. Wolf, M. Schreck-
enberg, and A. Bachem~World Scientific, Singapore, 1996!.

@2# Traffic and Granular Flow ‘97, edited by M. Schreckenber
and D.E. Wolf~Springer, Singapore, 1998!.

@3# D. Helbing, Verkehrsdynamik: Neue physikalische Mod
lierungskonzepte~Springer, Berlin, 1997!.

@4# J. Krug, Phys. Rev. Lett.67, 1882 ~1991!; M.R. Evans, D.P.
Foster, C. Godre´che, and D. Mukamel,ibid. 74, 208 ~1995!;
M.R. Evans, Y. Kafri, H.M. Koduvely, and D. Mukamel,ibid.
80, 425 ~1998!.

@5# K. Nagel and M. Schreckenberg, J. Phys. I2, 2221~1992!.
@6# K. Nagel, Phys. Rev. E53, 4655~1996!.
@7# K. Nagel and H.J. Herrmann, Physica A199, 254 ~1993!.
@8# K. Nagel, Int. J. Mod. Phys. C5, 567 ~1994!.
@9# S. Wolfram, Rev. Mod. Phys.55, 601 ~1983!.

@10# J. Krug and H. Spohn, Phys. Rev. A38, 4271~1988!.



te
F

M.

.B

.

Ito,

r.

6

al

196 PRE 60M. GERWINSKI AND J. KRUG
@11# O. Biham, A.A. Middleton, and D. Levine, Phys. Rev. A46,
R6124~1992!.

@12# V. Belitsky and P.A. Ferrari, J. Stat. Phys.80, 517 ~1995!.
@13# Y. Elskens and H.L. Frisch, Phys. Rev. A31, 3812~1985!.
@14# Already the presence of three velocities leads to comple

different behavior, see P. Krapivsky, S. Redner, and
Leyvraz, Phys. Rev. E51, 3977~1995!.

@15# L.C.Q. Vilar and A.M.C. de Souza, Physica A211, 84 ~1994!.
@16# B. Eisenbla¨tter, L. Santen, A. Schadschneider, and

Schreckenberg, Phys. Rev. E57, 1309~1998!.
@17# G. Csányi and J. Kerte´sz, J. Phys. A28, L427 ~1995!; 29,

471~E! ~1996!.
@18# M. Sasva´ri and J. Kerte´sz, Phys. Rev. E56, 4104~1997!.
@19# D. Chowdhury, K. Ghosh, A. Majumdar, S. Sinha, and R

Stinchcombe, Physica A246, 471 ~1997!.
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