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Analytic approach to the critical density in cellular automata for traffic flow
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The jamming transition in the stochastic traffic cellular automaton of Nagel and Schreckéhldenys. 12,
2221(1992] is examined. We argue that most features of the transition found in the deterministic limit do not
persist in the presence of noise, and suggest instead to define the transition to take place at that critical density
pc at which a large initial jam just fails to dissolve. We show thatv;/(v;+vg), wherevg is the velocity
of noninteracting vehicles ang; is the speed of the dissolution wave moving into the jam. An approximate
analytic calculation ob ; in the framework of a simple renormalization scheme is presented, which explicitly
displays the effect of the interaction between vehicles during the acceleration stage of the Nagel-Schreckenberg
rules with maximum velocity ,,,,>>1. The analytic prediction is compared to numerical simulations. We find
a remarkable correspondence between the analytic expressionpdod a phase diagram obtained numerically
by Lubecket al.[Phys. Rev. B57, 1171(1998]. [S1063-651X%99)05907-3

PACS numbdps): 05.40—a, 89.40+k, 05.60—k

I. INTRODUCTION (2) Define theheadway g=x; ., —X;— 1 as the number of
empty cells in front of the car; then all cars with>g; slow
The quantitative modeling of social processes is a conceown tov;=g; .
tually challenging but also somewhat problematic task. (3) With probability p, each car withv;>0 slows down
Given the richness and unpredictability of human behavior, iby 1: v;—v;— 1.

seems that real progress can be expected foremost in situa- (4) All cars move according to their current speeg:
tions where the actors’ options are severely restricted. For,y. 1. .

example, a driver on a single lane road can react to her pfere U max IS the maximum velocity cars are abfer al-

environment only by changing her speed, and she is furthqp,yeq) to drive, whereas the randomization step involving

constrained by considerations of safety and traffic regulagegcripes the tendency of drivers to delay acceleration or to

tions. For this reason traffic simulations are a promising tests\ erreact in brakingp will be referred to as thelelay prob-

:r? i?}:g;’ dr}gcl;olr. attempts to extend statistical mechanics 'r.]t?a\bility. Typical values to model highway traffic are;,y
plinary science of complex, natural, and social_ """ 3 In addition to the model parameters... and
systems. Previously the exclusive domain of engineers ance1 »p=0.2. paran Rax P
traffic planners, the massive recent efforts in the statistical"® beh:_;lwor depends on the car dgnatty N/L <[0.1],
physics community have revealed fascinating analogies bé/yhergN IS _the numbgr O_f cars Or_‘ Fhe rlr}g ahdh_e number
tween vehicular traffic and other instances of nonequilibriurf attice sites. Despite its simplicity, this algorithm already
transport, most notably granular floid—3]. shows a lot of features observed in real traffi¢2,5,4.

Much of this work has been devoted to understanding the N the deterministic limit p=0) the Nagel-
qualitative difference between the regimes of high and lowSchreckenberg model displays a sharp transition between
traffic density, and the possibility of a phase transition sepafree and congested flow at a densﬁglz V(maxt1) [7]
rating the two. Apart from the obvious practical interest in The main features of this transition are summarized in the
avoiding the spontaneous formation of traffic jams in thenext section, along with some new conjectures and results
high density phase, the existence of a phase transition ipertaining to the relaxation behavior into tHperiodig
one-dimensional, noisy nonequilibrium systems is a notesteady state. Section Il critically examines ttmurrently
worthy feature in itself, since such transitions are impossibl@pen question of how much of the transition in the deter-
in thermal equilibrium[4]. ministic cellular automaton survives in the presence of noise,

In this paper we address the transition between the reand some obvious ways of characterizing the transition in the
gimes of high and low density in the framework of a stochasnoisy STCA are ruled out. In Sec. IV A we suggest a defi-
tic cellular automatoiSTCA) for traffic flow originally pro-  nition of the critical density,. in terms of the dissolution of
posed by Nagel and Schreckenb¢gj. In this model cars a large traffic jam(a “megajam”), which applies to the
move on a single-lane road with periodic boundary condi-noisy as well as to the deterministic model. We derive an
tions. Each car has a discrete velocity; € {0, ... vmag @and  expression forp. containing two characteristic velocities:
location x;. The algorithm is described by the following The free-flow velocity , and the jam dissolution speeg.
rules. Section 1V B is devoted to an approximate calculatiorv ¢f

(1) All cars with v;<v s accelerate by 1y, —uv;+1. using a simple renormalization argument to treat the interac-

tions between vehicles leaving a jam. Subsequently, the ana-
Iytic results forp. are compared with numerical data in Sec.
* Author to whom correspondence should be addressed. Electronly/ C, and the paper is concluded with a discussion of our
address: jkrug@theo-phys.uni-essen.de results in comparison to other recent approaches.
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Il. DETERMINISTIC CELLULAR AUTOMATON B. Relaxation dynamics

A. Steady state While the steady state behavior of the deterministic CA is
simple, the relaxation from generéandon) initial condi-

tions shows a certain complexity. The casg, =1, where

the model reduces to the elementary CA No. 84 in Wol-
fram’s classification9], has been analyzed in great detail
[10-12. The key step is a transformation in which adjacent
pairs of vacant lattice sites map to particles moving ballisti-

When the random braking probabilipyis set to zero, the
STCA becomes a deterministic cellular automai@n).
Starting from an arbitrary initial condition on a finite lattice,
a time-periodic steady state is reached in finite t[ifle The
dynamical rules fop=0 can be written as

vi(t)=minfvmay,vi(t—1)+1gi(H], cally at velocity+ 1, and pairs of sites occupied by cars map
(1) to antiparticles moving at velocity 1. Particles and antipar-
Xi(t+1)=x;(t) +v;(t). ticles annihilate upon collision. The initial condition deter-

mines the initial densitiep, and p_ of particles and anti-
Two types of steady state solutions exist, depending on thparticles. The “charge densityp, —p_ is conserved under
value of the density. For densities below the critical den- collisions, and is related to the densjyof the CA through
sity p+—p_~p2—p. At the critical pointp,. =p_ the pairwise
annihilation proceeds to completion, while f(pr<p2 (p
_ 1 2) > pg) an excess of particle@ntiparticle$ remains.
Umaxt1 Translating known results for the ballistic annihilation

_ procesq10,13 leads to a number of predictions for the re-
one may choose thg; such thag;=uv maxfor all i, and hence  |55ati0n behavior of the CA in the case of random initial

0
Pc

Eq. (1) is satisfied by conditions with short-ranged correlations. In the infinite sys-
o (t) =0 p<p?. 3 tem the approach of the order paraméﬁ?rtq its steady state
i max c value is exponential with a characteristic time sca(@)

For p>p8 the relevant solutions are characterized by which diverges as

0)-2 0

vih=gi(t), p>pl. (4) lemed o "
) . . while at the critical point

This solves Eq.(1) provided gi<uv . for all i, and also

vi(t)<v;(t—1)+1. The latter condition is simplified by H(t)~t~12 p:pg_ (8)

noting that Eq(4) impliesv;(t)=v;,1(t—1), i.e., the entire

velocity configuration is shifted to the left in each time stepFinite size effects are governed by the ratio of the system

[7]. Thus a steady state solution of the ty@ s realized if  sizelL to a dynamic correlation length which grows linearly

and only if the configuration of headways satisfigs in t. Consequently the relaxation time is affected by the sys-

<Min[vmax i1+ 1]. Note that at the critical densif the  tem size whenr(p)~L or |p—pd~L" Y2 at the critical

only steady state solutiofup to translationsis the ordered point 7~L. These relations can be summarized in a finite

configuration with all headways equal G, 4. size scaling form, which is expected to hold for-1 and
The critical densityp? is thus seen to separate two quali- lp—p?<1,

tatively different flow regimes: Fop< pg the cars move

freely at the veloCity £ = v max, While for p>p? their speed 7(p,L)=LF(L(p—pQ)?), C)

is completely determined by the headwalgs. (4)]. A natu- )

ral order parameter distinguishing the two regimes is théVith F(0)=const andF(s—«)~1/s. o .

fraction of jammed vehiclegdefined, e.g., as vehicles with It 1S not known if an exact mapping to ballistic annihila-

velocities less tha . [8]). Unfortunately in the determin- 0N exists for other values afy,,. However, inspection of

istic model this and related quantities depend on the initiafh® time evolution of the CA suggests a similar scenario as in

spatial distribution of cars. In contrast, the average velocity€ Cas& ma=1: When viewed as “defects” in the ordered

v(p) and, correspondingly, the steady state curfenfun- ~ Stéady state corgﬂguranoglizvmax, which the system ap-

damental diagrani1—3]) j(p) = pv(p) can be read off from proaches ap=p., clusters of vacancies move forward at

egs.(3) and (4) by noting that the average headway equa|sspeedvmax and clusters of excess cars move backwards at

1/p—1. The resul{7] speed 1. Due to the existence of several velocity states the
clusters of excess cars have a more complicated internal
j(p)=minfvmap,1—p] (5)  structure, and the collisions with vacancy clusters are diffi-

cult to entangle. Nevertheless the basic features of a ballistic
is a piecewise linear function with a singularitg disconti-  annihilation process with two velociti¢$4] are still present,
nuity in the first derivativgat the critical density?, which  and it seems likely that the relaxation process can still be
coincides with the density of maximum flow. An order pa- described in terms of the scaling law#)-(9). Indeed, the
rameter¢(p) can then be defined as the deviation of thenumerical data for the relaxation timep,L) presented by
average velocity from the velocityg = v, Of freely mov-  Nagel and Herrmanf7] for v .= 5 appear to be consistent
ing cars, with the scaling form (9), in particular, the relation
T(pg,L)"‘L was verified. In Fig. 1 we show simulation re-
B(p)=ve—v(p)=min[0,(p—pd)/ppJ]. (6)  sults for the relaxation of the number of jammed cars at the
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FIG. 1. Simulation data for the numbblk; of jammed vehicles
(vehicles with velocityv<v,,,,) for the deterministic CA with
vmax=1, 2, and 5. The initial condition was a random distribution ¢ o5
of cars with densitypg. The data were obtained in single runs of
systems of sizé.=10°. The full line indicates the predictet 12 0.2
decay.

critical point forv,,,=1, 2, and 5, which support the uni- 0.15

versality of the power law8). o
IIl. CRITERIA FOR A PHASE TRANSITION
IN THE PRESENCE OF NOISE 0.05

We have seen above that the deterministic CA displays 0 )
phase transition at a well-defined critical densiﬁ/, which 0 01 02 03 04 05 06 07 08 05 1
can be identified through the following three featuréeh. FIG. 2. Numerically determined fundamental diagrams of the
The fundamental diagraffp) has a singularity aﬁg,which STCA with v =7 and p=0.7. Comparison of the data fdr
also coincides with the density of maximum flog2) An =1280 (upper panel and L=2560 (lower panel shows that the

order parametet(p) related to the density of jammed cars sharp feature near maximum flow is a finite size effect.

exists, which vanishes fop<p?. (3) The relaxation time

into the steady state divergés rather, becomes system-size  Even if the fundamental diagram is smooth, it always pos-

dependeljtatpng. sesses a maximum at some dengify,, which is an obvi-
The key question, which has been intensely debated in theus candidate for a critical density separating different flow

recent literaturg 15—22, is whether any of these features regimes. In the deterministic case we have seen ghat

persist in the presence of stochasticity=0), and if so, =pC, and in generap, is distinguished as the density

whether they can be taken as an indication for the existencehere the drift velocityc=j'(p) of perturbations changes its

of a sharp phase transition. In the following we will argue sign[27]. We will return to the question of the relationship

that the answer to both questions is probably negative, anbetweenp,,,, andp. below in Sec. IV A.

that therefore another definition of the critical density is

called for. This will then be provided in Sec. IV A. We will B. Order parameter

discuss the three featur€¥)-(3) separately. Some other re-

cent attempts to characterize the transition, which are Closelgwﬁ‘cﬁ ordrlnrg]; d tcr)nlths t\?vTCr'? thr UISSi a}t' freelyn dmovm_gl car
related to our own approach, will be mentioned in Sec. Il D. ches randomly between e VEIOCIERay, aNdU max— 1 -

States with lower velocities can be reached only through the
mutual interactions between cars: To slow downuvtq,,

—2 an encounter with one randomly braking car ahead is
The exact solution for the casen.—=1 [23,24 shows required, to reach ,,,—3 two cars have to be within inter-
that the fundamental diagrapip) becomes analytic for any action range, and so on. Due to the random fluctuations in
nonzero random braking probabilip>0. Mean field calcu-  the motion of individual cars close encounters of an arbitrary
lations[25] and numerical measurements indicate that this isumber of vehicles occur with finite probability. More pre-

true also forv ya,>1. Two cautionary remarks are, however, cisely, the probability fon cars to be found in close vicinity

in order. First, a weak singularity if(p) may be difficult to  of a given car is proportional tp", and consequently the
detect numerically, as is illustrated by the case of exclusioprobability P,(p) of finding a car with velocityy <uv max
models with random jump rates, for which the existence of a- 1 should behave as

phase transition is rigorously establishig@b]. Second, nu-

merical measurements pfp) at large values of ., tend to P,(p)~ pVma 17 (10
show spurious features near the density of maximum flow,

which seem to be caused by surprisingly strong finite sizdor p— 0. This rough argument illustrates that any order pa-
effects(Fig. 2). rameter related to the fraction of jammed vehicles—e.g., the

A. Fundamental diagram
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fraction of standing carfl5,16] or the fraction of cars with the square root of the defect creation rate. Identifying the
velocity belowv,,,—1—is nonzero at any density>0, correlation lengtté ., With the average spacing between de-
and hence cannot be used to identify a possible phase trafects, Eq.(11) follows. The fact that Eq(11) holds indepen-
sition[16]. Since the average velocityp) is determined by dent of the value ob 4 [16] lends further support to the
the velocity distributiorP,(p), the same is true for the order applicability of ballistic annihilation for generalay.

parameterg(p) defined in Eq(6). The visual appearance of space-time plots showing the
trajectories of cars fov,,,c>1 and p>pna, indicates the
C. Relaxation time spatial coexistence of freely flowing and jammed regions

_ . . . . [6,25]. Some quantitative support for this view has been pro-

Csanyi and Kertsz pointed out that a suitably defined \;4aq in recent work by Chowdhurst al. [19] and Libeck
relaxation time shows a sharp peak near but below the dens; 51 and Roterg20,21], who found double-peaked prob-
sity of maximum flow{17]. Subsequent work has confirmed gpjjity distributions of headway$§19] and local densities
this behavior, but the nature of the divergence and its depeTZO 21 for a range of global densities. back et al. and
dence on system size seems difficult to deterit®18. In  pqters[20,21 used the first appearance of the double-peak
fact, using the divergence of the relaxation time to identify ag,cture to identify a critical density, which will be com-
phase transition is problematic for a fundamental reason: In g, to our definition op,. below in Sec. V
stochastic model with a conservation law, the relaxation time 1o analogy to thermi)dynamic pha.se .coexistence sug-
(properly defmgd, e.g., through the gap in the spect_rum oEgest:s definingp, as the density at which droplets of the
the time evolution operatprdepends on the system size aScongested phase—that is, traffic jams—are marginally

T~L? for_ anynonzero de_nsity. Hereis the_ dynami<_: €XPO-  stable. This picture forms the basis of the analytic approach
nent, which for driven diffusive systems in one dimension,;, o gescribed in the next section.

such as the STCA, takes the valme3/2. This result has

been derived in the framework of a nonlinear fluctuating

continuum equation for the particle dens[t®8], which is IV. DISSOLUTION OF A MEGAJAM

equivalent to the one-dimensional noisy Burgers equation

[29] also known as the Kardar-Parisi-Zha(i{PZ) equation

of surface growt30]; some numerical evidence for KPZ ~ Our goal in this section is to provide a simple and unam-

scaling in the STCA has been presented by Sassad  biguous distinction between the free-flow low density regime

Kertesz[18]. The valuez=1 of the dynamic exponent of the and the interaction-dominated regime at high densities. An

deterministicmodel atp=p? [Eq. (9)] is related to the cusp @ntuitively.plausible criter_ion for inte(action-domi_nated flow

of the fundamental diagram; for a smooth fundamental diaiS the existence of traffic jams which never dissolve. We

gram and random initial conditions one expeets3/2 in-  Postpone a detailed discussion of jam dissolution times to

stead, se€10] for a detailed discussion. Sec. IV C, and consider here a simplified situation where the
Thus, the density dependent featuresrobbserved nu- System is started in a “megajam” initial conditi¢8,33]: At

merically[16—1§ are due partly to a nonstandard definition time t=0, a block ofN sites is filled with cars at velocity

of the relaxation time, and partly reflect the density depen?i=0, while the remaining —N sites are empty. Assuming

dence of the prefactor in the relatien-LZ. They should not, uniqueness of t_he stationary state of the STCA, the survival

however, be interpreted as a critical slowing down analogou8f such @ megajam should be equivalent to the occurrence of

to the scaling law$7) and (9) in the deterministic case. jams with infinite lifetimes for arbitrary initial conditions.
Space-time plots of the time evolution for different values

of p=N/L are shown in Fig. 3. Obviously a sufficient con-
dition for the megajam to dissolve is that the last car in the
Several recent papers have attempted to distinguish bgam has started to move before the first car reaches the back
tween the high and low density flow regimes by directly end of the jam. The dissolution can be described in terms of
CharaCteriZing the Spatial structure as a function of the glOb% dissolution wave which moves into the jam at Ve|o@i§y
density. Eisenblzer et al.[16] measured the density-density The position of the dissolution wave marks the transition
correlation function. The correlation lengtfi(p,p) was  petween standing and moving cars; for a precise definition
found to be finite for allp>0, with a maximum valu€.x  see Sec. IV B. The first car moves freely, and therefafter
attained neap max which diverges in the deterministic limit a finite acceleration peri()dl[s Speed i$max (Umax_ 1) with
as probability 1-p (p), leading to the averadese-flow veloc-

_ it
& max™ P 1/2- (11) y

A. The critical density

D. Spatial structure

. . . . . VE=Umax— P- (12
This behavior, which can be derived analytically o,y
=1 [16], has a simple interpretation in terms of the ballistic . )
annihilation picture proposed in Sec. Il B. For small Values\l;\;ilfzrr:glluo??htet]?;r;hgt?ﬁgdslgcr)nnefgrrntzgliﬁteCda;;stgllrftai?)ﬁhvg\?e
of p and densities negi; the random braking events create reads [ N)/v.=N/v,. This will be taken as the definition

pairs of defects[31]—a small jam and a cluster of of the critical densit which is therefore given b
vacancies—in the ordered structure of equally spaced cars Yo 9 y

which constitutes the steady state @0, p=p8. The
analysis of two-species ballistic annihilation with pair cre- __ v Uy (13
ation [32] shows that the stationary defect density scales as Pe V3tV U3t Umax P’
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e z TABLE I. Numerical results for the density of maximum flow,
' Pmax, IN comparison with the approximate analytic expressidds
and(21) for the critical density for jam dissolution, and the expres-
/ (@) sion (16) for the density of maximum flow.

t
U max p Pc> Pc Pmax PEnEa)x
2 0.3 0.292 0.254 0.303 0.233
2 0.5 0.250 0.216 0.259 0.167
2 0.7 0.188 0.168 0.202 0.100
3 0.3 0.206 0.177 0.204 0.175
3 0.5 0.167 0.142 0.159 0.125

. 3 0.7 0.115 0.103 0.110 0.075
4 0.3 0.159 0.135 0.145 0.140
4 0.5 0.125 0.106 0.110 0.100
4 0.7 0.0833 0.0737 0.0691 0.0600
5 0.3 0.130 0.110 0.113 0.117
5 0.5 0.100 0.0843 0.0770 0.0833
5 0.7 0.0652 0.0576 0.0500 0.0500

cars do not interact, henge=vrp for p—0, while for very
high densities only single vacancies move backwards at
speed - p, and thereforg~(1—p)(1—p) for p—1. Ex-
trapolating these two relations up to their crossing point we
obtain a piecewise linear fundamental diagram, which gen-
eralizes Eq(5) to p>0; providedj(p) is convex, this func-

ion is an upper bound to the true fundamental diagram,

FIG. 3. Space-time diagrams for the STCA with,,,=5, p
=0.3, starting from a megajam initial condition. The mean densityt
p=N/L in the three panels i&) p=0.80., (b) p=p., and(c) p . . B _ B
=1.2p., where p,~0.1097 is the theoretically predicted critical J(p)=min[ (v max—P)p,(1=P)(1=p)]. (15)

density(21). The depicted time evolution starts at the tiMé& ; at h . f the riaht hand sid isely
which the jam dissolution wave reaches the end of the initial jam. In N€ maximum of the right hand side occurs preciselyat

the upper left corer ofa) the last piece of the dissolving jam can Which should therefore be close to the density of maximum

be seen. Subsequently the system evolves into a block of cars atfW pmax at least for smalp. This is confirmed by the data
density neap, which move freely, and a gap of vacancies which in Table I, where numerically determined valuespgf,, are
will eventually close due to fluctuations. lip) a thin trace of the ~Ccompared to the expressiofist) and(21). It is interesting to
jam is seen to survive in the right part of the figure throughout thenote thatp ., tends to decrease relative pg and p. with
depicted time evolution, while ifc) the initial jam clearly does not increasingp. Table | also contains the expression
dissolve.
. L . . . . ®_ 1°P
The nontrivial quantity in this equation is the jam dissolution Pmax=, 7 (16)
velocity v;. If the acceleration tw ., occurred instanta- mex
neously, as is the case fog,,=1, we would simply have  due to Eisenblaer [34], which was quoted by Lhecket al.
v;=1-p (see Sec. IV B and Eq.(13) would reduce to [20]. Equation(16) describes the numerical data fpay
1-p quite well for largev max (vmax=4,5) but our expressions
T (14) (14) and(22) are superior for smaller values 0f,,y.
Umaxt 1—2p

However, due to delays in the acceleration phasés gen- B. Renormalization of the dissolution speed

erally smaller than * p, and consequently E¢14) provides To compute the jam dissolution speeglwe first require
only anupperbound on the true critical density. This will be a reasonable definition of the jam dissolution wave and, con-
explicitly displayed by the approximate calculation in the sequently, a reasonable definition of a jam. Here we will calll
next section. Here we remark that the expressibh has a  a car “jammed” if it is moving at any velocity <uv . [8].
number of features in common with the true critical density.This is motivated by the observation that a car with
(i) It reduces to Eq(2) in the deterministic limitp—0. (i)  =uv,,,cannot interact with cars behind it, while a slower car
Forvma=1 it yieldsp.=1/2 independent gf, which should can make them decelerate in order to avoid a crash. Thus our
be true because of particle-hole symmetry in that cé8¢. definition amounts to calling a car jammed, if it is able to
At fixed v 5,22 it shows the numerically observeécrease jam other cars itself. Correspondingly, we say that a car
of p. with increasingp. leavesthe megajam when it first reaches veloaity,,, start-
Equation(14) also has a natural interpretation in terms of ing from velocity 0. The location of the jam dissolution wave
the fundamental diagran{(p). Note thatj(p) is known ex- is therefore defined as the location of the car which is cur-
actly in the limitsp—0 andp—1 [15]: For low densities rently leaving the jam.
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We first adopt the following simplified view of jam dis- v
solution: At timet=0 all cars are standing in a megajam of 1
unit density. Each car starts with a time detgyafter the car
ahead is gone, and then accelerates constantly. Then the ve-
locity of the jam dissolution wave is simply;*. For the
STCA with v,,,=1, this scenario is exactly realized: Each
car at rest with an empty cell in front of it has a probability
of q=1-—p to start in the next time step, thus the average
waiting time istp=q ! and 0.4

0.8

0.6

v;=q=1-p. 17 0.2

In the followingq will be referred to as thacceleration rate

Forv mac>1 the situation is more complicated: Because of 0
the finite acceleration times, interaction may arise between
the cars before reaching,,y, so the assumption of constant  FIG. 4. Numerical data for the jam dissolution spegdcom-
acceleration is invalidated. We can nevertheless calculate thgred to the analytic predictiof20) (shown as a solid line The
average acceleration timieit takes a car to reach maximum measurement algorithm is described in Appendix B. Each data point

0 02 04 06 038 1P

velocity, and define aeffective acceleration ratthrough is an average over 100 runs.
_ Umax 18 Equations(20) and (21) constitute the central results of this
qeff_ T . ( ) paper

Higher values ofv 4 Can in principle be treated in a
For the first car leaving the jampy=q, while for subsequent  similar way, but we have not pursued this because the com-
carsdes decreases because their acceleration is impeded Wyexity of the two-particle problem grows asmx As we
the car ahead; correspondingly the jam dissolution wavgyjll see below, the jam dissolution speed depends only
slows down as it moves into the megajam. The macroscopigeakly onv .y (providedvn,,c>1), and therefore Eq$20)
jam dissolution velocity ; entering Eq.(13) is determined  and(21) provide a useful approximation also fof,q,=>2. In

by the limiting valueq* of qe deep inside the jam. the next section Eqg20) and(21) will be compared to nu-
Our approximate computation of proceeds iteratively. merical data.

Let us label the cars by=1,23..., from the front of the
megajam backward. We assume that the effective accelera- ) . . ) ] ]
tion rateqeq(i) of cari can be obtained from its intrinsic C. Numerical simulations of jam dissolution
acceleration ratg=1—p and the effective acceleration rate  We have numerically determined the jam dissolution
der(i —1) of the car ahead by treating the latter dse@car  speeduv; through simulations of megajams of length
with delay probabilityp” =1—qq(i —1). In essence, we as- =5000 in an infinite systenisee Appendix B The results
sume that the effects of the cars further ahead in the jam casre presented in Fig. 4, along with the analytic expression
be lumped into a singleenormalizeddelay probability. This  (20). As expectedp ;=1—p for v =1 (data not shown
reduces the calculation to a two-particle problem, which carandv ;<1—p for v,,=2. The quantitative agreement with
be solved analyticallfsee Appendix A For v,.=2 0one the analytic expressiof20) is best forv =3, while for
obtains the recursion Umax=2 (the case actually considered in our calculakitin
seems to overestimate the reductionvgfdue to vehicular

Ger(i)=2q| 1— 1 _ _ (19) interactions. Simulations for largg,., indicate the existence
ef 2—Q+qQen(i—1) of a limiting curve v;(p) for vma—, implying that the
acceleration timé scales a® n,y for largev nay-
Itis easy to check that the mdp9) has a unique, attractive |y Fig. 5 we show numerical results for the jam dissolu-
fixed pointq* <g, which defines the acceleration rate deeption time r, (defined precisely in Appendix)Bor the case of
inside the jam and is given by periodic boundary conditions. The observed behavior is
1 rather more complicated than the simple picture adopted in
*_ o 5q2\2 21 ) (D — 902 Sec. IV A: While 7; displays a sharp increase near the criti-
a 2q[\/(2 a-207)"+8q7(1=q)~(2=q-207)]. cal densityp. predicted by Eq(21), it becomes “infinite”

(200 (in the sense that the jam does not dissolve within the mea-
surement timg only beyond a second limiting density,
which is considerably larger than the maximum flow density
Pmax [35]. In the intermediate density rangg<p<p. the

jam does not dissolve during the first lggfter a time of the
order ofL), but it dissolves later due to fluctuations of the
two ends of the jam. This is consistent with the observation
* of Nagel[8] of a size independent, large cutoff in the lifetime
q—(p). (21) distribution for traffic jams at densities far beyopgl.,. For
g*(P) tvmax— P densities betweep, andp, other jams have usually formed

The functiong* (p) is displayed in Fig. 4. It joins the line
g=1-p tangentially atp=1 but at a finite angle gv=0.
Expanding Eq.(20) yields q* ~(1—p)—(1—p)?%/2 for p
—1 andg*~1-2p for p—0. Our final prediction fop. is
obtained by setting ;=qg* in Eq. (13),

Pc(Vmax,P) =
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40000 | Umax + 1
lj (p) T . T T Woo Pc( max )
| T X X N 1
30000 T ' "' (p) —
X Umax = +
20000 . 0.8 Vo =0 %
vm’::x =10 0O
10000 s - () ¥
e 06 - -
0 1 |\MMQ§><X 1 1
0 005 01 015 02 025 03 ° 04 -
40000 r . :
ip =+ XXX'X 02} -
77 X )
30000 |- 9 -
I I 1 1
20000 -1 0

0 02 04 06 08 1P

10000 - FIG. 6. The figure superimposes numerical data for the critical
densityp. obtained from the density dependence of the relaxation
time [34] (triangles and from an analysis of local density fluctua-

tions [21] (all other symbolswith the analytic expressio(R0), to

0 0.05 0.1 015 0.2 0.25 P

40000 » T X AKX X illustrate the remarkable similarity betwegh(p) and the function
@) % £(P) = po(vmac+ 1) [EQ. (22)].
30000 - X -
20000 x _ megajam, and in the inhomogeneous steady state flow in the
X congested phase.
10000 Libecket al. and Roterd20,21] have presented a phase
><>< diagram for the STCA based on an analysis of the distribu-
5 008 01 015 02 P tion of density fluctuationgsee Sec. Il . The critical den

sity at which this distribution first displays a bimodal struc-
FIG. 5. The numerically determined megajam dissolution timeture characteristic of two-phase coexistence was found to be

73(p) for v =4 andp=0.3 (top panel, p=0.5 (middle), andp of the form

=0.7 (bottom). The system size wads=1280. The numerical pro-

cedure is described in Appendix B. Data for the fundamental dia-

gramj(p) are included to illustrate the vicinity gf, andpa. FOr

densities belowp, the dissolution time is essentially zero on the

scale of the figure.

f(p)

= 22
- (22)

Pc

) ) ) _wheref depends on the delay paramepebut not on v .
by the time the megajam dissolves. Thgrefore our expressiofjyr expressiori13) can be brought into the fori22) only at
(21 nevertheless provides a good estimate for the onset ghe expense of adopting a rather awkward dependencg of

congested traffic. 0N v max andp, and it is clearly inconsistent with this form if
v is assumed to be independentwgf,,. Nevertheless Eq.
V. DISCUSSION AND SUMMARY (13) approaches the formi22) for large v .y, With f(p)

=v;. Motivated by this observation, we compare in Fig. 6

The occurrence of two characteristic velocities in the CONYha numerically determined functici(p) [20,21,34 to our

gested phase of the STCA was observed recently by Rotefg yressior(20) for v,(p). The excellent agreement is prob-
and co-workers in an analysis of the dynam!c structure fact05b|y fortuitous, but nevertheless intriguing. Perhaps an
S(k,w) of the model[21,22. Two propagating modes ap- analysis of the limity g would clarify its significance.
pear as ridges in thek(w) plane. The speed of the forward | conclusion, we have shown how quantitative estimates
propagating mode was identified as the free-flow velocityfor the critical density. separating free and congested flow
(12), while the speed; of the backward propagating wave can be obtained from simple considerations of jam dissolu-
seems to be closely related to the jam dissolution spged tion. While the nature of the transition occurring @t has
considered in the present work. In particular, the numericallyhot been addressed in this work, we feel that our analysis
determined dependence of on the delay parametgy is  does shed some light on the role that the microscopic pro-
remarkably similar to that of the function* (p) derived in  cesses of acceleration and stochastic delay play in determin-
Sec. IV B:vj is less than +p and joins the line +p tan- ing the critical density, and, thus, the maximum flow capac-
gentially atp=1 but at a finite angle gi=0. The quantita- ity of the model.
tive agreement is less impressive, since Roétral. find v;

to be essentially independentwf,.,, while our data indicate

a clear decrease of; with increasingy sy (Which, however,

saturates for large,.,). Nevertheless it is clear that closely ~ We thank L. Roters for providing us with the data for Fig.
related processes must take place both in the dissolution of& and for making his thes{®1] available to us.
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_ A (1) the gap sizeg and the velocityy ' (t) of the leading car
0.1..... 4] S O B = ...free acceleration N . . .
o' are the same in both configurations, a2d the trailing car
has velocityv(t)=g—1 in both configurations. Since the
acceleration time out of two equivalent configurations is the
same, the acceleration time out of the configuratioh..1. is

0...2... = ...free acceleration

w0 equal to the acceleration tinie from the initial configura-
) tion.
w Orrlerr = oofoe soccleration Summing over the four possible transitions in Fig. 7 we

FIG. 7. Probability tree for the calculation gf¢ for the STCA thus arrive at the equation

with v = 2. The figure illustrates the possible time evolution his- T=14+qq'(1/q)+qp'T+pq’' (2/q)+pp’(2/q)
tories starting from the initial conditiofi). Each car is denoted by
a number giving its current velocity, and empty sites are denoted by =1+q'+qp'T+2p/q (A1)
dots.
for the acceleration tim@&, which gives
APPENDIX A: SOLUTION OF THE TWO-VEHICLE
PROBLEM 1 1-qp’
. . . . T = ’ =q a e (A2)
To derive the recursion relatiail9) we consider dfree) 1+q'+2p/q 2—-9q—qq

leading car with delay probabilityp’ (acceleration ratey’
=1-p’) followed by atrailing car with delay probabilityp
(acceleration ratgg=1—p). Our goal is to compute the av-
erage number of time stedg{p,p’) required for the trailing
car to first reach the maximum velocity,,,= 2, given that (2) Measurement of ;. To measurev;, a megajam of
att=0 it was able to move for the first time. This implies length N=5000 was watched during dissolution on an infi-
that att=0 the leading car has moved one step, and thus itaite road. The measuring tintewas set to zero, when the

Inserting this into Eq(18) yields the recursiori19).

APPENDIX B: NUMERICAL ALGORITHMS

velocity isv’=1 and it is separated from ttistanding trail-  first car had reached=v 5. The dissolution timerl; was

ing car by a gap of sizg=1 (Fig. 7). the time when the last car reachedv ... v; was then
The subsequent time evolution of the two-vehicle systentalculated a® ;=N/T;.

is a Markov chain in the space of variablesy’,g) with the (b) Measurement of;. To measure the megajam disso-

transition probabilities given in Fig. 7. We note that the gaplution time 7;, the system has to be initialized with megajam
g cannot decrease during the acceleration pefiied, before initial conditions, i.e., all cars standing in one big cluster of
v =0 max for the first timg. This is because a decrease in thedensity 1. Starting from these conditions, we now keep
gap requiresv>v’, and since the leading car is free, its watching the indexX of the foremost car and the lengttof
velocity satisfies' =v,,,—1=1 for all times. On the other the megajam. Each time step the following algorithm is ex-
hand, an interaction between the two cars occurs onty if ecuted.
<vmax- Since three of the four transitions depicted in Fig. 7 (1) If the car behind the last car of the megajam has a gap
lead tog=v =2 in the first time step, in these cases theg<uv . ahead, it is added to the jam the jam length is
subsequent acceleration of the trailing vehicle is free, and thimcreased by 1. This is repeated down to the first car with a
time required is simply v ma—v(1)]1/9, wherev (1) is the  gapg=v max-
velocity of the trailing vehicle after the first step. (2) If the first car of the jam reachas=uv ., it leaves
The only case where the vehicles continue to interact ishe jam;f andl are both decreased by 1.
when the trailing car accelerates but the leading car does not (3) If the jam has decayed to length 0, the measurement is
(the second transition in Fig.).7In that case the resulting finished, andr; is set to the current time; else, return to step
configuration after one time step is in famfjuivalentto the 1.
initial configuration(l), since the velocity of the trailing ve- If the megajam did not dissolve after a certain cutoff time
hicle will be set tog=1 after the acceleration step, and t.,, the algorithm was stopped, ang was set tat,. For
hence it will be the same as if the car had starte=a0 and  each value op, the measurement was averaged ddeuns.
accelerated. More generally, two configurations of the two4n the case of the data presented in Fig. 7, the values were
vehicle system can be seen to be equivalent in this senseftif,=30L andM = 100.
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