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Electromechanical Fredericks effects in nematic gels

E. M. Terentjev and M. Warner
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom

R. B. Meyer and J. Yamamdto
The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454-9110

(Received 5 November 1998

The solid nematic equivalent of the Fredericks transition is found to depend on a critical field rather than a
critical voltage as in the classical case. This arises because director anchoring is principally to the solid rubbery
matrix of the nematic gel rather than to the sample surfaces. Moreover, above the threshold field, we find a
competition between quartisoft) and conventional harmonic elasticity which dictates the director response.
By including a small degree of initial director misorientation, the calculated field variation of optical anisotropy
agrees well with the conoscopy measurements of Cledirad. [Phys. Rev. B56, 595 (1997)] of the electro-
optical response of nematic ge|§1063-651X99)13208-3

PACS numbeps): 61.30-v, 78.20.Jq, 82.70.Gg

[. INTRODUCTION boundary anchoring of the director is to be respected. In this
case the Frank elastic energy dengitg(Vn)? opposes the
In nematic elastomers and gels, liquid crystal orderingfield effect, whereK is a Frank constant aris the nematic
and the nematic director are coupled to the mechanical dglirector. For a cell of thickness with strong anchoring on
grees of freedom. Both symmetric shear strains and antisynthe boundaries the Frank energy is of ordgt(Vn)?d
metric deformations couple to the director. Since the macro=- (1/d) K per unit area of cellwhere Vn~ 1/d, crudely.
scopic shape of the polymer network naturally depends orf he corresponding electrical energy per unit area is, roughly,
the chain anisotropy direction, the coupling gives rise tozeoAeEd. These are comparable for a field d
some remarkable features of the elasticity: shape can change(1/d) yK/e,Ae or an applied voltage W=Egd
spontaneously by well over 50% on changing temperature= \K/egAe, where the Fredericks transition occurs.
through the clearing point, shears can induce director rota- The response of the nematic director to applied electric
tion, and some shear deformations cost no change in enerdields in nematic elastomers and gels raises questions about
in the ideal case. We call this last effect “soft elasticity.” It the role of the elastic properties of the polymer network in
is unique to nematic networks and other elastic solids wherémiting the director response. Likewise, the reorientation of
a nonelastic internal degree of freedom is coupled to thé¢he director by an external field can lead to elastic deforma-
mechanical degrees of freedom. The additional symmetriegons.
leading to softness were predicted phenomenologically by Nematic elastomers have been seen to respond to modest
Golubovic and Lubenskjl] and from statistical mechanics electric fields[5] by changing their shape when they are
of large deformations by Bladoet al.[2]. Depending on the geometrically unconstrained. At first sight this is unexpected
thermomechanical history, nematic elastomers have beesince the energy scale for shape change in a solid is of order
shown to demonstrate either extreme softness or substantial the shear modulus. Balancing this with the electrical en-
deviations from soft respon$8]. Systems with such residual ergy, the characteristic fields required to change shape
resistance to deformation have been called semigbfit should beE~ (u/soAe)Y?>~10"V/m for a typical rubber
They are qualitatively similar to soft elastomers in that themodulus~10° J/n? and a substantial dielectric anisotropy
same particular modes of nontrivial deformation cost a veryAe~6. This is a large field, whereas shape changes were
small elastic energy, compared to other nonspecific deformasbserved for modest electric fields. However, because nem-
tions. atic elastomers can suffer certain shape changes with little or
Conventional nematics couple strongly to electric fieldsno energy cost, which can potentially be achieved most eas-
(E), the director aligning parallel to the field in the case ofily in a completely unrestricted sample, such observations
positive dielectric anisotropAe. When the director is an- add weight to the concept of soft mechanical response.
chored at boundaries and the sample is uniformly aligned More recent experiments of Charef al. [6] show an
perpendicular to the direction to be taken by the electricelectro-optical response in a nematic gel in the usual con-
field, there is a transitiofFredericks at a finite critical volt-  strained Fredericks geometry. They observe the director re-
ageVg, above which the director is deflected by the field. sponse by the method of optical conoscopy, and find an el-
The electric Fredericks effect and its analogs are the basis @vated thresholdfield rather than voltage for director
most liquid crystalline displays. Director rotation to lower reorientation. They analyze their data in the classical Freder-
the dielectric energy in the bulk becomes nonuniform if theicks manner. However, to explain the threshold field, they
invoke both a bulk anchoring mechanism and an intrinsic,
material-defined length scale for gradients of the director,
*Permanent address: Institute of Industrial Science, University ofather than the sample thickness, which sets the length scale
Tokyo, Minato-ku, Tokyo 106, Japan. for a simple nematic. Given that finite fields were required,

1063-651X/99/6()/18728)/$15.00 PRE 60 1872 © 1999 The American Physical Society



PRE 60 ELECTROMECHANICAL FREDERICKS EFFECTSN. .. 1873

Changet al. were not observing pure soft elasticity of the z

gel. It is not clear that the nematic gel can react softly in the EN — —

Fredericks geometry, since the delicate combination of /}\: 4 Eﬁ Ay
shears required to accommodate the director at no cost of é """" e

elastic energy is frustrated by the cell electrodes, to which = O = U
the nematic solid must conform. — —IE x

At this point it is important to recall another physical
system, prepared in a way similar to the swollen nematic gels FIG. 1. Field-induced director rotation in a conventional nem-
of Chang etal. [6]. Polymer-stabilized liquid crystals atic (left) and nematic elastomémiddle) anchored at the surfaces
(PSLCs3 [7] are formed from a mixture of common nematic z=0 andz=d, with an electric fieldE applied across the cell. The
and polymerizable monomers. On polymerization, completé&hear strain.,, accompanying the director rotation in nematic elas-
phase Separat|on occurs and' When the polymenzauon Occu@’ners is shown on the r|ght The conventional Fredericks effect
in an aligned geometry, the resulting polymer fibrilles pre-ha§ one half Wavelepgth of djrector rotation between the plates,
serve the direction of anisotropy by creating a large amoun‘f’h'le the solid nematic Fredericks effect has the full wavelength.

of internal boundary. Thus, the phase-separated polymerf ic rubb ) q q _
mesh provides both a bulk anchoring mechanism and an irf2f Nématic rubbers to imposed stresses and strains. To sum-

trinsic small (micrometer sizelength scale for director re- Marize this new analysis, the free energy density for director
sponse. However, the response time for director reorientatiofPtation through angl@ in a nematic elastomer is schemati-
for both field-on and off cases is fa&thich is one of the ~Ccally represented by

reasons for PSLC useOther work by Hikmeet al. (see[8]) 1 (de\2 1
sees a similar response, principally a critical field and fast f~—K<—) — ~eoAeE?SirPo+pu
dynamics(of order 1@ times faster than ouysboth factors 2 \dz 2

requiring Hikmet to invoke a new length scale. In Hikmet's . (1)
model the matrix, with its own director, does not reorient

under fields, but only the enclosed nematic's director reThe Frank and the dielectric terms are as in classical nemat-
sponds. There are important experimental differences beécs. The rubber-elastig. terms are the resistance the gel
tween his and our systems. On application of a field, wenetwork presents to director rotation, only the quartic term
directly observe mechanical distortions in response to direcheing present in the ideal soft case. The paramétarea-

tor rotation, rather than an unchanging matrix as visualize@ures semisoftness, that is the residual harmonic elastic re-
by Hikmet. Such large-scale distortions are inconsistent withsistance. In elastomers and gels, the director has a bulk as
the rotation of the contents of small compartments. The Hikwell as surface anchoring—there is an elastic resistance even
met diacrylate systems are capable of cross linking at eadfyhen directors are rotated uniformigquivalent to a mas-
monomer and maybe heavily cross linked. Our monoacrylatgjve, finite-energyg—0 normal mode One sees that the
systems can crosslink at the dilute cross-link sites we havgniform system would rotate in response to an electric field
put in and are accordingly flexiblgubbery networks. Such only when the threshol@* ~ (Au/eqAe)*? is exceeded, a
chemical differences may generate differences in structurgharacteristic field rather than voltage because of the bulk
that explain the different mechanical response and the huggnchoring. Additional effects arise from gradients rofin
differences in time scales observed. Apparently our materialgrder to satisfy the boundary conditions and from the neces-
are very different and the application of nematic rubber elassijty for the sample to preserve its overall mechanical shape,
ticity is probably inappropriate to the Hikmet systems. By put the main effect is captured by the above argument. We
contrast, the compounds used by Chatal. were highly  shall describe both effects in this paper, first addressing the

miscible and had a slow response dynamics, characteristic @ésponse of a uniform system and then examining the role of
nematic gels. We assume, therefore, that their experimerionstraints and nonuniform deformations.

dealt with an aligned homogeneous gel, composed of cross-
linked single molecular strands of ne_mqtic side chai_n acry- || THE ELECTROELASTIC-NEMATIC ENERGY
late polymer, swollen by a solvent of similar mesogenic mol-
ecules, rather than a PSLC system or other more complicated We start with a model of a macroscopically uniform
structures such as those proposed by Hiketedl. sample of nematic elastomer in which the director is aligned
In this paper we reconsider the experimental observationparallel to the plane of a dielectric cell. When subjected to an
of Changet al. We seek to explain the new electro-optical electric field perpendicular to the cell platgssuming posi-
transition in terms of a homogeneous response of the diredive anisotropyAe), the director is forced to rotate upwards
tor, rather than invoking a new small length scale. The eltowards homeotropic alignment as in the “traditional” Fre-
evated field threshold and the director response above threstiericks effect. We assume for simplicity that the director
old are accounted for by the coupling of the director to therotates in thex-z plane and is parametrized by an angle
elastic polymer network. This picture is partially supportedwhich is a function of coordinateonly, 6= 6(z), but not of
by some new experimental observations indicating that the, just as in a classical Fredericks transitiGee Fig. 1
samples respond to the electric field on a scale comparable Mechanical constraints ofi) rubber incompressibility and
the sample thickness, rather than on a much smaller scaléi) elastic compatibility then impose strong limitations on
The response is both optical and mechanical. We treat the géhe number and types of possible elastic deformations. Since
as a nematic elastomer, an analysis that has been succesgshé director orientation is coupled to the elastic network, di-
elsewhere in describing the mechanical and optical responsector rotation in the--z plane causes deformatioig, and
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\;, (@and Ay, from the incompressibility constraint Dkt

=1), and especially the sheaxg, and\,,. All these com-
ponents of strain are possibly functions ofThere are re-
strictions due to mechanicéh fact, geometrig compatibil-
ity [9], which can be expressed in the following simple way.
Since the deformatiofCauchy straintensor is a derivative
Nij=dR;/aRY with R® andR being positions of a material The first term is the ideal nematic rubber elastic energy den-
point initially and after deformation, then one can obtain thesity [4] and can lead to the soft elastic response. The second
second derivative in two possible ways: term is the appropriate nonideal, “semisoft” contribution
observed in many elastomers and, in particular, in those
formed in a field-aligned monodomain stdtel]. In elas-
INij R INik tomersu gives the rubber energy scale, essentially a shear
T 0T =0.—0 " o modulus at small deformations. The dimensionless parameter
IR IRJIR IR A measures théusually small semisoftness. Inserting the
deformation\ and the director rotatiod (through/’), these
two rubber-nematic terms take the form

1 ‘ 1 ,
f=5u T/ - NT- 771N+ EMA(sma—)\xzcosﬁ)z

1 1
—EsoAsEzsin20+§K(V0)2. 2

Making some elements;; functions ofz induces others

to be functions ok. For instance, consider the component of 1 [(r—1)2 re
shear\,,(z): we haved\,,/dz=d\,,Il X, i.e., the extension frub== M1 Sir o+ sin20 \,
\,, must be a function ok, which we assumed prohibited. 2 r

Hence \,,=0. Similarly, assuming the local extension 1+(r—1)sirf6
Nx(2) leads tod\ y/dz= I,/ IX, i.e., N, (X), another pro- +

hibited x dependence. Hence,,= const. However, incom-
pressibility demands that, \,\,,= 1. Therefore, the con-
stant extensional strains in the cell plane lead to th
conclusion thah,,=const as well. Analyzmg the strqln ten- onventional for liquid crystals. We adopt a simplified form
sor, we come to the conclusion that in a constrained cel

geometry depicted in Fig. 1 the only possible elastic defor- f the dielectric term, with the fieldE rather _than .the dis-.
mation is the sheak,,, a possible function of. Thence the placementD. The reasons for and the applicability of this

. g simplification are discussed in the Appendix.
overall strain tensor is

A2+ A(sing—\,,co9)?|, (3)

where we henceforth absorb the constgntZ the energy of
&he relaxed state, inth The last two terms in Eq(2) are

Ill. ANALYSIS OF UNIFORM DIRECTOR ROTATION

1 0 Ay
_ Without any assumptions of small deformations or angles,
A= 0 1 0], ) R AN
—_ the optimal shear strain is given by the minimization of the
0 0 1 free energy density,,,(6,\), Eq. (3), with respect to\,, at
a givend. One obtains, after some straightforward algebra:
Nematic rubber elasticity depends on the anisotropic step- (r—A—1)sin20
length tensor/j;=/", &+ (/|—/ . )nin; of the network’s Af2)=— , (4)
polymer chains. Before deformation the initial director is 2[1+Ar+(r—A-1)sir’6]

aligned along the cellp,=1, and the corresponding step-

|ength tensor is Ca”eqo . When the director rotates, it can where the local director rotation angle iS, in faCt, a function

be parametrized by the angh¢z) via n,=cos; n,=sindand  Of z 6=6(z). Substituting this back into the free energy

the corresponding step-length tengoiis a function ofg. It~ density gives an effective free energy density depending

is useful to introduce a ratio=///,, the measure of Only on the “liquid crystal” variable.

chain anisotropy. Main-chain liquid crystal polymers may

have r=10. The siloxane side-chain polymers used by

Finkelmann[3] haver ~2—3. The acrylates used in the ex-

periments of Mitchell[10] and of Changet al. [6] have a

much lower anisotropy of the backbomes 1.3— 1.5. Ar2sirfo H
The cell boundaries impose additional nematic and me- + . . .

chanical constraintgi) as in the classical Fredericks effect, [1+(r=1)sifoI[1+Ar+(r—A=1)sin’6]

the director should respect the anchoring conditiof(®) 5)

=6(d)=0 and (ii) no overall macroscopic displacement

alongx is possible, so the strain,,(z) must have an integer The effect of the underlying rubbery network is expressed by

number of oscillationgsee the right of Fig. 1; this favors a the term in square bracketf;,(6), an effective penalty for

full wavelength Fredericks transition, in contrast with the the uniform director rotation imposed by the elastic gel net-

half-wavelength Fredericks transition of the ordinary nem-work. This expression is arranged in such a way that the

atic, left in the picturg contribution from the ideal soft nematic rubber elasticity is
With all these preliminary restrictions and conditions, theseparated from the additional semisoft part, the term propor-

full free energy density of the system takes the form tional to the parameteh.

goAeE? (r—1)2sin*e

1+ (r—1)sirfe

Sint 9+

1 [k _
PO)=5m) VO™~
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»
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] 1 0.05,0.1 showing an increase in
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One can notice that at small deformatioss1, only the is no barrier for the uniform bulk director rotation and, if no
semisoft correction contributes to the elastic energy, the firdboundary anchoring were involved, the director would
term in brackets being proportional to the higher powér switch to = 7/2 immediately aE+#0.

(appropriately expressing the softness of the ideal rubber- The conoscopy technique, used in experimdiis re-
nematic respongeTherefore, the main threshold for the uni- veals the change in optical path length for extraordinary rays
form director rotation is determined by the semisoft paramtraversing the samplé= d/\ (ng—ngg), with d the cell
eterA, which controls the counter-torque to the electric field.thickness, and. the wavelength of light. The effective re-
Note, that any effect of the field is scaled by the rubberfractive index depends on the current director orientation
modulus factor, yielding a reduced dimensionless electri@(E) (we assume uniform rotation in this sectjion

field £=(egAeE?/ )2 In many cases this makes the re-

sponse extremely small. However, the highly swollen net- n2n3

work used in the experimen{§] (up to 90% solventmay n2= —. (10
. ; nz+(n2—n3)sirf

well have a much lower modulug@s will be indeed con- 0 e Mo

firmed in Sec. V). Also, as we shall see below, the scaling ] ) ]
depends on the important polymer anisotropy-() too, so  Near the threshold, whef<1, the change in optical path is
that the materials with small backbone chain anisotropy’iMPly

have, in fact, a stronger response to electric fields.

In spite of the obvious nonlinearity of the effective free ~dng-ng
energy density(5), it is possible to solve exactly for the 5(5)~X n2 Ned*(€).
optimal director angl&?(E) by minimizing f* (6). The uni- 0

form, field-induced rotation of the director is A plot of 8(&) for d/\ ~ 200, n=1.74,ny=1.54, very small

semisoftnes?A=0.001, and increasing values of the chain
+ VAT + . ’ o - .
Sig=— Artl + Artl . (6) anisotropyr=1.1, 1.5 and 2.5 is given in Fig(&. Chains
r=Ar=1  Jr—1-£%Jr—-Ar-1 with higher anisotropyr show a stronger resistance to an

external torque, as one can see from . At fixed param-
5 eterA, the director response to the field is stronger when the
or 0*~ ————[&lE.~ 1], (7)  chain anisotropy is reduced, as can be seen from teg-
(r=1=¢&¢) panded equation(7). However the underlying resistance to

where the second expression shows the variation of angf@t@tion is due to the semisoft, quadratié)(terms in the

just above the bulk threshold. The appropriate reduced varf:1Pber-nematic free energy, which is why the bulk threshold
able x=&/&,—1 is used near the threshold field,. The scales ag;~A. Only at larger rotations do the quartic terms

value of this threshold is (of order 1 rather tha’) dominate, accounting for the scal-
ing of the saturation field?ﬁ. Figure Zb) shows the optical

) Ar? path (&) at fixed chain anisotropy=1.5 and increasing

5c:m- (8 degree of network semisoftnegs=0.001, 0.02, 0.05, 0.1. At

small anglesé>=6? and hences~(£—¢&.) [see Eq.(7)].
and is determined by both the semisoftness paranieeey  Therefore increasingh (and thusé&.) increases the linear
the director locking in the bulkand the polymer chain an- slope of the plots after the threshold, as seen in Hig). 2
isotropy r. The solution Eq(6) reaches its upper bound at  Figure 3 uses the further reduced fiedet E/E,— 1, and

the field value the optical pathlength scaled by {1-£2)%/£2, as sug-
) gested by Eq(7). Deviations from the initial linear response
gZZ(r_l) (r+1) _Ar—2—Ar 9 & evident for high threshold fields. From E6§) for sirfg
u r2 r ' we see there is a qualitative change in the field response for

£2=r—1, that is where the semisoftness=(r —1)/r. This
when sird=1 and the director rotation is complete. All this is condition is met either at low fields in networks of low an-
in contrast with a conventional Fredericks effect, where ther@sotropy, r—1 small, or for fairly strong semisoftness,
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=£? A 12
< P=c " 15 Ar (12
g

£ ) 1)2 r2 . r—1-A

o ~ — — -

s AT Y: 1+Ar

QL

[v]

2 In g we have putt2~Ar?/(1+Ar); that is we are close to
o

the threshold, and have neglected other terms discussed in
the Appendix. The details of this type of analysis are also
given in the Appendix of Ref[11]: the director cannot
Foms et hean e andacnel achieve its local optimal orientatiofiy= \/pT,_being held
Relative fiold: £JE_ -1 by boundary condltl_ons. Instead, the director is only having a
¢ modulation of amplitude,,, (< 6,) across the cell. The re-
FIG. 3. The conoscopic response for the conditions of Hig).. 2 sulting “order parameter” 7(E)=6y/6, increases from i
The field is further reduced to= £/, — 1, and optical pathlength is 28r0 towards 1 as the texture coarsens. The number of peri-
scaled by (—1—£2)2/£2, which collapses the plots of Fig(y ~ ©ds of the elliptic function that describes the variati{a) is
for various A onto the single curve, Eq7), in the region of the d/42€K\p(2— 5?) with K the complete elliptic integral of
transition,x<1. argument?/(2— »?). The minimal number of periods in
our case is 1in contrast with the usual symmetric Fredericks
effect, where it is 1/2 so one obtains the director rotation
angle ,, as the solutiornyp(E) of

large. At€2=r—1 we haveS2=£2. There is no response to
a field until it reacheg= £, whereupon there is immediate,

discontinuous switchin@— /2. d\/ﬁ 1 d Ar?
Clearly, the existence of a threshold in field, rather than K[ P]=——=—= —\/SoAsEZ—M

voltage, and quite a steep increase of the director rotation v2— 7° 4\/55 42 K 1+Ar

[and consequently of the observed optical pafls)] are

described well. However, there are two important aspects ( EOAS d) (13)

still missing: (1) the analysis of boundary conditions and

nonuniform deformations, which leads to a Fredericks

threshold voltage in conventional nematics d@i the ex- The expression in parentheses is the corresponding right-

perimentally observed small increase in rotation before théaand side for the conventional Fredericks effect, with no

principal threshold, a “precursor foot” which we shall asso- underlying rubber elasticityy. and A=0 (and with the half

ciate with a small degree of random misorientation in therather than full period of director oscillation across the cell

initial director distribution. thicknes$; it depends on a voltagé=E d. The real thresh-

old is shifted from that of the uniform analysis of last sec-

tion, Eq.(8), by the additional contribution from the domain

walls (which is the only contribution in the conventional
The analysis of the previous section assumes that there fgedericks effegt the solution of EQ(13) first appears at the

no relevant spatial variation in eithel(z) or A (z): the ~ minimal value ofK=7/2 at =0, i.e.,p* = (27¢/d)*

solution for (E), Egs.(6) and(7), has been obtained with-

out taking into account the director-gradient Frank elasticity. E* ~ \/( M

IV. CRITICAL ANALYSIS OF THE TRANSITION REGION

Ar?
1+Ar

5 (14

This is a reasonable assumption at fields high above the - gole
threshold, where the texture is coarsened and the bulk is
capable of achieving its optimal value éf Eq. (6), which
we shall call 6, [similarly, for the conventional Fredericks
effect p— /2 and the profiled(z) coarsens at high fields
Near the threshold one has to be more careful and examif@ne should note that the analysis of the threshold itself is
the effect of boundary conditiorisvhich is the only existing elementary and does not require the investigation of the el-
barrier for the conventional Fredericks effect liptic function. In the usual way, we could introduce a varia-
Near the threshold we can safely assuél and the tion of wave vectork (=2#/d) whereupon the expanded
free energy density takes the form, standard for elliptic-free energy densityl1) is f~ 3(k>— p) 6+ 3q6*. Modula-
function analysigsee the Appendjx tion starts when the? coefficient becomes negative for the
first time, whence the threshold conditi¢h¥) is recovered.
1 1 1 1 Returning to the elliptic analysis near the threshold the
—f*%z(e’)z— L 6>+ 74 0%, (11)  director rotation is given byy?=%(p—p*)/p*, describing
K the full-wavelength modulation with the amplltudé
=7(E)6y(E). The effect of this elliptic analysis near the
with the coordinatez scaled by the natural length scafe threshold rapidly disappears as the modulation coarsens, the
={K/u. For a typical rubber modulus, as in experimentsoptimal valued, of the director rotation being achieved in
[11], £~10 8 m. Parameterp and q are obtained by ex- most of the sample and th#E) variation becoming that of
panding the full free energy densit$): Eq. (10).

gole

277)2 K

d2
normally we expec{T > l}
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FIG. 4. Conoscopic path length vs reduced electric field for FIG. 5. Theoretical curve ofs(E), the conoscopic length,

backbone chain anisotropy=1.5 semisoftness parametex against electric field for the present thedgolid line) for thick
=0.05, and increasing rms misalignment anglex sampleq(uniform director rotationto the data of Chanet al. [6].
=0,0.01,0.03,0.05,0.1 rad. For the 62um thick sample(crosses we have doubled the data
values for the optical pathlength to collapse the data from two
We said that one normally expectu@?/K)>1, the samples onto the same plot. For the 2% thick sample(squarep
thickness_dependent term thus being irrelevant in the expreéhe data are unscaled. This is the same Scaling used in Flg 1 of Ref.
sion for the threshold. As discussed below, effects observelf]:
in thin samples suggest that the effective rubber modulus,
1A, is low in the studied material. Although this may in part performed by Changt al. includes a bulk anchoring effect
be becausg:. is small due to dilution by solvent, it clearly similar to that proposed here, which produces a threshold
indicates thai is small too. If the effect were simply due to field, rather than voltage. However, they also appealed to an
the smallness of. alone, then the quartic terms would also intrinsic material length scale on the order of micrometers,
be weakened and the saturation fi€ldwould also be acces- which further increases the observed threshold field and also
sible. Becaus@ is evidently small, it may be possible to see sets the scale for director gradients, which limit the director
the remainingd dependence of the apparent threshold in ex+otation above threshold. They reported observations of mi-

periment and compare it with E¢L4). crometer scale speckles in the sample after polymerization in
support of this proposed length scale, but did not directly
V. OBLIQUE INITIAL DIRECTOR observe a periodic pattern of director rotation at the mi-

crometer scale in response to the applied electric field.

There seems to be no reason to assume a systematic ob-We prepared a series of samples of different thicknesses
liquenesg(pretilt) in the initial director. However, the prepa- according the the methods of Chaegal, and performed
ration of networks, especially in thick cells, results in a re-microscopic observations during application of the field. In
sidual polydomain texture, as reported by Chahal.and is  thick samples, comparable to those of Héf, we observed
a well-established phenomenon in nematic gels. Even afteahe same general elements of response that they reported, but
orientation by strong magnetic fields one should expect @ addition, we were able to observe small scale movements
small degree of remaining random disorder, see REf].  in the sample, particularly displacements of microscopic par-
Assuming the degree of this misalignment is small, it isticles and speckles in the sample. We observed lateral dis-
straightforward to make provisions for it and obtain the re-placements in the plane of the sample on the order of a
sulting quenched averages of observable parameters, suchfesction of the sample thickness, and saw no evidence of
the director angled(&) and the optical pattd(&). micrometer scale deformations in response to the field. Our

We do not go into details of this calculation, which in- observations are consistent with the deformation sketched on
volves some heavy algebra. Instead, we plot the results fahe right in Fig. 1, which involves a combination of shear
several values of parameters. The plots in Fig. 4 show thetrains resulting in lateral displacement of material in the
optical path (&) for selected values=1.5,A=0.05 and midplane of the sample. The deformation proposed on the
increasing r.m.s. misalignmentv=0,0.01, 0.03, 0.05, 0.1 right in Fig. 1 also satisfies the preservation of symmetry in
(the last value corresponds te=5.7°. The misalignment the conoscopic image reported by Chagl, in contrast to
not only creates a precursor foot before the main thresholdhe rotation of the optical axis that would accompany the
but also changes the slope so that the extrapolated valgie ofclassical half-wavelength Fredericks transition. Thus, the
appears slightly reduced froE"* in Eq.(14). We emphasize field response proposed here is completely consistent with
that theory and physical expectations suggest the obliquenetise general observations reported by Cheangl. [6]. More-
« should strongly depend on cell thickness and on the magpver, as described in the previous section, the pretransitional

netic field used during cross linking. response, or rounding of the transition, observed by Chang
et al. can be similarly explained by a small random pretilt of
VI. EXPERIMENTAL OBSERVATIONS the director.

Taking the published data of Chaegal, and using the
We now apply the model of the previous sections to themodel of Sec. Il appropriate for thick samples, along with
experimental observations of Chamgal. [6], in light of  pretilt of the director, we present a fit of the present theory to
further experiments performed recently. The analysis of datthe data in Fig. 5. We plot our theoretical prediction &f
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using @ from Eq. (6) and taking the values=1.95,A=0.06, of the effective rubber modulug. via the characteristic

u=1.6x10 JIn®, anda=1.7° for the network, in addition l€ngth scalet. _

to the sample characteristics specified by Chahgl. We _Another aspect that needs to be reexamined for a system
see that this theory can reproduce the experimental observ4ith very low modulusy is the threshold*condmon, Eq.
tions with reasonable values of sample thickness, [a@.  (-4- In order to predict the field threshole”, rather than
The values of semisoftness parameteand of the random :[Ar\]ed\é/olgiglevp =ItEhd, tha need té)_m?gpta'r:hthe mequallttyl
local pretilt anglea are sufficiently small not to contradict * - For the values used In Titing the experimenta

the known facts about liquid crystalline gels. The value ofdata in Fig. S(for the smallerd=60xm) we still obtain a
. . q 'y geis. ratio of order 3< 10° and the conclusions about the threshold
backbone anisotrops, slightly higher than that reported for

. remain valid. However, this ratio will become of order unity
solvent free polyacrylate elastomers- (1.4 [10,19), is for d~10"® m, where the ordinary voltage threshold should

likely due to.the Iarge amount of ljematic solvent present irhgain become relevant.
the gel and increasing the nematic field. The sol\ept to
90%) can also explain the very small value of rubber modu-
lus w. In fact, it is mostly due to this weakness of swollen
elastic network that we can observe a noticeable director In summary, we propose a model for the Fredericks tran-
rotation, the angle of which depends on a ratiosition in nematic polymer gels. Especially for thick samples,
E(eoAe/u)Y? However, in spite of this plausibility, inde- the polymer network serves both to set the threshold field for
pendent measurements of these parameters are needed to B8t transition, and to control the director response above
the presented theory more explicitly. threshold. It effectively replaces the role of the sample sur-
The value of the gel modulyg, used in the fitting above, faces in the ordinary nematic Fredericks transition. We can

is substantially lower than that expected for ordinary rubbers/€asonably explain the experimental results of Changl.

It necessitates reexamination of the characteristic IengtH‘”thc.)Ut appealmg to a new internal length sc_;ale_for director
scales in our system. The natural nematic elastomer sgfcalegrad'ents’ and this element of our explanation is supported

_ JKiz [see Eq.(11) and, more comprehensively, the re- by qualitative experimental observations of macroscopic lat-

. ; h d 5 hi e a h eral displacements in response to the applied field.
view [4]] is now of the order 10° m. This scale gives the — poaise two coupled physical fields, the director argle
characteristic thickness of domain walls, two of which are

; ; . and the shear straik,,, are at play, it is possible that there
present in the full-wavelength Fredericks geometry, Fig. 15re 1o different characteristic imescales for relaxation. De-
Hence one expects that thin samples, wdibnly of order of  hending upon the disparity of these, one could at short time-
several micrometers, should deviate from the descriptiorcales possibly see another decay regime before the final,
proposed here: In thick Samples, our electromechanical r&slowest exponentia| decay reported by Cheng| This ob-
sponse is driven by a reduction in electrical energy becausgins naturally from the numerical solution of the dynamical
of director rotation toward the field with very little elastic equations ind and\,, resulting from Eq(2) (see Ref[17)).
penalty, since the deformations are soft in the uniform re- We have begun to examine the remaining role of director
gions above and below the midplane. These regions are sepand shear strain gradients in the sample, and our experimen-
rated by a domain wall in the middle, where the shear strairtal observations suggest that this is important for understand-
reverses sign. When the sample thickness is reduced, thigg the transition in thin samples. Much experimental work
wall and the two nonuniform regions near the cell boundariesemains to be done to test various aspects of our model.
would start merging. This raises the elastic energy of thd-inally, it is interesting to compare these predictions for
full-wavelength(nematic elastomerlikeFrederiks transition nematic gels with the behavior of polymer-stabilized liquid
above that of the half-wavelengtliquid nematic-likg one. ~ crystals. The key difference is the permanently fixed macro-
Indeed, in thin sample8 to 25 um in thicknesy we ob-  SCOPIC polym_er skeleton of the PSLC system, in contrast
served the different response, almost identical to the ordinaryith the mobile molecular-scale network of a gel. The de-
half-wavelength Fredericks transition. This was evident in ailed analysis of the threshold, director evolution at higher

the conoscopic observations, by the rotation of the optic:aiIelds and the role of alignment conditions at preparation
axis in response to the applied field, as in low-molar mas

hould distinguish between the behavior of these two sys-
R ems. The dynamic behavior is especially different, with gels
nematic liquid crystals.
To satisfy the boundary conditions with this fully nonuni-

responding very slowly, compared to PSLCs.
form director rotation, the predominant shear strain in the
bulk of the sample must be zero. The energy penalty and the

countertorque for the action of electric field are then pro-  Thjs research was supported in part by the National Sci-

vided by Eq.(3) with A,,=0. This is the regime of “couples ence Foundation through Grant No. DMR-9415656 at Bran-
without strains,” with a bulk barrier for the director rotation, dejs University, and by EPSRC in the U.K.

first proposed by de Genngs6]. More detailed experimen-

tal measurements and theoretical analysis will be carried out
to explore this kind of transition in thin samples, and to
determine the thickness at which the crossover from thin to In the classical electric Fredericks problem the anisotropic
thick behavior occurs. This will provide a detailed under-dielectric fluid is contained between two parallel plates kept
standing of the combined director and shear strain structurat a relative voltag®/ [13]. The analysis can easily be gen-
within the boundary layers and give an independent measureralized to the elastic-electric case. One needs to use the

VII. CONCLUSION
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electric displacement vect@=(0,0D), which is a constant ¢’ =0 até= 6 if there is a modulation with amplitude,.
between the plates given no space charge Déid). The  Then Eq.(A3) is easily integrated once to give

field E and the displacemei are related byD=gq¢ - E. As 92 D2 1
all nematic uniaxial tensors, the matrix of dielectric constants (_) = 2[g(sint6) —g(sint6,) ]+ — | ————
is expressed as;;=¢, 8+ (e|—&,)nin;, where the nem- du Mo\ g, +Ag Sirfd
atic directorn is the principal axis. The voltage is, therefore,
given by the integratiof E,dz _ 1 (Ad)
e, +Aesinfo, ’
J‘d
V= dz , (A1) = i . i
0 oole, + Aesirt) whereu=2z/¢ is the length reduced by the rubber-nematic

correlation lengthé= yK/u. The full problem is solved by

wheree,,— ¢, +Aesiréd. The correct free energy, now per fUrther integrating over 1/4 period and yields

unit area of plates, does not derive from E2), but from the om dO d
dielectric energy density- (D- E): jo ﬁ = 4" (AS)
d [1 /de\2 1 1 whereg] - - - ] is the right hand side of E¢A4). The right hand
sz dz —K(— +ug(s)— 5—D2—— side of Eq.(A5) is a quarter period of the modulation. Inte-
o |2 \dz 280 €, +Aesintg grating Eq.(A4) to a generab at a generat, rather than to
d (1 [(de\2 0., andd/4 as in Eq.A5), givesf(z) as an elliptic function,
Ef dz —K(— +ug(s) which then finally determineB via Eq.(Al) and thereby in
o |2 \dz Eq. (A5) itself.
At the vicinity of the transition, all this analysis signifi-
goV? 1 cantly simplifies since sfi#<sir?4,,<sirfg,<1. D andV are
) d ' (A2) trivially related asD =¢ye, V/d. The potential
f [dZ/(e, +Ag sinf6)] )
0 D 1
g(s) +

where ng(s) is the rubber-nematic part of free energy den- ?0 &, +Ae sin’d
sity, given by Eq.(3). The Euler-Lagrange equation giving driving Eq. (A4) simplifies to — 2p62+ :q6* with p andq
the 6(z) minimizing this free energy is given in Eq.(12). The elliptic analysis then follows as if
) from the simplified free energy E2). In the uniform case
@JF(D_)E 1 (A3)  considered in Sec. Ill the distinction betwe@nand E is
do  |2e0/dO\ &, +Aesintg)’ easily handled too since E¢A1) collapses to the obvious
D=¢gq(e, +Ae sirfg)V/d and the electrical part of EGA2)
where the constariD has to be determined from E¢A1)  gives thed-dependent part of the electrical energy in E5).
and is thus a functional af(z). The boundary conditions are (a constant part having been suppressed
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