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Electromechanical Fredericks effects in nematic gels
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The solid nematic equivalent of the Fredericks transition is found to depend on a critical field rather than a
critical voltage as in the classical case. This arises because director anchoring is principally to the solid rubbery
matrix of the nematic gel rather than to the sample surfaces. Moreover, above the threshold field, we find a
competition between quartic~soft! and conventional harmonic elasticity which dictates the director response.
By including a small degree of initial director misorientation, the calculated field variation of optical anisotropy
agrees well with the conoscopy measurements of Changet al. @Phys. Rev. E56, 595 ~1997!# of the electro-
optical response of nematic gels.@S1063-651X~99!13208-2#

PACS number~s!: 61.30.2v, 78.20.Jq, 82.70.Gg
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I. INTRODUCTION

In nematic elastomers and gels, liquid crystal order
and the nematic director are coupled to the mechanical
grees of freedom. Both symmetric shear strains and antis
metric deformations couple to the director. Since the mac
scopic shape of the polymer network naturally depends
the chain anisotropy direction, the coupling gives rise
some remarkable features of the elasticity: shape can ch
spontaneously by well over 50% on changing tempera
through the clearing point, shears can induce director r
tion, and some shear deformations cost no change in en
in the ideal case. We call this last effect ‘‘soft elasticity.’’
is unique to nematic networks and other elastic solids wh
a nonelastic internal degree of freedom is coupled to
mechanical degrees of freedom. The additional symmet
leading to softness were predicted phenomenologically
Golubovic and Lubensky@1# and from statistical mechanic
of large deformations by Bladonet al. @2#. Depending on the
thermomechanical history, nematic elastomers have b
shown to demonstrate either extreme softness or substa
deviations from soft response@3#. Systems with such residua
resistance to deformation have been called semisoft@4#.
They are qualitatively similar to soft elastomers in that t
same particular modes of nontrivial deformation cost a v
small elastic energy, compared to other nonspecific defor
tions.

Conventional nematics couple strongly to electric fie
(E), the director aligning parallel to the field in the case
positive dielectric anisotropyD«. When the director is an
chored at boundaries and the sample is uniformly alig
perpendicular to the direction to be taken by the elec
field, there is a transition~Fredericks! at a finite critical volt-
ageVF , above which the director is deflected by the fie
The electric Fredericks effect and its analogs are the bas
most liquid crystalline displays. Director rotation to low
the dielectric energy in the bulk becomes nonuniform if t

*Permanent address: Institute of Industrial Science, Universit
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boundary anchoring of the director is to be respected. In
case the Frank elastic energy density1

2 K(¹n)2 opposes the
field effect, whereK is a Frank constant andn is the nematic
director. For a cell of thicknessd with strong anchoring on
the boundaries the Frank energy is of order1

2 K(¹n)2d
; (1/d) K per unit area of cell~where¹n; 1/d, crudely!.
The corresponding electrical energy per unit area is, roug
1
2 «0D«E2d. These are comparable for a field ofEF

; (1/d)AK/«oD« or an applied voltage VF[EFd
5AK/«0D«, where the Fredericks transition occurs.

The response of the nematic director to applied elec
fields in nematic elastomers and gels raises questions a
the role of the elastic properties of the polymer network
limiting the director response. Likewise, the reorientation
the director by an external field can lead to elastic deform
tions.

Nematic elastomers have been seen to respond to mo
electric fields @5# by changing their shape when they a
geometrically unconstrained. At first sight this is unexpec
since the energy scale for shape change in a solid is of o
m, the shear modulus. Balancing this with the electrical
ergy, the characteristic fields required to change sh
should beE;(m/«0D«)1/2;107 V / m for a typical rubber
modulusm;105 J/m3 and a substantial dielectric anisotrop
D«;6. This is a large field, whereas shape changes w
observed for modest electric fields. However, because n
atic elastomers can suffer certain shape changes with littl
no energy cost, which can potentially be achieved most e
ily in a completely unrestricted sample, such observatio
add weight to the concept of soft mechanical response.

More recent experiments of Changet al. @6# show an
electro-optical response in a nematic gel in the usual c
strained Fredericks geometry. They observe the director
sponse by the method of optical conoscopy, and find an
evated thresholdfield rather than voltage for directo
reorientation. They analyze their data in the classical Fred
icks manner. However, to explain the threshold field, th
invoke both a bulk anchoring mechanism and an intrins
material-defined length scale for gradients of the direc
rather than the sample thickness, which sets the length s
for a simple nematic. Given that finite fields were require
f
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Changet al. were not observing pure soft elasticity of th
gel. It is not clear that the nematic gel can react softly in
Fredericks geometry, since the delicate combination
shears required to accommodate the director at no cos
elastic energy is frustrated by the cell electrodes, to wh
the nematic solid must conform.

At this point it is important to recall another physic
system, prepared in a way similar to the swollen nematic g
of Chang et al. @6#. Polymer-stabilized liquid crystals
~PSLCs! @7# are formed from a mixture of common nemat
and polymerizable monomers. On polymerization, comp
phase separation occurs and, when the polymerization oc
in an aligned geometry, the resulting polymer fibrilles p
serve the direction of anisotropy by creating a large amo
of internal boundary. Thus, the phase-separated poly
mesh provides both a bulk anchoring mechanism and an
trinsic small ~micrometer size! length scale for director re
sponse. However, the response time for director reorienta
for both field-on and off cases is fast~which is one of the
reasons for PSLC use!. Other work by Hikmetet al. ~see@8#!
sees a similar response, principally a critical field and f
dynamics~of order 104 times faster than ours!, both factors
requiring Hikmet to invoke a new length scale. In Hikme
model the matrix, with its own director, does not reorie
under fields, but only the enclosed nematic’s director
sponds. There are important experimental differences
tween his and our systems. On application of a field,
directly observe mechanical distortions in response to di
tor rotation, rather than an unchanging matrix as visuali
by Hikmet. Such large-scale distortions are inconsistent w
the rotation of the contents of small compartments. The H
met diacrylate systems are capable of cross linking at e
monomer and maybe heavily cross linked. Our monoacry
systems can crosslink at the dilute cross-link sites we h
put in and are accordingly flexible~rubbery! networks. Such
chemical differences may generate differences in struc
that explain the different mechanical response and the h
differences in time scales observed. Apparently our mater
are very different and the application of nematic rubber e
ticity is probably inappropriate to the Hikmet systems. B
contrast, the compounds used by Changet al. were highly
miscible and had a slow response dynamics, characterist
nematic gels. We assume, therefore, that their experim
dealt with an aligned homogeneous gel, composed of cr
linked single molecular strands of nematic side chain ac
late polymer, swollen by a solvent of similar mesogenic m
ecules, rather than a PSLC system or other more complic
structures such as those proposed by Hikmetet al.

In this paper we reconsider the experimental observat
of Changet al. We seek to explain the new electro-optic
transition in terms of a homogeneous response of the di
tor, rather than invoking a new small length scale. The
evated field threshold and the director response above thr
old are accounted for by the coupling of the director to
elastic polymer network. This picture is partially support
by some new experimental observations indicating that
samples respond to the electric field on a scale comparab
the sample thickness, rather than on a much smaller s
The response is both optical and mechanical. We treat the
as a nematic elastomer, an analysis that has been succe
elsewhere in describing the mechanical and optical respo
e
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of nematic rubbers to imposed stresses and strains. To s
marize this new analysis, the free energy density for direc
rotation through angleu in a nematic elastomer is schema
cally represented by

f '
1

2
KS du

dzD
2

2
1

2
«0D«E2 sin2u1mS A

2
sin2u1

1

4
sin4u D

1••• . ~1!

The Frank and the dielectric terms are as in classical nem
ics. The rubber-elasticm terms are the resistance the g
network presents to director rotation, only the quartic te
being present in the ideal soft case. The parameterA mea-
sures semisoftness, that is the residual harmonic elastic
sistance. In elastomers and gels, the director has a bul
well as surface anchoring—there is an elastic resistance e
when directors are rotated uniformly~equivalent to a mas-
sive, finite-energyq˜0 normal mode!. One sees that the
uniform system would rotate in response to an electric fi
only when the thresholdE* ;(Am/«0D«)1/2 is exceeded, a
characteristic field rather than voltage because of the b
anchoring. Additional effects arise from gradients ofn in
order to satisfy the boundary conditions and from the nec
sity for the sample to preserve its overall mechanical sha
but the main effect is captured by the above argument.
shall describe both effects in this paper, first addressing
response of a uniform system and then examining the rol
constraints and nonuniform deformations.

II. THE ELECTROELASTIC-NEMATIC ENERGY

We start with a model of a macroscopically unifor
sample of nematic elastomer in which the director is align
parallel to the plane of a dielectric cell. When subjected to
electric field perpendicular to the cell plane~assuming posi-
tive anisotropyD«), the director is forced to rotate upward
towards homeotropic alignment as in the ‘‘traditional’’ Fr
dericks effect. We assume for simplicity that the direc
rotates in thex-z plane and is parametrized by an angleu,
which is a function of coordinatez only, u5u(z), but not of
x, just as in a classical Fredericks transition~see Fig. 1!.
Mechanical constraints of~i! rubber incompressibility and
~ii ! elastic compatibility then impose strong limitations o
the number and types of possible elastic deformations. S
the director orientation is coupled to the elastic network,
rector rotation in thex-z plane causes deformationslxx and

FIG. 1. Field-induced director rotation in a conventional ne
atic ~left! and nematic elastomer~middle! anchored at the surface
z50 andz5d, with an electric fieldE applied across the cell. The
shear strainlxz accompanying the director rotation in nematic ela
tomers is shown on the right. The conventional Fredericks ef
has one half wavelength of director rotation between the pla
while the solid nematic Fredericks effect has the full wavelengt
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1874 PRE 60TERENTJEV, WARNER, MEYER, AND YAMAMOTO
lzz ~and lyy from the incompressibility constraint Detl=

51), and especially the shearslxz andlzx . All these com-
ponents of strain are possibly functions ofz. There are re-
strictions due to mechanical~in fact, geometric! compatibil-
ity @9#, which can be expressed in the following simple wa
Since the deformation~Cauchy strain! tensor is a derivative
l i j 5]Ri /]Rj

0 with R0 and R being positions of a materia
point initially and after deformation, then one can obtain t
second derivative in two possible ways:

]l i j

]Rk
0

[
]2Ri

]Rj
0]Rk

0
5

]l ik

]Rj
0

.

Making some elementsl i j functions ofz induces others
to be functions ofx. For instance, consider the component
shearlzx(z): we have]lzx /]z5]lzz/]x, i.e., the extension
lzz must be a function ofx, which we assumed prohibited
Hence lzx50. Similarly, assuming the local extensio
lxx(z) leads to]lxx /]z5]lxz /]x, i.e.,lzx(x), another pro-
hibited x dependence. Hencelxx5const. However, incom-
pressibility demands thatlzzlxxlyy51. Therefore, the con
stant extensional strains in the cell plane lead to
conclusion thatlzz5const as well. Analyzing the strain ten
sor, we come to the conclusion that in a constrained
geometry depicted in Fig. 1 the only possible elastic def
mation is the shearlxz , a possible function ofz. Thence the
overall strain tensor is

l5S 1 0 lxz

0 1 0

0 0 1
D .

Nematic rubber elasticity depends on the anisotropic s
length tensorl i j 5l 'd i j 1(l i2l ')ninj of the network’s
polymer chains. Before deformation the initial director
aligned along the cell,nx51, and the corresponding step
length tensor is calledl= 0 . When the director rotates, it ca
be parametrized by the angleu(z) via nx5cosu; nz5sinu and
the corresponding step-length tensorl= is a function ofu. It
is useful to introduce a ratior 5l i /l ' , the measure of
chain anisotropy. Main-chain liquid crystal polymers m
have r>10. The siloxane side-chain polymers used
Finkelmann@3# haver;223. The acrylates used in the ex
periments of Mitchell@10# and of Changet al. @6# have a
much lower anisotropy of the backbone,r<1.321.5.

The cell boundaries impose additional nematic and m
chanical constraints:~i! as in the classical Fredericks effec
the director should respect the anchoring conditions,u(0)
5u(d)50 and ~ii ! no overall macroscopic displaceme
alongx is possible, so the strainlxz(z) must have an intege
number of oscillations~see the right of Fig. 1; this favors
full wavelength Fredericks transition, in contrast with t
half-wavelength Fredericks transition of the ordinary ne
atic, left in the picture!.

With all these preliminary restrictions and conditions, t
full free energy density of the system takes the form
.

e

f

e

ll
r-

p-

y

-

-

f 5
1

2
m Tr@l 0•lT

•l 21
•l#1

1

2
m A ~sinu2lxz cosu!2

2
1

2
«0D«E2 sin2u1

1

2
K~¹u!2. ~2!

The first term is the ideal nematic rubber elastic energy d
sity @4# and can lead to the soft elastic response. The sec
term is the appropriate nonideal, ‘‘semisoft’’ contributio
observed in many elastomers and, in particular, in th
formed in a field-aligned monodomain state@11#. In elas-
tomersm gives the rubber energy scale, essentially a sh
modulus at small deformations. The dimensionless param
A measures the~usually small! semisoftness. Inserting th
deformationl= and the director rotationu ~throughl= ), these
two rubber-nematic terms take the form

f rub5
1

2
m F ~r 21!2

r
sin2u1

r 21

r
sin2u lxz

1
11~r 21!sin2u

r
lxz

2 1A ~sinu2lxzcosu!2G , ~3!

where we henceforth absorb the constant 3m/2, the energy of
the relaxed state, intof. The last two terms in Eq.~2! are
conventional for liquid crystals. We adopt a simplified for
of the dielectric term, with the fieldE rather than the dis-
placementD. The reasons for and the applicability of th
simplification are discussed in the Appendix.

III. ANALYSIS OF UNIFORM DIRECTOR ROTATION

Without any assumptions of small deformations or angl
the optimal shear strain is given by the minimization of t
free energy densityf rub(u,l), Eq. ~3!, with respect tolxz at
a givenu. One obtains, after some straightforward algebr

lxz~z!52
~r 2A21!sin2u

2@11Ar1~r 2A21!sin2u#
, ~4!

where the local director rotation angle is, in fact, a functi
of z, u5u(z). Substituting this back into the free energ
density gives an effective free energy densityf * , depending
only on the ‘‘liquid crystal’’ variableu.

f * ~u!5
1

2
m H K

m
~¹u!22

«0D«E2

m
sin2u1F ~r 21!2sin4u

11~r 21!sin2u

1
A r2 sin2u

@11~r 21!sin2u#@11A r1~r 2A21!sin2u#
G J .

~5!

The effect of the underlying rubbery network is expressed
the term in square brackets,f rub* (u), an effective penalty for
the uniform director rotation imposed by the elastic gel n
work. This expression is arranged in such a way that
contribution from the ideal soft nematic rubber elasticity
separated from the additional semisoft part, the term prop
tional to the parameterA.
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FIG. 2. Change of extraordi-
nary ray path lengthd(u) versus
electric field. ~a! Small semisoft-
ness A50.001 with increasing
chain anisotropy r 51.1,1.5,2.5
giving less rapid growth ofd with
E. ~b! At fixed anisotropyr 51.5
with increasing A50.001, 0.02,
0.05, 0.1 showing an increase i
the threshold fieldEc with increas-
ing A.
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One can notice that at small deformations,u!1, only the
semisoft correction contributes to the elastic energy, the
term in brackets being proportional to the higher poweru4

~appropriately expressing the softness of the ideal rub
nematic response!. Therefore, the main threshold for the un
form director rotation is determined by the semisoft para
eterA, which controls the counter-torque to the electric fie
Note, that any effect of the field is scaled by the rubb
modulus factor, yielding a reduced dimensionless elec
field E5(«0D«E2/m)1/2. In many cases this makes the r
sponse extremely small. However, the highly swollen n
work used in the experiments@6# ~up to 90% solvent! may
well have a much lower modulus~as will be indeed con-
firmed in Sec. VI!. Also, as we shall see below, the scalin
depends on the important polymer anisotropy (r 21) too, so
that the materials with small backbone chain anisotro
have, in fact, a stronger response to electric fields.

In spite of the obvious nonlinearity of the effective fre
energy density~5!, it is possible to solve exactly for th
optimal director angleu(E) by minimizing f * (u). The uni-
form, field-induced rotation of the director is

sin2u52
Ar11

r 2Ar21
1

AAr11

Ar 212E 2Ar 2Ar21
, ~6!

or u2'
E c

2

~r 212E c
2!2

@E/Ec21#, ~7!

where the second expression shows the variation of a
just above the bulk threshold. The appropriate reduced v
able x5E/Ec21 is used near the threshold field,Ec . The
value of this threshold is

E c
25

Ar2

Ar11
, ~8!

and is determined by both the semisoftness parameter~i.e.,
the director locking in the bulk! and the polymer chain an
isotropy r. The solution Eq.~6! reaches its upper bound a
the field value

E u
25

~r 21!2~r 11!

r 2
2A

r 222Ar

r
, ~9!

when sinu51 and the director rotation is complete. All this
in contrast with a conventional Fredericks effect, where th
st

r-

-
.
r
ic

t-

y

le
ri-

e

is no barrier for the uniform bulk director rotation and, if n
boundary anchoring were involved, the director wou
switch tou5p/2 immediately atEÞ0.

The conoscopy technique, used in experiments@6#, re-
veals the change in optical path length for extraordinary r
traversing the sampled5 d/l (ne2neff), with d the cell
thickness, andl the wavelength of light. The effective re
fractive index depends on the current director orientat
u(E) ~we assume uniform rotation in this section!

neff
2 5

ne
2n0

2

n0
21~ne

22n0
2!sin2u

. ~10!

Near the threshold, whenu!1, the change in optical path i
simply

d~E!' d

l

ne
22n0

2

n0
2

neu
2~E!.

A plot of d(E) for d/l;200, ne51.74,n051.54, very small
semisoftnessA50.001, and increasing values of the cha
anisotropyr 51.1, 1.5 and 2.5 is given in Fig. 2~a!. Chains
with higher anisotropyr show a stronger resistance to a
external torque, as one can see from Eq.~8!. At fixed param-
eterA, the director response to the field is stronger when
chain anisotropyr is reduced, as can be seen from the~ex-
panded! equation~7!. However the underlying resistance
rotation is due to the semisoft, quadratic (A) terms in the
rubber-nematic free energy, which is why the bulk thresh
scales asE c

2;A. Only at larger rotations do the quartic term
~of order 1 rather thanA) dominate, accounting for the sca
ing of the saturation fieldE u

2 . Figure 2~b! shows the optical
path d(E) at fixed chain anisotropyr 51.5 and increasing
degree of network semisoftness,A50.001, 0.02, 0.05, 0.1. A
small anglesd}u2 and henced;(E2Ec) @see Eq.~7!#.
Therefore increasingA ~and thusEc) increases the linea
slope of the plots after the threshold, as seen in Fig. 2~b!.

Figure 3 uses the further reduced fieldx5E/Ec21, and
the optical pathlength scaled by (r 212E c

2)2/E c
2 , as sug-

gested by Eq.~7!. Deviations from the initial linear respons
are evident for high threshold fields. From Eq.~6! for sin2u
we see there is a qualitative change in the field response
E c

25r 21, that is where the semisoftnessA5(r 21)/r . This
condition is met either at low fields in networks of low a
isotropy, r 21 small, or for fairly strong semisoftness,A
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large. AtE c
25r 21 we haveE u

25E c
2 . There is no response t

a field until it reachesE5Ec , whereupon there is immediate
discontinuous switchingu˜p/2.

Clearly, the existence of a threshold in field, rather th
voltage, and quite a steep increase of the director rota
@and consequently of the observed optical pathd(E)# are
described well. However, there are two important aspe
still missing: ~1! the analysis of boundary conditions an
nonuniform deformations, which leads to a Frederic
threshold voltage in conventional nematics and~2! the ex-
perimentally observed small increase in rotation before
principal threshold, a ‘‘precursor foot’’ which we shall ass
ciate with a small degree of random misorientation in
initial director distribution.

IV. CRITICAL ANALYSIS OF THE TRANSITION REGION

The analysis of the previous section assumes that the
no relevant spatial variation in eitheru(z) or lxz(z): the
solution foru(E), Eqs.~6! and ~7!, has been obtained with
out taking into account the director-gradient Frank elastic
This is a reasonable assumption at fields high above
threshold, where the texture is coarsened and the bul
capable of achieving its optimal value ofu, Eq. ~6!, which
we shall callu0 @similarly, for the conventional Frederick
effect u0˜p/2 and the profileu(z) coarsens at high fields#.
Near the threshold one has to be more careful and exam
the effect of boundary conditions~which is the only existing
barrier for the conventional Fredericks effect!.

Near the threshold we can safely assumeu!1 and the
free energy density takes the form, standard for ellip
function analysis~see the Appendix!

1

m
f * '

1

2
~u8!22

1

2
p u21

1

4
q u4, ~11!

with the coordinatez scaled by the natural length scalej
5AK/m. For a typical rubber modulus, as in experimen
@11#, j;1028 m. Parametersp and q are obtained by ex-
panding the full free energy density~5!:

FIG. 3. The conoscopic response for the conditions of Fig. 2~b!.
The field is further reduced tox5E/Ec21, and optical pathlength is
scaled by (r 212E c

2)2/E c
2 , which collapses the plots of Fig. 2~b!

for variousA onto the single curve, Eq.~7!, in the region of the
transition,x!1.
n
n

ts

s

e

e

is

.
e
is

ne

-

p5E 22
A r2

11Ar
, ~12!

q'2F ~r 21!22
Ar2

11Ar S r 211
r 212A

11Ar D G .
In q we have putE 2;Ar2/(11Ar); that is we are close to
the threshold, and have neglected other terms discusse
the Appendix. The details of this type of analysis are a
given in the Appendix of Ref.@11#: the director cannot
achieve its local optimal orientationu05Ap/q, being held
by boundary conditions. Instead, the director is only havin
modulation of amplitudeum (,u0) across the cell. The re
sulting ‘‘order parameter’’h(E)5um /u0 increases from
zero towards 1 as the texture coarsens. The number of p
ods of the elliptic function that describes the variationu(z) is
d/4A2jKAp(22h2) with K the complete elliptic integral of
argumenth2/(22h2). The minimal number of periods in
our case is 1~in contrast with the usual symmetric Frederic
effect, where it is 1/2!, so one obtains the director rotatio
angleum as the solutionh(E) of

1

A22h2
K@h#5

dAp

4A2j
[

1

4A2

d

AK
A«0D«E22m

Ar2

11Ar

S ⇒ 1

2A2
A«0D«

K
E dD . ~13!

The expression in parentheses is the corresponding ri
hand side for the conventional Fredericks effect, with
underlying rubber elasticitym and A50 ~and with the half
rather than full period of director oscillation across the c
thickness!; it depends on a voltageV5E d. The real thresh-
old is shifted from that of the uniform analysis of last se
tion, Eq.~8!, by the additional contribution from the domai
walls ~which is the only contribution in the conventiona
Fredericks effect!: the solution of Eq.~13! first appears at the
minimal value ofK5p/2 at h50, i.e.,p* 5(2pj/d)2:

E* 'AS m

«0D« D A r2

11Ar
1S 2p

d D 2 K

«0D«
~14!

Fnormally we expect
Amd2

K
@1G .

One should note that the analysis of the threshold itsel
elementary and does not require the investigation of the
liptic function. In the usual way, we could introduce a vari
tion of wave vectork (52p/d) whereupon the expande
free energy density~11! is f ; 1

2 (k22p)u21 1
4 qu4. Modula-

tion starts when theu2 coefficient becomes negative for th
first time, whence the threshold condition~14! is recovered.

Returning to the elliptic analysis, near the threshold
director rotation is given byh25 4

3 (p2p* )/p* , describing
the full-wavelength modulation with the amplitudeum
5h(E)u0(E). The effect of this elliptic analysis near th
threshold rapidly disappears as the modulation coarsens
optimal valueu0 of the director rotation being achieved i
most of the sample and thed(E) variation becoming that of
Eq. ~10!.
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We said that one normally expects (md2/K)@1, the
thickness-dependent term thus being irrelevant in the exp
sion for the threshold. As discussed below, effects obser
in thin samples suggest that the effective rubber modu
mA, is low in the studied material. Although this may in pa
be becausem is small due to dilution by solvent, it clearl
indicates thatA is small too. If the effect were simply due t
the smallness ofm alone, then the quartic terms would als
be weakened and the saturation fieldEu would also be acces
sible. BecauseA is evidently small, it may be possible to se
the remainingd dependence of the apparent threshold in
periment and compare it with Eq.~14!.

V. OBLIQUE INITIAL DIRECTOR

There seems to be no reason to assume a systemati
liqueness~pretilt! in the initial director. However, the prepa
ration of networks, especially in thick cells, results in a
sidual polydomain texture, as reported by Changet al.and is
a well-established phenomenon in nematic gels. Even a
orientation by strong magnetic fields one should expec
small degree of remaining random disorder, see Ref.@12#.
Assuming the degree of this misalignment is small, it
straightforward to make provisions for it and obtain the
sulting quenched averages of observable parameters, su
the director angleu(E) and the optical pathd(E).

We do not go into details of this calculation, which in
volves some heavy algebra. Instead, we plot the results
several values of parameters. The plots in Fig. 4 show
optical pathd(E) for selected valuesr 51.5,A50.05 and
increasing r.m.s. misalignmenta50,0.01, 0.03, 0.05, 0.1
~the last value corresponds toa55.7°!. The misalignment
not only creates a precursor foot before the main thresh
but also changes the slope so that the extrapolated valueE
appears slightly reduced fromE* in Eq. ~14!. We emphasize
that theory and physical expectations suggest the oblique
a should strongly depend on cell thickness and on the m
netic field used during cross linking.

VI. EXPERIMENTAL OBSERVATIONS

We now apply the model of the previous sections to
experimental observations of Changet al. @6#, in light of
further experiments performed recently. The analysis of d

FIG. 4. Conoscopic path lengthd vs reduced electric field for
backbone chain anisotropyr 51.5, semisoftness parameterA
50.05, and increasing rms misalignment anglea
50, 0.01, 0.03, 0.05, 0.1 rad.
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performed by Changet al. includes a bulk anchoring effec
similar to that proposed here, which produces a thresh
field, rather than voltage. However, they also appealed to
intrinsic material length scale on the order of micromete
which further increases the observed threshold field and
sets the scale for director gradients, which limit the direc
rotation above threshold. They reported observations of
crometer scale speckles in the sample after polymerizatio
support of this proposed length scale, but did not direc
observe a periodic pattern of director rotation at the m
crometer scale in response to the applied electric field.

We prepared a series of samples of different thicknes
according the the methods of Changet al., and performed
microscopic observations during application of the field.
thick samples, comparable to those of Ref.@6#, we observed
the same general elements of response that they reported
in addition, we were able to observe small scale moveme
in the sample, particularly displacements of microscopic p
ticles and speckles in the sample. We observed lateral
placements in the plane of the sample on the order o
fraction of the sample thickness, and saw no evidence
micrometer scale deformations in response to the field.
observations are consistent with the deformation sketche
the right in Fig. 1, which involves a combination of she
strains resulting in lateral displacement of material in t
midplane of the sample. The deformation proposed on
right in Fig. 1 also satisfies the preservation of symmetry
the conoscopic image reported by Changet al., in contrast to
the rotation of the optical axis that would accompany t
classical half-wavelength Fredericks transition. Thus,
field response proposed here is completely consistent
the general observations reported by Changet al. @6#. More-
over, as described in the previous section, the pretransiti
response, or rounding of the transition, observed by Ch
et al. can be similarly explained by a small random pretilt
the director.

Taking the published data of Changet al., and using the
model of Sec. III appropriate for thick samples, along w
pretilt of the director, we present a fit of the present theory
the data in Fig. 5. We plot our theoretical prediction ofd

FIG. 5. Theoretical curve ofd(E), the conoscopic length
against electric field for the present theory~solid line! for thick
samples~uniform director rotation! to the data of Changet al. @6#.
For the 62mm thick sample~crosses! we have doubled the dat
values for the optical pathlengthd to collapse the data from two
samples onto the same plot. For the 125mm thick sample~squares!
the data are unscaled. This is the same scaling used in Fig. 1 of
@6#.
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usingu from Eq. ~6! and taking the valuesr51.95,A50.06,
m51.63102 J/m3, anda51.7° for the network, in addition
to the sample characteristics specified by Changet al. We
see that this theory can reproduce the experimental obse
tions with reasonable values of sample thickness, etc.@14#.
The values of semisoftness parameterA and of the random
local pretilt anglea are sufficiently small not to contradic
the known facts about liquid crystalline gels. The value
backbone anisotropyr, slightly higher than that reported fo
solvent free polyacrylate elastomers (; 1.44 @10,15#!, is
likely due to the large amount of nematic solvent presen
the gel and increasing the nematic field. The solvent~up to
90%! can also explain the very small value of rubber mod
lus m. In fact, it is mostly due to this weakness of swolle
elastic network that we can observe a noticeable dire
rotation, the angle of which depends on a ra
E(«0D«/m)1/2. However, in spite of this plausibility, inde
pendent measurements of these parameters are needed
the presented theory more explicitly.

The value of the gel modulusm, used in the fitting above
is substantially lower than that expected for ordinary rubbe
It necessitates reexamination of the characteristic len
scales in our system. The natural nematic elastomer scaj
5AK/m @see Eq.~11! and, more comprehensively, the r
view @4## is now of the order 1026 m. This scale gives the
characteristic thickness of domain walls, two of which a
present in the full-wavelength Fredericks geometry, Fig.
Hence one expects that thin samples, withd only of order of
several micrometers, should deviate from the descrip
proposed here: In thick samples, our electromechanica
sponse is driven by a reduction in electrical energy beca
of director rotation toward the field with very little elast
penalty, since the deformations are soft in the uniform
gions above and below the midplane. These regions are s
rated by a domain wall in the middle, where the shear str
reverses sign. When the sample thickness is reduced,
wall and the two nonuniform regions near the cell bounda
would start merging. This raises the elastic energy of
full-wavelength~nematic elastomerlike! Frederiks transition
above that of the half-wavelength~liquid nematic-like! one.
Indeed, in thin samples~8 to 25 mm in thickness!, we ob-
served the different response, almost identical to the ordin
half-wavelength Fredericks transition. This was evident
the conoscopic observations, by the rotation of the opt
axis in response to the applied field, as in low-molar m
nematic liquid crystals.

To satisfy the boundary conditions with this fully nonun
form director rotation, the predominant shear strain in
bulk of the sample must be zero. The energy penalty and
countertorque for the action of electric field are then p
vided by Eq.~3! with lxz50. This is the regime of ‘‘couples
without strains,’’ with a bulk barrier for the director rotation
first proposed by de Gennes@16#. More detailed experimen
tal measurements and theoretical analysis will be carried
to explore this kind of transition in thin samples, and
determine the thickness at which the crossover from thin
thick behavior occurs. This will provide a detailed unde
standing of the combined director and shear strain struc
within the boundary layers and give an independent mea
a-
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of the effective rubber modulusm via the characteristic
length scalej.

Another aspect that needs to be reexamined for a sys
with very low modulusm is the threshold condition, Eq
~14!. In order to predict the field thresholdE* , rather than
the voltageV* 5Ed, we need to maintain the inequalit
Amd2/K@1. For the values used in fitting the experimen
data in Fig. 5~for the smallerd.60mm) we still obtain a
ratio of order 33103 and the conclusions about the thresho
remain valid. However, this ratio will become of order uni
for d;1026 m, where the ordinary voltage threshold shou
again become relevant.

VII. CONCLUSION

In summary, we propose a model for the Fredericks tr
sition in nematic polymer gels. Especially for thick sample
the polymer network serves both to set the threshold field
the transition, and to control the director response ab
threshold. It effectively replaces the role of the sample s
faces in the ordinary nematic Fredericks transition. We c
reasonably explain the experimental results of Changet al.
without appealing to a new internal length scale for direc
gradients, and this element of our explanation is suppo
by qualitative experimental observations of macroscopic
eral displacements in response to the applied field.

Because two coupled physical fields, the director anglu
and the shear strainlxz , are at play, it is possible that ther
are two different characteristic timescales for relaxation. D
pending upon the disparity of these, one could at short tim
scales possibly see another decay regime before the fi
slowest exponential decay reported by Changet al. This ob-
tains naturally from the numerical solution of the dynamic
equations inu andlxz resulting from Eq.~2! ~see Ref.@17#!.

We have begun to examine the remaining role of direc
and shear strain gradients in the sample, and our experim
tal observations suggest that this is important for understa
ing the transition in thin samples. Much experimental wo
remains to be done to test various aspects of our mo
Finally, it is interesting to compare these predictions
nematic gels with the behavior of polymer-stabilized liqu
crystals. The key difference is the permanently fixed mac
scopic polymer skeleton of the PSLC system, in contr
with the mobile molecular-scale network of a gel. The d
tailed analysis of the threshold, director evolution at high
fields and the role of alignment conditions at preparat
should distinguish between the behavior of these two s
tems. The dynamic behavior is especially different, with g
responding very slowly, compared to PSLCs.
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APPENDIX: ANALYSIS OF DIELECTRIC PROBLEM

In the classical electric Fredericks problem the anisotro
dielectric fluid is contained between two parallel plates k
at a relative voltageV @13#. The analysis can easily be gen
eralized to the elastic-electric case. One needs to use



nt

e,

r

n
g

e

tic

-

-

f

PRE 60 1879ELECTROMECHANICAL FREDERICKS EFFECTS IN . . .
electric displacement vectorD5(0,0,D), which is a constant
between the plates given no space charge (divD50). The
field E and the displacementD are related byD5«0«= •E. As
all nematic uniaxial tensors, the matrix of dielectric consta
is expressed as« i j 5«'d i j 1(« i2«')ninj , where the nem-
atic directorn is the principal axis. The voltage is, therefor
given by the integration*Ezdz:

V5E
0

d

dz
D

«0~«'1D«sin2u!
, ~A1!

where«zz5«'1D«sin2u. The correct free energy, now pe
unit area of plates, does not derive from Eq.~2!, but from the
dielectric energy density2(D•E):

F5E
0

d

dzF1

2
KS du

dzD
2

1mg~s!2
1

2«0
D2

1

e'1De sin2u
G

[E
0

d

dzF1

2
KS du

dzD
2

1mg~s!G
2

«0V2

2

1

E
0

d

@dz/~«'1D« sin2u!#

, ~A2!

wheremg(s) is the rubber-nematic part of free energy de
sity, given by Eq.~3!. The Euler-Lagrange equation givin
the u(z) minimizing this free energy is

Ku95m
dg

du
1S D2

2«0
D d

du S 1

«'1D«sin2u
D , ~A3!

where the constantD has to be determined from Eq.~A1!
and is thus a functional ofu(z). The boundary conditions ar
,

tt

f

s

-

u850 at u5um if there is a modulation with amplitudeum .
Then Eq.~A3! is easily integrated once to give

S du

duD 2

52@g~sin2u!2g~sin2um!#1
D2

m«0
S 1

«'1D« sin2u

2
1

«'1D« sin2um
D , ~A4!

where u5z/j is the length reduced by the rubber-nema
correlation lengthj5AK/m. The full problem is solved by
further integrating over 1/4 period and yields

E
0

um du

@•••#
5

d

4j
, ~A5!

where@•••# is the right hand side of Eq.~A4!. The right hand
side of Eq.~A5! is a quarter period of the modulation. Inte
grating Eq.~A4! to a generalu at a generalz, rather than to
um andd/4 as in Eq.~A5!, givesu(z) as an elliptic function,
which then finally determinesD via Eq. ~A1! and thereby in
Eq. ~A5! itself.

At the vicinity of the transition, all this analysis signifi
cantly simplifies since sin2u<sin2um<sin2uo!1. D andV are
trivially related asD5«0«'V/d. The potential

g~s!1
D2

«0

1

«'1D« sin2u

driving Eq. ~A4! simplifies to2 1
2 pu21 1

4 qu4 with p and q
given in Eq. ~12!. The elliptic analysis then follows as i
from the simplified free energy Eq.~2!. In the uniform case
considered in Sec. III the distinction betweenD and E is
easily handled too since Eq.~A1! collapses to the obvious
D5«0(«'1D« sin2u)V/d and the electrical part of Eq.~A2!
gives theu-dependent part of the electrical energy in Eq.~5!
~a constant part having been suppressed!.
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