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Polydomain-monodomain transition in nematic elastomers

S. V. Fridrikh and E. M. Terentjev
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 17 February 1999!

Director textures and alignment of polydomain nematic elastomers under uniaxial extension are described
theoretically applying the concept of randomly quenched disorder introduced by network cross-links. Within
this model, treated with the replica trick and Gaussian variational approximation, the polydomain-monodomain
transition occurs in a critical fashion with a small jump and rapid increase of the macroscopic order parameter.
The transition is characterized by a plateau on the stress-strain curve. The critical stress value at which the
transition takes place is estimated as;mQch with m the rubber modulus of the elastomer andQch the
parameter of chain anisotropy. The aligning of polydomain texture occurs via rotation of domains rather than
their growth, with domain size almost unchanged through and above the transition. Experimental data obtained
by several groups for various nematic elastomers are analyzed, showing a qualitative agreement with model
predictions.@S1063-651X~99!06908-1#

PACS number~s!: 64.70.Md, 75.10.Nr, 83.80.Dr
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I. INTRODUCTION

All liquid crystalline ~nematic! polymers and elastomer
usually show the presence of a polydomain director text
observed as a ‘‘Schlieren texture’’ under the crossed po
ized optics@1#. This appears to be a universal feature lead
to strong scattering of light from the optical contrast betwe
regions of different director orientation. The correlatio
length of local nematic alignment~domain size! in this mac-
roscopically distorted state is normally of the order of fe
microns. These structures always occur after cooling the
tem below the nematic to isotropic transition temperat
TNI and in many cases are stable and reversible, at lea
elastomers, indicating the fact that in this highly disorde
state the system is at its equilibrium. On the other ha
ordinary liquid crystals, which also possess the ‘‘Schlier
texture’’ after cooling belowTNI quickly coarsen, increasing
the domain size and eliminating most of the defects, t
achieving a uniform nematic director alignment, see@2#, for
instance.

Why do elastomers and many polymers not follow t
same pattern of coarsening? The reason could be in the
long relaxation time of defects in these systems. In ordin
liquid crystals all topological defects are mobile and can
annealed very quickly. In nematic polymers the annealing
the defects will be affected by a much higher viscosity a
indeed, one may expect a very slow dynamics of relaxat
On the other hand, long polymers may possess defect
their chemical structure~e.g., chain branching or impurities!,
which may never be annealed. In case of elastomers the m
source of defects is the network crosslinks themselves, w
are quenched in the network during the synthesis and are
able to relax. In this paper we are describing the propertie
a nematic system affected by such quenched sources o
entational disorder.

Other liquid crystalline systems with random disorder
clude the nematic in pores of silica gels@3#, polymer-
stabilized and polymer-dispersed liquid crystals, e.g., R
@4#. The source of the random disorder in such cases is
surface anchoring of nematic director on the walls of
PRE 601063-651X/99/60~2!/1847~11!/$15.00
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random porous matrix on a length scale similar, or grea
than the characteristic period of resulting director textures
nematic elastomers the random disorder arises from def
in the polymer network structure and cross-links quench
during the synthesis, on a much smaller length scale wh
allows for coarse-graining and continuum description.

The behavior of many other systems such as spin gla
and vortices in superconductors is strongly influenced by
presence of randomly quenched disorder. In spin glas
randomly distributed and oriented impurity atoms give ea
directions for the magnetization. This favors the magneti
tion vector to be locally parallel to randomly oriented ea
axes given by the impurities, however, the average ma
scopic magnetization is zero. Similarly, in vortex arrays
superconductors, the long distance order is lost due to
distortions in the lattice caused by randomly quenched
purities.

The progress in understanding statistical properties of s
tems with quenched disorder is based on the concept of w
disorder when the distance between two defects is much
than the resulting correlation length of the structure@5,6#. It
is not obvious that this type of modeling is applicable in ca
of nematics in porous media where one deals with the d
cult case of strong discrete sources of disorder. On the o
hand, in nematic elastomers the typical distance between
sources of disorder is of the order of few nanometers, wh
the correlation length is in the micron range. Thus this s
tem possesses a weak random field and can be more natu
described by continuous model. Regardless of the theore
modeling, both systems show complex dynamic behav
typical of random systems characterized by slow~logarith-
mic! relaxation@7,8#.

One of the main features of systems with weak quenc
disorder, well understood within continuum models, is th
the long-range order is preserved only at distances less
the correlation lengthjD @5–9#. For instance, if one cross
links nematic polymer above the nematic-isotropic transit
temperatureTNI , the junction points create local sources
anisotropy, which will be randomly oriented in space. Co
ing such a system into the nematic state will then give rise
1847 © 1999 The American Physical Society
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1848 PRE 60S. V. FRIDRIKH AND E. M. TERENTJEV
the weak random field which destroys the alignment at la
distances. The system exists in a ‘‘polydomain’’ state w
correlation length~domain size! jD typically of the order of
few microns. The correlation loss at large distances ar
from the competition between the aligning effect of Fra
elasticity and the disordering effect of local sources. This
be illustrated by the Imry-Ma argument@6# discussed below
Thus the ground state of macroscopic director texture in
system with even weak random disorder is ‘‘glassy,’’ i.
similar to spin glasses.

As the correlation length is close to the light waveleng
the polydomain director field strongly scatters the light,
cluding multiple scattering in thick samples. When su
‘‘polydomain’’ nontransparent nematic elastomer, Fig. 1~a!,
is subjected to a uniaxial extension, it undergoes
polydomain-monodomain (P-M ) transition manifested by
the rapid increase of macroscopic nematic alignment i
sample@Fig. 1~b!# and is accompanied by a spectacular p
teau on a stress-strain curve.

This peculiar behavior of polydomain nematic elastom
under uniaxial stress has been observed in many experim
on a variety of materials@10–18#. The common features o
this effect are the following:~i! One observes a linea
~Hookean! stress-strain relation at low deformations, befo
the transition threshold is reached;~ii ! a stress plateau~an
almost constant stress for a range of deformations! is en-
countered at medium strains, then followed by the str
growth at higher strains, see Figs. 6;~iii ! the sample, opaque
before stretching, becomes transparent ‘‘monodoma
when passing through the stress plateau region.

The question of universality of thisP-M transition then
arises and requires an appropriate theoretical model. In
paper we present such a theory accounting for many feat
of the P-M transition. We bring together experimental da
obtained by several groups and analyze them with the m
predictions, finding, where possible, the model parame
from fitting the data extracted from the corresponding pu
cations. This paper is organized as follows. Section II p
sents a basic description of random field model and m
theoretical predictions that emerge from it. Section III r
views the experimental data and gives an example of an
sis in terms of the model. In the Sec. IV we summarize
results and also discuss the limitations of the model.

II. POLYDOMAIN-MONODOMAIN TRANSITION

A. Quenched disorder and polydomains

To understand the physics ofP-M transition we start
from studying the physical origin and the role of coars

FIG. 1. Polydomain nematic elastomer aligning under
uniaxial extension.
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grained weak random field in creating the original equil
rium polydomain state. We consider nematic elastomer w
randomly distributed impurities and crosslinks which impo
local easy anisotropy axes. Such a material can be obta
by cross-linking nematic polymer in isotropic phase, whi
will quench the orientation of anisotropic cross-links and d
fects of the network structure. The typical network junctio
always possess some degree of local anisotropy and on
sequent cooling into nematic phase they will interact w
surrounding mesogenic molecular units, forcing them to
parallel to the long axis of the cross-link in its immedia
vicinity. The strength or this cross-link-to-nematic order co
pling is characterized by the random energy constantg. Due
to the quadrupolar symmetry of the problem, this coupli
may be described by the following term in the free energ

Fr f 52(
i

g

2
@k i•n~Ri !#

2, ~1!

wherek i is the unit vector along the axis ofi th cross-link,Ri
is the position of this cross-link, andn(Ri) is the local nem-
atic director, Fig. 2. The summation in Eq.~1! is carried over
all such local sources of anisotropy. We then coarse-g
this by introducing a continuum cross-link densityr(r )
5( id(r2Ri), which imposes a completely random orient
tion of an easy anisotropy axisk(r ).

For reasons of mathematical simplicity it is convenient
take the nematic ordering and random anisotropy axes b
confined to thex-y plane, though being dependent on a
three spatial coordinates~this corresponds to 3d XY model
in spin systems,n52, d53). This choice does not seem t
affect the results qualitatively@19# but substantially simpli-
fies the analysis. The local coarse-grained nematic orde
is changing the direction slowly, so that the directorn
5$cosu, sinu% is parametrised by a single angleu with unu
5const. This choice, in fact, corresponds to most exp
ments where a thin flat strip of elastomer was subjected
deformations and the~planar! director distribution examined
by optical or x-ray scanning through the film.

When many defects are randomly distributed in space
can assume their density to have a Gaussian distribution

P@r#.expH 2E d3r
r2

2r0
J , ~2!

e

FIG. 2. The schematic representation of typical netwo
crosslinks possessing some anisotropy and giving the easy nem
ordering direction.
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wherer0 is the mean density of impurities, see for instan
@20#. As the defects are at the same time randomly orien
in the x-y plane, we have the probability of their orientatio
P@k#51/2p.

In the continuum theory, any deviation of nematic dire
tor from a uniform orientation is penalized by Frank elast
ity. The random field energy, presented in a discrete form
~1!, can now be written in a coarse-grained continuous fo
via the crosslink densityr(r ),

FFr1Fr f 5E d3r H K

2
~¹n!22

g

2
r~k•n!2J , ~3!

whereK is Frank elasticity constant in one-constant appro
mation.

The free energy containing these two terms,FFr andFr f ,
captures the main features of systems with quenched w
orientational disorder and one can now apply the Imry-
argument@6#. For a texture with the correlation distancejD
we can estimate the gradient¹n as ;1/jD , immediately
getting an estimate for the Frank energy~per domain of the
size jD): FFr;KVjD

22 , or FFr;KjD
d22 , whereV and d

are the domain volume and the dimensionality of the syst
In the usual three dimensions,FFr;KjD . The number of
random defectsN in such a domain is proportional to th
domain volumejD

d , N.r0jD
d . To minimize the free energy

the system will tend to have nematic director parallel to
direction most of the cross-links~vectorsk) within this vol-
ume are parallel to. To visualize this picture, one can take
k i and make a chain from them by connecting them hea
tail. The end-to-end vector of such a ‘‘chain’’ will give th
preferable alignment direction for the nematic director. T
mean square length of this end-to-end vector will be prop
tional to N1/2.r0

1/2jD
d/2 as in the case of any random wal

This value indicates the magnitude of the mean field
quenched sources, averaged over the chosen domain vo
Thus the excess of the crosslinks looking in the prefera
direction will be of the order ofN1/2 and the system will gain
the random-field energy of the order ofFr f ;g(r0jD

d )1/2 by
aligning in this direction. Hence the domain free energyFD
can be estimated as:

FD.Kjd222r0
1/2gjd/2

or

FD.Kj2r0
1/2gj3/2 for d53. ~4!

Minimizing FD with respect to the correlated domain si
(]FD /]jD50) we obtain the characteristic lengthjD
;K2/r0g2 for d53. This simple scaling argument show
that no matter how weak is the random disorder it will win
sufficiently long distances and destroy the long range ord
ing breaking the system into the correlated regions of s
jD .

B. Continuum nematic rubber elasticity

In the case of nematic elastomers one should also
with nontrivial elasticity of a nematic rubber network. Th
rubber elasticity is of an entropic origin and the elastic e
ergy of polymer network is controlled by the end-to-end d
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tribution of the network chains. In case of the ordinary is
tropic rubber the chains have spherical shapes at equilibr
and any deformation will change the elastic energy
changing the chains shape and, therefore, their confor
tional freedom.

In nematic rubber, polymer chains forming the netwo
are anisotropic and in most cases have the average sha
uniaxial prolate ellipsoid, the nematic director being para
to the long axis of the ellipsoid. The rotation of the nema
director will change the sample shape without change in
chains average ellipsoidal shape and, consequently, wit
change in elastic energy. It literally means that certain de
mations accompanied by the director rotations are soft,
take place at no energy cost. A good example of suc
deformation, important for understanding ofP-M transition,
is the shear of an aligned nematic rubber perpendicular to
director. Under such a shear, the chains may rotate their
deformed ellipsoidal shapes~i.e., rotate the nematic director!
thus accommodating the extension, but necessarily in c
bination with the simple shear, and keep their conformatio
entropy and resulting rubber-elastic energy constant. T
deformation will be soft till the director is rotated by 90° an
the system is no more able to accommodate deformation
the director rotation, see@21,22# for details. Olmsted@23# has
shown that there exists a continuous set of soft deformatio
which by appropriately combining strains and director ro
tions can make the elastic response vanish.

The existence of soft deformations gives rise to seve
peculiar effects in mechanical behavior of nematic rubbe
some of which are explained on the basis of the neoclass
theory of rubber elasticity@21#, providing a general expres
sion for the free energy of the nematic rubber valid for lar
deformations. For the purposes of this paper and for the
sons of mathematical simplicity it is sufficient to consid
small strains«ab and to expand the free energy up to t
terms quadratic in«ab . The qualitative form of such an ex
pansion was envisaged a long time ago by de Gennes@24#.
Later, the molecular expressions for elastic constants w
obtained by Olmsted@23#. We make a further simplification
and describe the director-network coupling by a single te
2UQab«ab , as it was done in@25#, with Qab5QN(nanb
2 1

3 dab) the nematic order parameter andU the constant of
coupling between the nematic ordering and elastic defor
tions. Molecular theory@21# and the experiment@26# give the
order of magnitude forU, which is the same as the rubbe
elastic modulusm, i.e.,U.m;105 J/m3 in a typical rubber.

The free energy changeFmech in monodomain nematic
elastomer due to mechanical deformation characterized
stress and strain tensorssab and«ab can than be presente
as the following@25#:

Fmech5E d3r Fm2 «ab«ab2sab«ab2UQab«abG . ~5!

Minimizing Fmech with respect to the strain«= we obtain the
equilibrium value of the mechanical free energyFmech(«* ).
~A more complete derivation of the effective nematic ener
and an accompanying discussion can be found in, for
stance, in@27,28#. Here we use a cruder approach simply
illustrate the symmetry of stress-director coupling and
estimate of its energy scale.!
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1850 PRE 60S. V. FRIDRIKH AND E. M. TERENTJEV
Fmech~«* !5E d3r
1

2m
@sabsab1U2QabQab

22UQabsab#. ~6!

The first term in~6! is the~constant! mechanical energy of an
applied stress, the second term will simply shift the tempe
ture of nematic to isotropic transition in proportion to th
network crosslinking densityr0. They are independent of th
director field configurationn(r ) and are thus irrelevant to ou
problem of director textures~we shall assume that the loc
nematic order parameterQN remains constant far fromTNI).
The third term describes the orientational effect of stress
the case of uniaxial extension caused by the stresss parallel
to, say,z-axis it will turn into (QNU/m)s(nznz21/3). After
dropping the irrelevant constant we finally obtain the corr
tion to the free energy of a monodomain nematic elasto
under uniaxial extension dependent on the director field c
figuration, coupled to the stresss= :

DFmech5E d3r F2
QNU

m
s~ ŝ•n!2G , ~7!

whereŝ is the unit vector parallel to the extension axis. Th
coupling carries the simple~and expected! message: the
nematic director tends to be aligned along the uniaxial
tension axis.

However, one should take into account an additional e
tic energy due to polydomain structure of elastomer. As
correlated spin glass, the zero-stress disordered elast
does not have pronounced interfaces between correlate
gions. The director changes smoothly in space, without m
ing sharp bends, gradually loosing the memory of its ori
tation. Nevertheless, when an external stress is applied
system would minimize the elastic energy if the director fie
and elastic network deformations are separated in sp
Namely, by localizing the director distortions in narrow d
main walls, the system will make the domains free of dire
tor undulations and allow them to be deformed softly. Su
domain walls localization causes transformation of uniax
extension of the whole sample into shear deformation
single domains with shear direction alternating between
ferent domains~see Fig. 3 and@18#!.

Localizing the deformation inside the domain walls w
cost some additional energy and will be energetically fav
able only above certain threshold. This energy and rela

FIG. 3. Nematic elastomer structure in two neighboring d
mains: ~a! no external stress,~b! at the transition point. Note the
uniaxial extension turning into shear with opposite directions
neighboring domains and the domain wall localization.
-
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deformations can be estimated using the following scal
argument. Let us consider two neighboring domains w
initially perpendicular director orientations, shown schema
cally in Fig. 4~a!. Under the extension«, the domain B will
generate the elastic energy of the order of

m

2
«2j3,

in proportion to its volumej3. The wall region of the width
w will be deformed as well, with the corresponding elas
penalty

m

2
«2j2w.

However, the domainA may be able to deform softly, with
director rotating by up to 90 °, with no elastic energy rais
in its volume. The mismatch between the two domains@the
difference between their natural dimensions along and ac
n, Fig. 4~b!# will cause additional deformation«̃ inside the
domain wall which can be estimated as (j i2j')/j
.(l i /l '21), with j i andj' the domain dimensions alon
and across the local nematic director. The aspect ratio~an-
isotropy! of nematic polymer chainsr 5l i /l ' is reflected in
the local shape of the network and provides the geome
mismatch, see Fig. 4~b!. Hence the additional strain in do
main walls is (j/w)(l i /l '21) and the corresponding en
ergy cost in the wall of volumej2w is

m/2wj4~ l i /l '21!2.
.

Thus the mechanical free energy per unit volume of a po
domain nematic elastomer with weak random disorder
under uniaxial extension can be expressed as:

DF5
m

2
«2

w

j
1

m

2w

~ l i /l '21!2

j
1

m

2
«2. ~8!

The first part in Eq.~8! favors the smaller widthw, thus
allowing more volume to be taken by the soft domain A. T
second part has the opposite effect, tending to increase
width w over which the newly generated size mismatch h
to be accommodated. Optimizing Eq.~8! with respect tow
gives for the equilibrium domain wall width:

w* 5
j

«
~ l i /l '21!, ~9!

-

FIG. 4. Two neighboring domains~a! before and~b! after the
transition. The director in the domainA is rotated by 90 ° creating
the size mismatch in the domains boundary region of widthw.
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decreasing with the growing applied strain«. Note that the
chain anisotropy (l i /l '21) is due to the coupling betwee
the polymer backbone and the mesogenic groups and, thu
proportional to the nematic order parameterQN . Substitut-
ing Eq. ~9! into Eq. ~8!, we obtain an additional energy term
'm«(l i /l '21) responsible for the localisation of doma
walls. This energy density, linear in macroscopic stra
should be added to the external stress term2s«, providing
the value of effective stresss̃'s2m(l i /l '21). As we
shall see later, this shift determines the value of the thresh
stress for theP-M transition. Finally, the free energy of
polydomain nematic elastomer under uniaxial extension

F5E d3r FK

2
~¹n!22

g

2
r~r !~k•n!22u~s2sw!~ ŝ•n!2G ,

~10!

where sw.m(l i /l '21) and the dimensionless couplin
constantu5(QNU)/m.

C. Polydomain-monodomain transition

From the above discussion it follows that drastic chan
in the elastic behavior and ordering in nematic elastom
happen at a certain value of external stress when correl
domains start deforming softly and the walls between th
become narrow. The director rotation associated with
soft deformation of the domains with initially misaligne
director leads to the growth of a long range order in
system. At the same time, the reduction in the rubber ela
response produces a stress plateau. When thisP-M transition
is completed, the system is in the aligned monodomain s
which is responding with a normal rubber-elastic energy t
further extension. The range of the deformation« where the
director rotation takes place roughly corresponds to the
plateau on the typical stress-strain plot.

A number of questions on the state of the system just a
and further above the transition arise:~i! what is the critical
stress value corresponding to the transition,~ii ! how ordered
is the system just after the transition,~iii ! how does the long
range~macroscopic! alignment in the system evolve on fu
ther increase in stress above the transition. To answer t
questions we have developed a theory, evaluating the e
librium state of a system described by the Hamiltonian E
~10!, briefly reported in@29#. The theory uses the replic
trick @30# to deal with the quenched random fieldsr(x) and
k(x) and approximates the resulting complicated Ham
tonian by means of the Gaussian variational method~GVM!

@31,32# using H5(q
1
2 G21(q)uqu2q as a trial Hamiltonian

with G21(q) the replica-symmetric variational ansatz
^uqu2q&. This approximate way of solving the problem
inadequate in the zero-field disordered spin-glass like sys
@31,32#, but is valid for relatively high values of externa
stress above the threshold,u(s2sw)@K/jD

2 ;10 J/m3.
From GVM we have for the average values of the direc

normal modeŝ uu(q)u2&:

V

kT
^uu~q!u2&5

1

Kq21D
1

vK2

kTj0~Kq21D !2
, ~11!
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whereD is a variational parameter used in GVM,j0 is the
domain size at zero external stress,v5exp$22kTqmax/
(p2K)% is a constant of the order of one,qmax being the upper
cutoff in reciprocal space,qmax.2p/a, with a the size of a
mesogenic molecular unit. This result is a generalization
one obtained by Larkin@7# for vortices in superconductor
with no external fields~which corresponds toD equal to
zero!. The first term in~11! corresponds to thermal disorde
the second one—to random disorder. The variational par
eterD plays the role of mass and suppresses fluctuations
to both thermal and quenched disorder. The nonzero m
penalizes otherwise unbound long wavelength fluctuati
and limits their amplitude.

As was shown before@29#, in the absence of stress th
replica symmetry is broken and the trivial replica-symmet
solution with D50 is stable only within the correlated do
main length scale. It means that the long distance order in
system is lost and the ground state of the system is poly
main. The nontrivial replica-symmetric solution with non
zero D describing the state of the system with long ran
order exists only for external stresses above the critical va
sc . From the equation connecting variational parameteD

with the modified stresss̃5s2sw @29#:

D52uv1/2s̃expH 2
pK1/2

4j0D1/2J , ~12!

we obtain the value of the critical stresssc ~and the modified
thresholds̃c5sc2sw) and of the corresponding effectiv
massDc :

sc5m~ l i /l '21!1
p2e2

128v1/2u

K

j0
2

, ~13!

Dc5
p2K

64j0
2

, ~14!

where, recall, the coupling constantu5QNU/m and the
zero-stress domain size isj0'16p2K2/vr0g2. The second
term on the right hand side of~13! arises from the balance
between the random field and Frank elasticity and give
very low value of the threshold.~The similar balance pro-
duces a threshold value of external magnetic field align
the weakly disordered spin glass,Hc;(r0g2)2/K3, see
@19,29#.! It can be estimated suggesting typical values
K;10211 N, j0;1026 m, m;U;105 Pa, and the nem-
atic order parameterQN;1. Thens̃c should be of the order
of 1210 Pa, a very small value comparing with the a
sumed rubber energy scalem. In contrast, the first term in
~13! arises from the rubber elasticity and the domain w
localization, and is of the order ofm(105 Pa), i.e., much
bigger thans̃c. Thus nematic rubber elasticity accompani
by the domain walls localization causes a strong increas
the threshold stress forP-M transition. As an estimate fo
the threshold stress we can take simply:
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sc'm~ l i /l '21!;mQch ~15!

with the nematic polymer backbone anisotropy characteri
by a ‘‘chain order parameter’’Qch .
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From Eq. ~11! the macroscopic order parameterSmacro
5QN(1/V)*d3r ^2 cos(u)21& can be estimated. This param
eter is experimentally accessible by several standard t
niques and is of particular importance here. We have
Smacro:
Smacro.QNexpH 2
kTqmax

p2K
F11

vr0g2

16kTD1/2K1/2qmax

arctanS K1/2qmax

D1/2 D G J . ~16!
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Taking K.kT/a. kTqmax/2p we can estimate the jump o
the long distance order at the transition pointSmacro(sc):

Smacro~sc!.QNexpH 2
2

p
~112p!J ;0.01QN , ~17!

which is really small. The behavior ofSmacroabove the tran-
sition is described by Eq.~16!. Just above the critical stres
D has a square-root singularity, giving a slow growth
Smacro with increasing the stress:DSmacro(s̃);exp$(s̃
2s̃c)

1/2%. However, the replica-symmetry approximatio
used to obtain our Eqs.~11!–~16! is unreliable in the imme-
diate vicinity of the critical point, at s̃2s̃c;K/j0

2

;10 J/m3. On the other hand, the experimental resolution
stress is usually too low to examine this region in det
Thus, this initial growth in the long distance order will rath
be seen as an apparent jump inSmacro at the transition point.

At s̃c!s̃!Kqmax
2 ;107 J/m3, which corresponds to the

realistic experimental values of stress, the long distance
der grows fast with increasing stress and approaches
saturation value:

Smacro~ s̃ !.so1~QN2so!expH 2
K1/2

2v1/2u1/2j0~s2sc!
1/2J ,

~18!

where the small constantso accounts for the ‘‘apparen
jump’’ at the vicinity of the transition point which is no
described by the approximate Eq.~18!. At s̃˜` Smacro
tends toQN , the thermodynamic value of nematic order p
rameter in a fully aligned elastomer.

It is interesting to know what happens with correlati
length ~which we called the domain size! at and above the
transition. The answer can be obtained from Eq.~11! @29#.
The real-space correlation functionB(x)5^@u(x)2u(0)#2&,
characterizing the decrease of the correlations with dista
will be strongly affected by the stress only if we have b
value of the effective massD, namelyD;Kqmax

2 . In reality,
we find that at the transition pointDc;K/j0

2, at reasonably
high stressesD;m;105 J/m3, both being well below
Kqmax

2 . Thus the condition of smallD is satisfied at and wel
above the transition the domain sizejD is not strongly af-
fected by the stress. The evolution of the polydomain s
through and above the transition, therefore, proceeds via
f

f
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reorientation of correlated regions towards the field dir
tion, while keeping their characteristic size unchanged in
first approximation.

III. ANALYSIS OF THE EXPERIMENTAL RESULTS

The P-M transition was investigated by several expe
mental groups in a variety of nematic elastomers, both ma
chain and side-chain. Various experimental techniques h
been used to characterize their mechanical behavior and
range liquid crystalline ordering: stress-strain measureme
x-ray scattering, IR dichroism measurements, light scat
ing, and polarized optical microscopy.

The polymers investigated are characterized by differ
values of polymer chain anisotropy (l i /l '21) controlling
the transitional behavior. The difference in the chain anis
ropy arises from different degrees of coupling between
nematic order of mesogenic groups and the polymer ba
bone. In case of main-chain elastomers the anisotropy of
chain Qch together with that of the mesogensQN is high
below TNI . The experiment@33# reports l i /l '>10 in a
main-chain system, obtained from the direct neutron scat
ing data. In side-chain elastomers, due to the weak coup
between the backbone and pending mesogenic groups
chain anisotropy is usually small~e.g.,l i /l ';1.1 in poly-
acrylates@13#! even when the mesogens are strongly order
The materials investigated can be divided into four groups
the order of the decreasing chain anisotropy:~i! main-chain
epoxy elastomers@Fig. 5~a!# with chain anisotropy,l i /l '

;5210, ~ii ! polysiloxane side-chain elastomers@Fig. 5~b!#
with l i /l ';2.5 @34#, ~iii ! polyacrylate elastomers with
T-shaped side groups@Fig. 5~c!# with l i /l ';1.8 @10# and

FIG. 5. The main types of the nematic polymer chain archit
ture: ~a! semiflexible main-chain nematic polymers,~b! conven-
tional side-chain nematic polymer,~c! T-shaped side-chain nemati
polymers~see text for detail!.
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FIG. 6. Stress-strain curves for polydomain nematic elastomers:~a! main-chain epoxy elastomers~data points from Fig. 11 of@15#!, ~b!
side-chain siloxane elastomers~data points from Fig. 2 of@18#!, ~c! acrylic side-chain elastomers~data points from Fig. 3 of@10#!, ~d!
acrylate backbone elastomer with cyanobiphenyl side groups~data points from Fig. 6 of@13#!.
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~iv! polyacrylate side-chain elastomers@Fig. 5~b!# with
l i /l ';1.1 @13#.

A. Threshold stress

One of the main signatures of the transition, namely,
presence of the threshold stress with the plateau on
stress-strain curve, was clearly observed in all the mate
with considerable chain anisotropy@~i!–~iii !# @10,11,14–
16,18#, but was reported to be very small if at all noticeab
in side-chain elastomers based on polyacrylate backb
@12,13#, see Fig. 6. The value of the threshold stresssc
.m(l i /l '21) is controlled by the chain anisotropy an
rubber elastic modulus. Hence, even for the same ela
modulusm, the difference in the threshold stress values d
to the different values ofl i /l ' would be noticeable. Thus
the predicted threshold stress value should be proportion
the rubber shear modulus:sc.(0.121)m. This is in agree-
ment with experimental reports. Ortizet al. present the data
for main-chain epoxy elastomers:sc52.03106 Pa, m
54.43106 Pa (s/m50.45) @15#. Clarkeet al. reported for
polysiloxane side-chain elastomers:sc51.13104 Pa, m
e
he
ls

ne

tic
e

to

51.03105 Pa (s/m50.11) @18#. The results of Finkelmann
et al. for side-chain elastomers with acrylic backbone an
variety of side-group mesogens showsc51.23104 Pa, m
51.03105 Pa (s/m50.12) @10#. Finally, the results of Tal-
rozeet al. @13# register no threshold for theP-M transition
in polyacrylate rubbers, which is not unexpected sincem
553104 Pa andl i /l ' is very low.

B. Soft stress plateau

The value of strainlm corresponding to the end of th
plateau and the beginning of the monodomain regime
give an independent idea of the chain anisotropy. For a cr
estimate, assume that atl51 ~no deformation! the average
size of the polydomain sample is affinely proportional tol
5(l il '

2 )1/3 due to the random orientation of the aligne
nematic regions. At the end of the stress plateau the dom
completed the rotation and the director is mostly parallel
the strain direction. The sample size at this strain should
proportional tol i giving lm.l i

2/3/l '
2/3, or l i /l '.lm

3/2.
One should expectlm to decrease with growing temperatu
whenQch˜0 andl i˜l ' , thus decreasing the width of th
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FIG. 7. Macroscopic order parameter as a function of applied stress. Letters refer to the same systems as in Fig. 6:~a! data from Fig. 12
in of @14#, ~b! data from Fig. 7b of@18#, ~c! data from Fig. 9 of@10#, ~d! data from Fig. 2b of@13#. The curves show the fitting with the mode
prediction Eq.~18!.
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plateau, which is in agreement with experimental results
several side-chain elastomers@10,18#. One should also ex
pect the threshold stress valuesc to decrease with increasin
temperature, again due to the decrease in the backbone
anisotropy. This prediction is not readily confirmed by e
perimental results for side-chain elastomers, which show
threshold stress roughly independent on temperature@10,18#,
but it is in agreement with the data for the main-chain el
tomers@16#.

Nematic elastomers obtained by chemical andg-radiation
cross-linking of acrylate backbone with cyanobiphenyl m
sogenic side groups are known for very small chain anis
ropy @13#. They show no visible threshold stress. Simila
they show no visible plateau, although one may interpre
sharp increase in the stress-strain slope at aroundl215«
50.0320.08 as the point where theP-M transition ends
@Fig. 6~d!#. This brake point is shifting to higher strains wit
decrease in the temperature, similar tolm , possibly indicat-
ing the end of the domain rotation. From there onwards
film is optically transparent and the material is an align
r

ain
-
e

-

-
t-

a

e
d

monodomain. The value of strain corresponding to
completion of the transition in these systems is considera
smaller than that in the other systems described above,
firming the suggestion about the role of the low chain anis
ropy.

C. Mean orientation parameter

Together with stress-strain characterization, the meas
ments of the macroscopic order parameter can be made,
function of applied stress. These data may be obtained e
by IR-dichroism measurements@10# or by the x-ray scatter-
ing technique@13,18#. All the curves forSmacro(s) show
rapid increase at the transition point which may be int
preted as a small jump, given the experimental error. Thi
followed by an increase and saturation at the level ofSmacro
.0.320.6 depending on the material and temperature, F
7.

The theoretical model, Eqs.~16! and ~18! and Ref.@29#,
makes very similar predictions. A small apparent jump at
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thresholdso<0.1 should be treated as a fitting paramet
The evolution of mean orientation parameterS(s) just above
the threshold, and at high stresses follows the asympt

equation~18!: Smacro(s>sc)}exp(2K1/2/2v1/2u1/2j0s̃1/2).
Equation~18! can be used to fit experimental data. Bo

QN andsc are not fitting parameters, but can be read off
experimental plots. Assuming the domain sizej;2.5mm ~as
reported in@16,18#! and thus obtainingAK/4vu from the
fitting in Figs. 7, we can deduce the values for the Fra
constantK: for all materialsK;10212 N which is close to
the values reported in the literature@35# K510212

210211 N.
However, the systems behave differently before the on

of P-M transition. The early experiment has shown that
the case of side-chain acrylic elastomers the long ra
alignment is slowly growing at very low stresses below t
transition@10# @Fig. 6~c!#, while there is no noticeable mac
roscopic alignment before the onset of the transition in sil
ane based side-chain elastomers@18# @Fig. 6~b!#. Slight in-
crease in the long range order prior to the abruptP-M
transition was also reported for main-chain elastomers@16#
@Fig. 6~a!#. The theoretical model presented here does
cover the behavior of the system below the transition~at s
,sc) and does not give any predictions for the long distan
order in this region. One of the possible reasons for t
growth may come from inhomogeneities in the mater
when some domains experience higher stress than the o
and start aligning at a lower value of the average stress.

D. Domain size and the random field strength

Another important prediction of the theory is the we
dependence of the correlation length~domain size! jD on the
external stress through and above the transitionjD
'150K2/r0g2. This was confirmed experimentally for side
chain elastomers with siloxane backbone by light scatte
measurements@18#. The scattering patterns obtained for t
samples during and above the transition have a characte
cross shape with the peak positions in the stretching direc
and across it corresponding to the dimensions of sligh
anisotropic domains ~correlated regions! giving j i
;2.5 mm andj';2.2 mm. The peaks change their pos
tions very little during the extension and fade gradually
the long distance order is imposed and the director n
uniformities are suppressed, thus decreasing the optical
trast.

The domain size as a function of stress and strain in m
chain elastomers was investigated by Ortizet al. @16# by po-
larized optical microscopy. They observe the domains to
come elongated in the stretching direction and the dom
sizes along and across the stretching directionj i and j' to
grow with increasing strain. Initially~before stretching! the
reported values arej i'j';2.5 mm. After theP-M transi-
tion j' grows very little: less than twice for very high strain
(«5200%), reachingj';4 mm. The domain size along
the stress axisj i increases 3–5 times, however, showing
sign of divergence. All these observations confirm the id
that domains are present in the material at any stress and
the long distance order is established via their reorientat
not via their growth.
.
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We are now in a position to estimate the strength of
effective random fieldg, a parameter of the model. ForK
;10212 N, one obtainsr0g2;6310217 J2/m3. On the
other hand, we estimate the crosslink densityr0 from the
rubber modulusm;r0kT, at room temperaturer0;2.5
31025 m23. This gives the estimate for the coupling co
stantg;1.5310221 J;0.4kT. This is not an unreasonabl
value for the coupling of an individual crosslink, see Eq.~1!.
Such estimates are only possible well below the nema
isotropic transition. AtQN˜0 bothK andg should rapidly
decrease and the variation of their ratio, giving the dom
sizej, cannot be predicted from the present model.

IV. SUMMARY

The P-M transition in nematic elastomers in external m
chanical field brings the system from the orientational te
ture of glassy ‘‘polydomain’’ with no macroscopic alignme
to a ‘‘monodomain’’ state where the long distance alignme
is well established. The further stretching of the sample s
presses the variations of nematic director at the micron s
and the material becomes optically transparent.

Due to the coupling between the rubber elasticity a
polymer chains anisotropy the system possesses the pro
of soft elasticity which allows for certain deformations
develop without an elastic energy cost. Under the uniax
stress the system finds a way of saving the free energy
separating the director field distortions and polymer netw
deformation in space. Localization of director distortions
the domain walls formed under applied stress allows the
mains to become more pronounced, homogeneous, an
undergo a soft deformation. Thus the uniaxial extension
polydomain nematic elastomers turns locally into the sh
in each domain across the nematic axis~see Fig. 2!. This
effect is similar to stripe formation in a monodomain nema
elastomer under uniaxial extension across the nematic d
tor @36,37#. In that case, at a critical stress controlled by t
boundary conditions, the sample breaks into series of par
stripes. The uniaxial deformation turns into a shear in stri
with shear direction alternating from stripe to stripe. T
deformation becomes hard again when the director co
pletes a 90° rotation. As the sample is clamped at both e
it imposes boundary conditions on the system and toge
with the sample geometry sets the value of the critical stre
Similar effects may also be important in the case ofP-M
transition and may account for the facts that sometimes
threshold stress is temperature independent and the sa
sometimes is not absolutely soft through the transition.

At and past the transition the characteristic domain s
jD changes only weakly with applied stress and, therefo
the increase in the long-range order takes place via the re
entation of individual correlated regions, rather than throu
domain growth. Due to the rubber-elastic energy, the dom
boundaries sharpen on increasing field and are left in
system as ‘‘fossils’’ even after the complete alignment b
tween all domains is achieved. This is again similar to mo
odomain nematic elastomer with stripes, where after
completion of the transition the director has a zig-zag c
figuration making sharp u-turns between the neighbor
stripes, now having the director parallel to the extension a
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Most of the features of theP-M transition are correctly
described by the model though there are still some o
questions as to why the threshold stress value may be i
pendent on temperature and how strong is the the influe
of the sample size and shape and boundary condit
~clamping! on the value of critical stress.

The theoretical model described here should be equ
applicable to the magnets with weak random disor
aligned by an external magnetic field. The main difference
the absence of the effect of elastic domain wall localisat
~which was the main factor in creating the threshold str
sc in elastomers!. The value of the remaining threshold ma
netic field is predicted to be small and lies in the magne
field range not usually covered experimentally. However
results of the renormalization group technique contradict
predictions of our model and show no evidence of the d
continuous transition in random magnets in the external fi
@38#. Thus the applicability of the model to magnetic syste
remains an open question. As only the replica symme
solution above the threshold was considered, our model d
not give any answer to the question of how the correlati
in the system are changed below theP-M transition and
whether there is any long range order at this stage.

One of the possible direct applications of the model is
.
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nematic polymers for nonlinear optics@39#. These materials
possess strong dipolar moments along the axes of the
sogenic groups which are tailored head to tail on polym
chains. This allows for imposing the dipolar order~necessary
to reveal the nonlinear optical properties! by poling the sys-
tem in the external electric field. Nematic polymers are n
mally in the polydomain state and the dipolar order
coupled with nematic quadrupolar ordering. Thus to achie
a high degree of dipolar order it will be necessary to apply
electric field above the critical value and to pass through
P-M transition. To describe the equilibrium and dynam
properties of such a system under the influence of the ele
field is an interesting and appealing problem. The role
random disorder effects is also relevant in the analysis
slow dynamics of relaxation in nematic elastomers.
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