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Polydomain-monodomain transition in nematic elastomers
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Director textures and alignment of polydomain nematic elastomers under uniaxial extension are described
theoretically applying the concept of randomly quenched disorder introduced by network cross-links. Within
this model, treated with the replica trick and Gaussian variational approximation, the polydomain-monodomain
transition occurs in a critical fashion with a small jump and rapid increase of the macroscopic order parameter.
The transition is characterized by a plateau on the stress-strain curve. The critical stress value at which the
transition takes place is estimated auQ., with x the rubber modulus of the elastomer a@Qd; the
parameter of chain anisotropy. The aligning of polydomain texture occurs via rotation of domains rather than
their growth, with domain size almost unchanged through and above the transition. Experimental data obtained
by several groups for various nematic elastomers are analyzed, showing a qualitative agreement with model
predictions[S1063-651X99)06908-1

PACS numbds): 64.70.Md, 75.10.Nr, 83.80.Dr

[. INTRODUCTION random porous matrix on a length scale similar, or greater
than the characteristic period of resulting director textures. In
All liquid crystalline (nemati¢ polymers and elastomers nematic elastomers the random disorder arises from defects
usually show the presence of a polydomain director texturén the polymer network structure and cross-links quenched
observed as a “Schlieren texture” under the crossed polarduring the synthesis, on a much smaller length scale which
ized opticq 1]. This appears to be a universal feature leadingallows for coarse-graining and continuum description.
to strong scattering of light from the optical contrast between The behavior of many other systems such as spin glasses
regions of different director orientation. The correlation and vortices in superconductors is strongly influenced by the
length of local nematic alignmeiglomain sizgin this mac-  presence of randomly quenched disorder. In spin glasses,
roscopically distorted state is normally of the order of fewrandomly distributed and oriented impurity atoms give easy
microns. These structures always occur after cooling the syslirections for the magnetization. This favors the magnetiza-
tem below the nematic to isotropic transition temperaturdion vector to be locally parallel to randomly oriented easy
Ty and in many cases are stable and reversible, at least exes given by the impurities, however, the average macro-
elastomers, indicating the fact that in this highly disorderedscopic magnetization is zero. Similarly, in vortex arrays in
state the system is at its equilibrium. On the other handsuperconductors, the long distance order is lost due to the
ordinary liquid crystals, which also possess the “Schlierendistortions in the lattice caused by randomly quenched im-
texture” after cooling belowl , quickly coarsen, increasing purities.
the domain size and eliminating most of the defects, thus The progress in understanding statistical properties of sys-
achieving a uniform nematic director alignment, $8¢ for  tems with quenched disorder is based on the concept of weak
instance. disorder when the distance between two defects is much less
Why do elastomers and many polymers not follow thethan the resulting correlation length of the structlBe]. It
same pattern of coarsening? The reason could be in the veiy not obvious that this type of modeling is applicable in case
long relaxation time of defects in these systems. In ordinarpf nematics in porous media where one deals with the diffi-
liguid crystals all topological defects are mobile and can becult case of strong discrete sources of disorder. On the other
annealed very quickly. In nematic polymers the annealing ohand, in nematic elastomers the typical distance between the
the defects will be affected by a much higher viscosity andsources of disorder is of the order of few nanometers, while
indeed, one may expect a very slow dynamics of relaxationthe correlation length is in the micron range. Thus this sys-
On the other hand, long polymers may possess defects item possesses a weak random field and can be more naturally
their chemical structurée.g., chain branching or impurities  described by continuous model. Regardless of the theoretical
which may never be annealed. In case of elastomers the mamodeling, both systems show complex dynamic behavior
source of defects is the network crosslinks themselves, whictypical of random systems characterized by sldegarith-
are quenched in the network during the synthesis and are natic) relaxation[7,8].
able to relax. In this paper we are describing the properties of One of the main features of systems with weak quenched
a nematic system affected by such quenched sources of odisorder, well understood within continuum models, is that

entational disorder. the long-range order is preserved only at distances less than
Other liquid crystalline systems with random disorder in-the correlation lengtt¥y [5-9]. For instance, if one cross-
clude the nematic in pores of silica ge[8], polymer- links nematic polymer above the nematic-isotropic transition

stabilized and polymer-dispersed liquid crystals, e.g., Reftemperaturely,, the junction points create local sources of
[4]. The source of the random disorder in such cases is thanisotropy, which will be randomly oriented in space. Cool-
surface anchoring of nematic director on the walls of theing such a system into the nematic state will then give rise to
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l FIG. 2. The schematic representation of typical network

FIG. 1. Polydomain nematic elastomer aligning under thecross_links_pos_sessing some anisotropy and giving the easy nematic
uniaxial extension. ordering direction.

the weak random field which destroys the alignment at large . o . - -
distances. The system exists in a “polydomain” state Withgramed weak random field in creating the original equilib-

correlation lengtHdomain sizg &, typically of the order of UM polydomain state. We consider nematic elastomer with
few microns. The correlation loss at large distances arise@ndomly distributed impurities and crosslinks which impose
from the competition between the aligning effect of Frank!/0cal easy anisotropy axes. Such a material can be obtained
elasticity and the disordering effect of local sources. This cay cross-linking nematic polymer in isotropic phase, which
be illustrated by the Imry-Ma argumef@] discussed below. will quench the orientation of anisotropic cross-links and de-
Thus the ground state of macroscopic director texture in anjects of the network structure. The typical network junctions
system with even weak random disorder is “glassy,” i.e.,always possess some degree of local anisotropy and on sub-
similar to spin glasses. sequent cooling into nematic phase they will interact with
As the correlation length is close to the light wavelength,surrounding mesogenic molecular units, forcing them to be
the polydomain director field strongly scatters the light, in-parallel to the long axis of the cross-link in its immediate
cluding multiple scattering in thick samples. When suchvicinity. The strength or this cross-link-to-nematic order cou-
“polydomain” nontransparent nematic elastomer, Figa)l  pling is characterized by the random energy consjaridue
is subjected to a uniaxial extension, it undergoes ao the quadrupolar symmetry of the problem, this coupling

polydomain-monodomain R-M) transition manifested by may be described by the following term in the free energy,
the rapid increase of macroscopic nematic alignment in a

sample[Fig. 1(b)] and is accompanied by a spectacular pla-
teaupon agstress-strain curve. P yasp b Fri=—2 %[ki'n(Ri)]za (1)

This peculiar behavior of polydomain nematic elastomers '
under uniaxial stress has been observed in many experiments
on a variety of material§10—18. The common features of . . . .
this effect are the following:(i) One observes a linear Wherekiis the unit vector along the axis dh cross-linkR;
(Hookean stress-strain relation at low deformations, beforelS the position of this cross-link, am(R;) is the local nem-
the transition threshold is reache() a stress platea(an atic director, Fig. 2. The sumr_na’uon in Ed) is carried over _
almost constant stress for a range of deforma’idﬂ&n_ all SUCh |0ca| sources Of anISOtrOpy. We then Coarse-gl’aln
countered at medium strains, then followed by the stres#his by introducing a continuum cross-link densigy(r)
growth at higher strains, see Figs.(8i;) the sample, opaque = 2;(r —R;), which imposes a completely random orienta-
before stretching, becomes transparent “monodomain’tion of an easy anisotropy axk{r).
when passing through the stress plateau region. For reasons of mathematical simplicity it is convenient to

The question of universality of thiB-M transition then take the nematic ordering and random anisotropy axes both
arises and requires an appropriate theoretical model. In thisonfined to thex-y plane, though being dependent on all
paper we present such a theory accounting for many featuregree spatial coordinatehis corresponds to® XY model
of the P-M transition. We bring together experimental datajn spin systemsn=2,d=3). This choice does not seem to
obtained by several groups and analyze them with the modegifect the results qualitativelp19] but substantially simpli-
predictions, finding, where possible, the model parameterges the analysis. The local coarse-grained nematic ordering
fror_n fitting Fhe data gxtracteq from the correspondmg publi-ig changing the direction slowly, so that the director
cations. Thls_ paper is _organlzed as foI_Iows. Section 1l Pre—fcose, sind} is parametrised by a single anglewith |n|
sents a basic description of random field model and main- const. This choice, in fact, corresponds to most experi-
theoretical predictions that emerge from it. Section Il ré-ments where a thin flat strip of elastomer was subjected to
views the experimental data and gives an example of analygeformations and théplanaj director distribution examined
sis in terms of the_ model. In t.he_ Sgc. IV we summarize theoy optical or x-ray scanning through the film.
results and also discuss the limitations of the model. When many defects are randomly distributed in space one
L. POLYDOMAIN-MONODOMAIN TRANSITION can assume their density to have a Gaussian distribution:

A. Quenched disorder and polydomains

2
To understand the physics ¢#-M transition we start p[p]zexp[_J dsrp_], 2)
from studying the physical origin and the role of coarse- 2po



PRE 60 POLYDOMAIN-MONODOMAIN TRANSITION IN NEMATIC ... 1849

wherep, is the mean density of impurities, see for instancetribution of the network chains. In case of the ordinary iso-
[20]. As the defects are at the same time randomly orientetropic rubber the chains have spherical shapes at equilibrium
in the x-y plane, we have the probability of their orientation and any deformation will change the elastic energy via
P[k]=1/27. changing the chains shape and, therefore, their conforma-

In the continuum theory, any deviation of nematic direc-tional freedom.
tor from a uniform orientation is penalized by Frank elastic- In nematic rubber, polymer chains forming the network
ity. The random field energy, presented in a discrete form irare anisotropic and in most cases have the average shape of
(1), can now be written in a coarse-grained continuous formuniaxial prolate ellipsoid, the nematic director being parallel
via the crosslink density(r), to the long axis of the ellipsoid. The rotation of the nematic

< director will change the sample shape without change in the
Y chains average ellipsoidal shape and, consequently, without
FrotFr= f d3r{E(Vn)2— Ep(k'n)z ’ ®) change in elagstic elsergy. It Iiter?ally means tha? certa)i/n defor-
mations accompanied by the director rotations are soft, i.e.,
whereK is Frank elasticity constant in one-constant approxi-take place at no energy cost. A good example of such a
mation. deformation, important for understanding M transition,

The free energy containing these two terg, andF ¢, s the shear of an aligned nematic rubber perpendicular to the
captures the main features of systems with quenched weakrector. Under such a shear, the chains may rotate their un-
orientational disorder and one can now apply the Imry-Madeformed ellipsoidal shapése., rotate the nematic direcior
argument6]. For a texture with the correlation distanég  thus accommodating the extension, but necessarily in com-
we can estimate the gradieftn as ~1/¢§p, immediately  bination with the simple shear, and keep their conformational
getting an estimate for the Frank energer domain of the entropy and resulting rubber-elastic energy constant. This
size &p):  Fe~KVéEp?, or Fe ~Kegd 2, whereV andd  deformation will be soft till the director is rotated by 90° and
are the domain volume and the dimensionality of the systenthe system is no more able to accommodate deformation by
In the usual three dimensions;,~Ké&p. The number of  the director rotation, sg@1,22 for details. Olmstedl23] has
random defectdN in such a domain is proportional to the shown that there exists a continuous set of soft deformations,
domain volumetd , N=p,£2 . To minimize the free energy which by appropriately combining strains and director rota-
the system will tend to have nematic director parallel to thetions can make the elastic response vanish.
direction most of the cross-linksectorsk) within this vol- The existence of soft deformations gives rise to several
ume are parallel to. To visualize this picture, one can take alpeculiar effects in mechanical behavior of nematic rubbers,
k; and make a chain from them by connecting them head t6ome of which are explained on the basis of the neoclassical
tail. The end-to-end vector of such a “chain” will give the theory of rubber elasticity21], providing a general expres-
preferable alignment direction for the nematic director. Thesion for the free energy of the nematic rubber valid for large
mean square length of this end-to-end vector will be propordeformations. For the purposes of this paper and for the rea-
tional to Nl/Z:pé@gg/Z as in the case of any random walk. sons of mathematical simplicity it is sufficient to consider
This value indicates the magnitude of the mean field ofsmall strainse,z and to expand the free energy up to the
quenched sources, averaged over the chosen domain volunigms quadratic i,z . The qualitative form of such an ex-
Thus the excess of the crosslinks looking in the preferabl@ansion was envisaged a long time ago by de Gefpwls
direction will be of the order oN2 and the system will gain Later, the molecular expressions for elastic constants were
the random-field energy of the order Bf;~ y(poéd)¥2 by ~ Obtained by Olmste{23]. We make a further simplification
aligning in this direction. Hence the domain free enefgy and describe the director-network coupling by a single term

can be estimated as: —UQ,pe.p, as it was done irf25], with Q,z=Qn(N,Ng
- %5%3) the nematic order parameter abldthe constant of

Fp=Kgi™2— plf2y¢dl2 coupling between the nematic ordering and elastic deforma-
tions. Molecular theory21] and the experimeri26] give the
or order of magnitude fotJ, which is the same as the rubber
V2 L elastic modulugs, i.e.,U=u~10° J/nt in a typical rubber.
Fp=K¢—py y&™* for d=3. (4) The free energy chang@ecnin monodomain nematic
elastomer due to mechanical deformation characterized by
stress and strain tensoss,z ande 5 can than be presented
as the following[25]:

Minimizing Fp with respect to the correlated domain size
(dFpldép=0) we obtain the characteristic lengthy
~K?/pyy? for d=3. This simple scaling argument shows
that no matter how weak is the random disorder it will win at
sufficiently long distances and destroy the long range order- Fmech:f d°r
ing breaking the system into the correlated regions of size

ép -

o
Esaﬁgaﬂ_o-aﬁgaﬁ_UQaﬁsaﬁ . (5)

Minimizing FecnWith respect to the straia we obtain the

equilibrium value of the mechanical free enef@yec{c*).

(A more complete derivation of the effective nematic energy
In the case of nematic elastomers one should also deaind an accompanying discussion can be found in, for in-

with nontrivial elasticity of a nematic rubber network. The stance, if27,28. Here we use a cruder approach simply to

rubber elasticity is of an entropic origin and the elastic enllustrate the symmetry of stress-director coupling and the

ergy of polymer network is controlled by the end-to-end dis-estimate of its energy scale.

B. Continuum nematic rubber elasticity
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FIG. 3. Nematic elastomer structure in two neighboring do- C >0 (b)

mains: (@) no external stresgb) at the transition point. Note the

uniaxial extension turning into shear with opposite directions in  FIG. 4. Two neighboring domain&) before and(b) after the

neighboring domains and the domain wall localization. transition. The director in the domaikis rotated by 90 ° creating
the size mismatch in the domains boundary region of width

1 . . . . :
Fmec}{s*)ZJ dsl’z—[a'aﬁa'aﬁ—l— UZQaBQaB deformations can be estimated using the following scaling
il argument. Let us conslder two nelg_hbonng domains W|t_h
—2UQ505]- 6) initially perpendicular director orientations, shown schemati-

cally in Fig. 4a). Under the extension, the domain B will

The first term in(6) is the(constantmechanical energy of an 9enerate the elastic energy of the order of
applied stress, the second term will simply shift the tempera-
! . : Lo : Moo
ture of nematic to isotropic transition in proportion to the € £,
network crosslinking densityy. They are independent of the
director field configuratiom(r) and are thus irrelevant to our in proportion to its volume. The wall region of the width
problem of director textureéve shall assume that the local w will be deformed as well, with the corresponding elastic
nematic order paramet€)y remains constant far fromy,). penalty
The third term describes the orientational effect of stress. In
the case of uniaxial extension caused by the siveparallel find 28w
to, say,z-axis it will turn into (QNU/u)a(n,n,— 1/3). After 2 '

dropping the irrelevant constant we finally obtain the CorreC'However, the domairk may be able to deform softly, with

tion to th_e ffee energy of a monodomain ne_matlc el.aStomeairector rotating by up to 90 °, with no elastic energy raised
under uniaxial extension dependent on the director field CONL its volume. The mismatch between the two domdthe

figuration, coupled to the stress difference between their natural dimensions along and across

n, Fig. 4(b)] will cause additional deformatioa inside the
, (7)  domain wall which can be estimated as{é&,)/¢
=(/ 17, —1),with § and¢, the domain dimensions along
. ) . . ~and across the local nematic director. The aspect (atio
wheres is the unit vector parallel to the extension axis. Thisisotropy) of nematic polymer chains= /17 is reflected in
coupling carries the simpléand expected message: the the local shape of the network and provides the geometric
nematic director tends to be aligned along the uniaxial exmismatch, see Fig.(8). Hence the additional strain in do-
tension axis. main walls is €/w)(/ /7, —1) and the corresponding en-
However, one should take into account an additional elasergy cost in the wall of volumé&?w is
tic energy due to polydomain structure of elastomer. As the “ 5
correlated spin glass, the zero-stress disordered elastomer wl2wg™ (717 —1)%.
does not have pronounced interfaces between correlated re-

gions. The director changes smoothly in space, without makyhys the mechanical free energy per unit volume of a poly-
ing sharp bends, gradually loosing the memory of its oriengomain nematic elastomer with weak random disorder and
tation. Nevertheless, when an external stress is applied, thender uniaxial extension can be expressed as:

system would minimize the elastic energy if the director field

_ MO’(& n)z
72

AFmech: f d3l’

and elastic network deformations are separated in space. AF:ﬁszﬂ el (/II//L—l)ZJrﬁSZ ®)
Namely, by localizing the director distortions in narrow do- 2 & 2w 3 277

main walls, the system will make the domains free of direc- . . .
tor undulations and allow them to be deformed softly. SuchThe first part in Eq.(8) favors the smaller widttw, thus

domain walls localization causes transformation of uniaxiaf'JlIIOWIng more volume to be _taken by the sqft dom_am A. The
econd part has the opposite effect, tending to increase the

extension Of the 'whole Samp'e. Into shear_ deformation .Osvidth w over which the newly generated size mismatch has
single domains with shear direction alternating between d'f'to be accommodated. Optimizing E@®) with respect tow

ferent domaingsee Fig. 3 an18)). _ _gives for the equilibrium domain wall width:
Localizing the deformation inside the domain walls will

cost some additional energy and will be energetically favor-

§
able only above certain threshold. This energy and related w* :g(/\\//rl)' ©)
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decreasing with the growing applied strain Note that the whereD is a variational parameter used in GV, is the
chain anisotropy{'j//, —1) is due to the coupling between domain size at zero external stress=exp{—2KT0pa/

the polymer backbone and the mesogenic groups and, thus, (8°K)} is a constant of the order of ong, . being the upper
proportional to the nematic order parame@y. Substitut- cutoff in reciprocal spacey,.,=27/a, with a the size of a

ing Eq.(9) into Eqg.(8), we obtain an additional energy term mesogenic molecular unit. This result is a generalization of
~ue(/ 17, —1) responsible for the localisation of domain one obtained by Larkii7] for vortices in superconductors
walls. This energy density, linear in macroscopic strain,with no external fields(which corresponds t® equal to
should be added to the external stress terie, providing  zerg. The first term in(11) corresponds to thermal disorder,
the value of effective stres&wa—,u(/u 1/, —1). As we the second one—to random disorder. The variational param-

shall see later, this shift determines the value of the threshol@terD plays the role of mass and suppresses fluctuations due
stress for theP-M transition. Finally, the free energy of a to both thermal and quenched disorder. The nonzero mass

polydomain nematic elastomer under uniaxial extension is Penalizes otherwise unbound long wavelength fluctuations
and limits their amplitude.
K As was shown befor¢29], in the absence of stress the
_ 3| 2 Y 2 _ 22 replica symmetry is broken and the trivial replica-symmetric
F_J d r{Z (V)" =50 k-m7=u(e=ow)(s )7, solution withD=0 is stable only within the correlated do-
(10 main length scale. It means that the long distance order in the
system is lost and the ground state of the system is polydo-
main. The nontrivial replica-symmetric solution with non-
zero D describing the state of the system with long range
order exists only for external stresses above the critical value
o.. From the equation connecting variational paramé&er

where o,=u(/ /7, —1) and the dimensionless coupling
constantu= (QnU)/ u.

C. Polydomain-monodomain transition with the modified stresg = o — oy [29]:
From the above discussion it follows that drastic changes
in the elastic behavior and ordering in nematic elastomers - 17 7K
happen at a certain value of external stress when correlated D=2uo™oexp - 4¢,0%2)" (12)

domains start deforming softly and the walls between them
become narrow. The director rotation associated with thi
soft deformation of the domains with initially misaligned
director leads to the growth of a long range order in th
system. At the same time, the reduction in the rubber elasti
response produces a stress plateau. WherPthis transition

is completed, the system is in the aligned monodomain state,

which is responding with a normal rubber-elastic energy to a m’e? K

Swe obtain the value of the critical stress (and the modified

ethreshold?rc:oc—aw) and of the corresponding effective
passD.:

further extension. The range of the deformatiowhere the oo= (/)17 —1)+ 1280 Y2 ? (13
director rotation takes place roughly corresponds to the soft 0
plateau on the typical stress-strain plot.

A number of questions on the state of the system just after 5
and further above the transition arige: what is the critical D — K (14)
stress value corresponding to the transiti@in,how ordered € 6450’

is the system just after the transitidiii) how does the long

range(macroscopit alignment in the system evolve on fur-

ther increase in stress above the transition. To answer the%\?here, recall, the coupling constant=QuU/x and the
guestions we have developed a theory, evaluating the eqWarg-stress domain size i~ 16m2K % wpyy?. The second
librium state of a system described by the Hamiltonian Edo on the right hand side ¢13) arises from the balance
(10), briefly reported in[29]. The theory uses the replica between the random field and Frank elasticity and gives a
trick [30] to deal with the quenched random fielax) and ery 0w value of the thresholdThe similar balance pro-

k(x) and approximates the resulting complicated Hamil-g,ces 5 threshold value of external magnetic field aligning
tonian by means of the Gaussian variational metf@dM) the weakly disordered spin glassi.~(poy?)2/KS, see
[31,32 usingH=3,3G"(q) 6364 as a trial Hamiltonian [19,29]) It can be estimated suggesting typical values for
with G7%(q) the replica-symmetric variational ansatz to K~10 ' N, &~10"° m, u~U~10° Pa, and the nem-
(6q0—g). This approximate way of solving the problem is atic order parametey~ 1. Theno, should be of the order
inadequate in the zero-field disordered spin-glass like systemg 110 Pa, a very small value comparing with the as-
[31,32, but is valid for relatively high values of external gymed rubber energy scale In contrast, the first term in

stress above the threshola(o— o) >K/£5~10 Jin?. _ (13) arises from the rubber elasticity and the domain wall
From GVM we have for the average values of the directongcalization, and is of the order 0k(10° Pa), i.e., much

2\ . ~
normal modeg|6(q)|?): bigger thano.. Thus nematic rubber elasticity accompanied

v 1 K2 by the domain walls localization causes a strong increase in
—(l6(q)|>) = + @ , 11)  the threshold stress fdP-M transition. As an estimate for
kT Kg?+D kT&y(Kg2+D)? the threshold stress we can take simply:
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o~=u(/ 17 —1)~uQen (15) From Eg.(11) the macroscopic order paramet8fcro
=Qn(1NV) fd3r (2 cos@)—1) can be estimated. This param-
eter is experimentally accessible by several standard tech-
with the nematic polymer backbone anisotropy characterizediques and is of particular importance here. We have for
by a “chain order parameterQ.y,. Shacro:

kT
gmax 1+
K

2 172
wpeY K max
arctaf( D12 ) ] } . (16)

~Qnexp —
Smacro N 1G(TD1/2K1/2qmax

TakingK=kT/a= kTqy,/27 we can estimate the jump of reorientation of correlated regions towards the field direc-
the long distance order at the transition pdBjaed oc): tion, while keeping their characteristic size unchanged in the
first approximation.

2
(1+2m)

- ~0.01Qy, (17) Il. ANALYSIS OF THE EXPERIMENTAL RESULTS

Shacrd 0¢)= QNeXF{

The P-M transition was investigated by several experi-
which is really small. The behavior &,,.,above the tran- mental groups in a variety of nematic elastomers, both main-
sition is described by Eq16). Just above the critical stress chain and side-chain. Various experimental techniques have
D has a square-root singularity, giving a slow growth ofbeen used to characterize their mechanical behavior and long

TR ; ~y__ ~ range liquid crystalline ordering: stress-strain measurements,
Smacro With increasing the StessaSpacro() ~ exp(c x-ray scattering, IR dichroism measurements, light scatter-
ing, and polarized optical microscopy.
. oo o ) -~ ) The polymers investigated are characterized by different
diate vicinity of the critical point, ato—oc~K/&  values of polymer chain anisotropy’(//", —1) controlling
~10 J/n?. On the other hand, the experimental resolution ofihe transitional behavior. The difference in the chain anisot-
stress iS Usua”y too |OW to examine thIS I‘egion in detail.ropy arises from diﬁerent degrees Of Coup"ng between the
Thus, this initial growth in the long distance order will rather nematic order of mesogenic groups and the polymer back-
be seen as an apparent jumpSRA,cro at the transition point.  pone. In case of main-chain elastomers the anisotropy of the
At o .<o<Kg2,~ 10" J/In?, which corresponds to the chain Q. together with that of the mesogei@ is high
realistic experimental values of stress, the long distance obelow Ty,. The experimen{33] reports///, =10 in a
der grows fast with increasing stress and approaches thmain-chain system, obtained from the direct neutron scatter-

—?rc)”z}. However, the replica-symmetry approximation
used to obtain our Eq$11)—(16) is unreliable in the imme-

saturation value: ing data. In side-chain elastomers, due to the weak coupling
between the backbone and pending mesogenic groups, the
K12 chain anisotropy is usually smdk.g.,” /7 ~1.1 in poly-
Siacrd ) =5,+ (Qn—So)EXP — , acrylated13]) even when the mesogens are strongly ordered.
sord orEN o 2020 2y (0— o) Y? The materials investigated can be divided into four groups in

(18)  the order of the decreasing chain anisotrofyy main-chain
epoxy elastomergFig. 5a)] with chain anisotropy/ /",
where the small constarg, accounts for the “apparent ~5—10, (ii) polysiloxane side-chain elastomégfsig. 5b)]
jump” at the vicinity of the transition point which is not With ///, ~2.5 [34], (iii) polyacrylate elastomers with
described by the approximate EL8). At o—% Spacro T-shaped side groudsig. 5(c)] with ///, ~1.8[10] and
tends toQy, the thermodynamic value of nematic order pa-
rameter in a fully aligned elastomer.
It is interesting to know what happens with correlation
length (which we called the domain sizget and above the
transition. The answer can be obtained from B [29].
The real-space correlation functi@(x) = ([ 8(x) — #(0)1?),
characterizing the decrease of the correlations with distance,
will be strongly affected by the stress only if we have big
value of the effective mas3, namelyD ~KgZ,,. In reality,
we find that at the transition poi ,~ Klg(z), at reasonably b
high stressesD~ u~10° J/n?, both being well below @ ®) ©

Kdfax- Thus the condition of smab is satisfied at and well FIG. 5. The main types of the nematic polymer chain architec-
above the transition the domain sizg is not strongly af- ture: (a) semiflexible main-chain nematic polymer&) conven-
fected by the stress. The evolution of the polydomain stat@onal side-chain nematic polyme() T-shaped side-chain nematic
through and above the transition, therefore, proceeds via th@lymers(see text for detall
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FIG. 6. Stress-strain curves for polydomain nematic elaston@rsnain-chain epoxy elastomefdata points from Fig. 11 df15]), (b)
side-chain siloxane elastome@ata points from Fig. 2 of18]), (c) acrylic side-chain elastomefglata points from Fig. 3 of10]), (d)
acrylate backbone elastomer with cyanobiphenyl side grédgis points from Fig. 6 of13]).

(d)

(iv) polyacrylate side-chain elastomef§&ig. 5b)] with

=1.0x10° Pa (0/u=0.11)[18]. The results of Finkelmann
/17 ~1.1[13].

et al. for side-chain elastomers with acrylic backbone and a
variety of side-group mesogens shew=1.2x10" Pa, u
=1.0x10° Pa (o/x=0.12)[10]. Finally, the results of Tal-
roze et al. [13] register no threshold for the-M transition

One of the main signatures of the .transition, namely, the, polyacrylate rubbers, which is not unexpected sipce
presence of the threshold stress with the plateau on the gy ¢ pa and/ |1/, is very low.

stress-strain curve, was clearly observed in all the materials
with considerable chain anisotropyi)—(iii)] [10,11,14—
16,18, but was reported to be very small if at all noticeable
in side-chain elastomers based on polyacrylate backbone The value of strain\,, corresponding to the end of the
[12,13, see Fig. 6. The value of the threshold stress plateau and the beginning of the monodomain regime can
~u(/ 1/, —1) is controlled by the chain anisotropy and give an independent idea of the chain anisotropy. For a crude
rubber elastic modulus. Hence, even for the same elastiestimate, assume that at=1 (no deformation the average
modulusu, the difference in the threshold stress values duesize of the polydomain sample is affinely proportionall to

to the different values of |/, would be noticeable. Thus =(//%)" due to the random orientation of the aligned
the predicted threshold stress value should be proportional teematic regions. At the end of the stress plateau the domains
the rubber shear modulus;;=(0.1—-1)w. This is in agree- completed the rotation and the director is mostly parallel to
ment with experimental reports. Orté al. present the data the strain direction. The sample size at this strain should be
for main-chain epoxy elastomersy,=2.0x10° Pa, x  proportional to/ giving Npy=/F"%/2%, or / 1/ =\3?.
=4.4x10° Pa (o/n=0.45)[15]. Clarkeet al. reported for ~ One should expeot,, to decrease with growing temperature
polysiloxane side-chain elastomers,,=1.1X10* Pa, u whenQ.,—0 and/|—/, , thus decreasing the width of the

A. Threshold stress

B. Soft stress plateau
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FIG. 7. Macroscopic order parameter as a function of applied stress. Letters refer to the same systems as(@ &aga écom Fig. 12
in of [14], (b) data from Fig. 7b of18], (c) data from Fig. 9 of 10], (d) data from Fig. 2b of 13]. The curves show the fitting with the model
prediction Eq.(18).

plateau, which is in agreement with experimental results fomonodomain. The value of strain corresponding to the

several side-chain elastomdis0,18. One should also ex- completion of the transition in these systems is considerably

pect the threshold stress valug to decrease with increasing smaller than that in the other systems described above, con-

temperature, again due to the decrease in the backbone chaifiming the suggestion about the role of the low chain anisot-

anisotropy. This prediction is not readily confirmed by ex-ropy.

perimental results for side-chain elastomers, which show the

threshold stress roughly independent on temperaifd g,

but it is in agreement with the data for the main-chain elas-

tomers[16]. Together with stress-strain characterization, the measure-
Nematic elastomers obtained by chemical aachdiation ~ ments of the macroscopic order parameter can be made, as a

cross-linking of acrylate backbone with cyanobiphenyl me-function of applied stress. These data may be obtained either

sogenic side groups are known for very small chain anisotby IR-dichroism measuremenft$0] or by the x-ray scatter-

ropy [13]. They show no visible threshold stress. Similarly ing technique[13,18. All the curves forS,.d o) show

they show no visible plateau, although one may interpret aapid increase at the transition point which may be inter-

sharp increase in the stress-strain slope at around=¢ preted as a small jump, given the experimental error. This is

=0.03-0.08 as the point where the-M transition ends followed by an increase and saturation at the leveBgf.,,

[Fig. 6(d)]. This brake point is shifting to higher strains with =0.3—0.6 depending on the material and temperature, Fig.

decrease in the temperature, similaitg, possibly indicat- 7.

ing the end of the domain rotation. From there onwards the The theoretical model, Eq$16) and (18) and Ref.[29],

film is optically transparent and the material is an alignedmakes very similar predictions. A small apparent jump at the

C. Mean orientation parameter
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thresholds,<0.1 should be treated as a fitting parameter. We are now in a position to estimate the strength of the
The evolution of mean orientation parame®ér) just above  effective random fieldy, a parameter of the model. F&
the threshold, and at high stresses follows the asymptotie-10" %2 N, one obtainsp,y?>~6x10"1" P/m®. On the
equation(18): Syacd 0= oo) *exp(—KY2w U 2g o1?). other hand, we estimate the crosslink dengigyfrom the

Equation(18) can be used to fit experimental data. Both rubber modulusu~pokT, at room temperaturepo~2.5
Qy ando are not fitting parameters, but can be read off theX 10°°> m~2. This gives the estimate for the coupling con-
experimental plots. Assuming the domain size2.5um (as stanty~1.5X 10 2! J~0.4&T. This is not an unreasonable
reported |n[16'1a) and thus Obtaining\/m from the value for the COUp|ing of an individual CI’OSSlink, see Et).
fitting in Figs. 7, we can deduce the values for the FrankSuch estimates are only possible well below the nematic-

constantK: for all materialsk ~10~*2 N which is close to iSotropic transition. AQy—0 bothK andy should rapidly
the values reported in the literaturé35] K=10 %2 decrease and the variation of their ratio, giving the domain

—1071 N size &, cannot be predicted from the present model.
However, the systems behave differently before the onset
of P-M transition. The early experiment has shown that in IV. SUMMARY

the case of side-chain acrylic elastomers the long range
alignment is slowly growing at very low stresses below the
transition[10] [Fig. 6(c)], while there is no noticeable mac-
roscopic alignment before the onset of the transition in silox
ane based side-chain elastomgt8] [Fig. 6(b)]. Slight in-
crease in the long range order prior to the abrépM
transition was also reported for main-chain elaston&6
[Fig. 6(@]. The theoretical model presented here does n

The P-M transition in nematic elastomers in external me-
chanical field brings the system from the orientational tex-
ture of glassy “polydomain” with no macroscopic alignment
to a “monodomain” state where the long distance alignment
is well established. The further stretching of the sample sup-
presses the variations of nematic director at the micron scale
and the material becomes optically transparent.
) i °l Due to the coupling between the rubber elasticity and
cover the behavior of the system below the transitiaho olymer chains anisotropy the system possesses the property
<o) and does not give any predictions for the long distanCey soft elasticity which allows for certain deformations to
order in this region. One of the possible reasons for thigya\e|on without an elastic energy cost. Under the uniaxial
growth may come from inhomogeneities in the materialg; oos the system finds a way of saving the free energy by
when some domains experience higher stress than the othelg,a ating the director field distortions and polymer network
and start aligning at a lower value of the average stress.  yotormation in space. Localization of director distortions in
the domain walls formed under applied stress allows the do-
mains to become more pronounced, homogeneous, and to
Another important prediction of the theory is the weak undergo a soft deformation. Thus the uniaxial extension of
dependence of the correlation lengtiomain size¢ £; onthe  polydomain nematic elastomers turns locally into the shear
external stress through and above the transitify  in each domain across the nematic afgee Fig. 2 This
~150K?/poy?. This was confirmed experimentally for side- effect is similar to stripe formation in a monodomain nematic
chain elastomers with siloxane backbone by light scatteringlastomer under uniaxial extension across the nematic direc-
measurementgl8]. The scattering patterns obtained for thetor [36,37]. In that case, at a critical stress controlled by the
samples during and above the transition have a characteristijundary conditions, the sample breaks into series of parallel
cross shape with the peak positions in the stretching directiostripes. The uniaxial deformation turns into a shear in stripes
and across it corresponding to the dimensions of slightlywith shear direction alternating from stripe to stripe. The
anisotropic  domains (correlated regions giving & deformation becomes hard again when the director com-
~2.5 um andé, ~2.2 um. The peaks change their posi- pletes a 90° rotation. As the sample is clamped at both ends
tions very little during the extension and fade gradually asit imposes boundary conditions on the system and together
the long distance order is imposed and the director nonwith the sample geometry sets the value of the critical stress.
uniformities are suppressed, thus decreasing the optical cosimilar effects may also be important in the casePaiM
trast. transition and may account for the facts that sometimes the
The domain size as a function of stress and strain in maithreshold stress is temperature independent and the sample
chain elastomers was investigated by Oeiizl.[16] by po-  sometimes is not absolutely soft through the transition.
larized optical microscopy. They observe the domains to be- At and past the transition the characteristic domain size
come elongated in the stretching direction and the domaig, changes only weakly with applied stress and, therefore,
sizes along and across the stretching direcipand £, to  the increase in the long-range order takes place via the reori-
grow with increasing strain. Initiallybefore stretchingthe  entation of individual correlated regions, rather than through
reported values ar§~¢, ~2.5 um. After theP-M transi-  domain growth. Due to the rubber-elastic energy, the domain
tion &, grows very little: less than twice for very high strains boundaries sharpen on increasing field and are left in the
(e=200%), reachingé, ~4 wm. The domain size along system as “fossils” even after the complete alignment be-
the stress axig increases 3-5 times, however, showing notween all domains is achieved. This is again similar to mon-
sign of divergence. All these observations confirm the ideadomain nematic elastomer with stripes, where after the
that domains are present in the material at any stress and thedmpletion of the transition the director has a zig-zag con-
the long distance order is established via their reorientatiorfjguration making sharp u-turns between the neighboring
not via their growth. stripes, now having the director parallel to the extension axis.

D. Domain size and the random field strength
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Most of the features of th®-M transition are correctly nematic polymers for nonlinear opti€39]. These materials
described by the model though there are still some opepossess strong dipolar moments along the axes of the me-
questions as to why the threshold stress value may be indsegenic groups which are tailored head to tail on polymer
pendent on temperature and how strong is the the influenaghains. This allows for imposing the dipolar ordeecessary
of the sample size and shape and boundary condition® reveal the nonlinear optical propertids/ poling the sys-
(clamping on the value of critical stress. tem in the external electric field. Nematic polymers are nor-

The theoretical model described here should be equallynally in the polydomain state and the dipolar order is
applicable to the magnets with weak random disordercoupled with nematic quadrupolar ordering. Thus to achieve
aligned by an external magnetic field. The main difference isa high degree of dipolar order it will be necessary to apply an
the absence of the effect of elastic domain wall localisatiorelectric field above the critical value and to pass through the
(which was the main factor in creating the threshold stres®#-M transition. To describe the equilibrium and dynamic
o, in elastomers The value of the remaining threshold mag- properties of such a system under the influence of the electric
netic field is predicted to be small and lies in the magnetidield is an interesting and appealing problem. The role of
field range not usually covered experimentally. However theandom disorder effects is also relevant in the analysis of
results of the renormalization group technique contradict thelow dynamics of relaxation in nematic elastomers.
predictions of our model and show no evidence of the dis-
continuous transition in random magnets in the external field
[38]. '_I'hus the appllcablllt_y of the model to magnetic systems ACKNOWLEDGMENTS
remains an open question. As only the replica symmetric
solution above the threshold was considered, our model does This work was supported by EPSRC. We appreciate many
not give any answer to the question of how the correlationyvaluable discussions with P.D. Olmsted and M. Warner, the
in the system are changed below tReM transition and access to the experimental data of H. Finkelmann, C. Ortiz,
whether there is any long range order at this stage. R.V. Talroze, and S.M. Clarke, and critical remarks of T.

One of the possible direct applications of the model is inEmig.
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