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Time-modulated convection with zero mean temperature gradient

A. C. Or and R. E. Kelly
Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095

~Received 8 January 1999!

We study numerically the onset of temporally modulated Rayleigh-Be´nard convection with zero mean
gradient for cases of antisymmetric and asymmetric boundary temperatures over a continuous range of non-
dimensional frequenciesv, from v;O(1021) to v;O(103). For v below 1, the neutral curves for Pr57 in
both cases alternate between synchronous and subharmonic responses, with increasingly shorter intervals asv
becomes small. At largev, the critical wave numberkc asymptotes tov1/2 and the critical Rayleigh numberRc

asymptotes tov3/2, via a subharmonic response in both cases. A comparison with the experimental results of
Niemela and Donnelly@Phys. Rev. Lett.57, 583 ~1986!# shows fairly reasonable agreement.
@S1063-651X~99!08608-0#
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I. INTRODUCTION

Many investigations have been aimed at determining h
periodic modulation with time of the temperature of one
both of the horizontal walls affects the onset of Rayleig
Bénard convection; for a report of experimental results
heating at the lower wall and a survey of theoretical ana
ses, see the paper by Meyeret al. @1#. An interesting limit of
this problem concerns the case when the modulation am
tude is very large in comparison to the characteristic te
perature difference of the mean state and when the cha
teristic diffusion length associated with the modulation, i.
(v* /2k)21/2, wherev* is the dimensional frequency andk
is the thermal diffusivity, is small in comparison to the thic
ness,d, of the fluid layer. When these conditions are fu
filled, the linear problem reduces to determining the stabi
of a thermal Stokes layer with zero mean gradient. This li
of the general problem was studied first by Gershuni a
Zukhovitskii @2# ~see also Sec. 36 of the book by these a
thors @3#! by means of a severely truncated Fourier exp
sion. Nonetheless, their theoretical result compares rea
ably well with the more recent experimental results
Nimela and Donnelly@4#. In particular, a subharmonic dis
turbance was observed to be most critical. The same num
cal approach was used for the nonlinear problem by S
and Hohenberg@5#, except that they allowed for the gener
tion of a mean temperature field. They found that a subc
cal bifurcation is possible, which was evident in the expe
ment of Nimela and Donnelly@4# via the occurrence o
hysteresis.

When (v* /2k)21/2 is comparable tod, the approximate
results of Gershuni and Zukhovitskii@3# and the more accu
rate results of Yih and Li@6# exist for the case of zero mea
temperature gradient. The former results at best are restr
to very low nondimensional frequencies because the t
perature gradient is taken to be independent of distance
mal to the wall. Although the numerical results of Yih and
are not restricted by this assumption, the accuracy of t
results is restricted somewhat by the fact that only two te
were used in their spectral expansions. However, the res
of both research groups agree in the prediction that alter
ing regions of synchronous and subharmonic critical mo
PRE 601063-651X/99/60~2!/1741~7!/$15.00
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exist as the frequency varies~this kind of behavior has bee
found more recently by Kumar@7# for the case of Faraday
waves on the surface of a viscous layer of liquid; see a
Cerda and Tirapegui@8,9#!.

It is not obvious how the solution regime existing fo
nondimensional frequencyv5(v* d2/2k) of O(1) changes
as v increases so as to permit only a subharmonic solu
rather than further alternating solutions. The present calc
tions have been done mainly to fill in this gap. However,
the process, more accurate, fully converged results in gen
have naturally been obtained and are presented.

II. MATHEMATICAL FORMULATION

We consider an infinite horizontal layer of an incompre
ible fluid of thicknessd. The layer is bounded above an
below by rigid walls. The layer is isothermal at a temperatu
T0* in the absence of modulation. Then we impose a si
soidal temperatureTd* cosv* t* ~asterisk denotes dimen
sional quantities! on the lower wall. We scale length, time
velocity, pressure relative to the hydrostatic reference va
and temperature relative toT0* by d, v* 21, k/d, rnk/d2,
andTd* , respectively. The governing nondimensional equ
tions are as follows:

2vPr21] tU1U•“U52“P1¹2U2RTk, ~1!

“•U50, ~2!

and

2v] tT1U•“T5¹2T, ~3!

wherek denotes the vertical downward direction so that t
upper and lower walls are located atz50 and 1, respec-
tively. The nondimensional frequency is given byv
5v* d2/2k, the Prandtl number by Pr5n/k, and the Ray-
leigh number byR5agTd* d3/kn, so thatR depends on the
amplitude of the modulation. The basic state is one of
motion, withU50, and a nondimensional basic temperatu
T(z,t), defined by the relationship T* (z,t)5T0*
1Td* T(z,t). To computeT(z,t), we consider in turn two
1741 © 1999 The American Physical Society
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1742 PRE 60A. C. OR AND R. E. KELLY
situations. The first case corresponds to an asymme
modulation of the basic temperature. In this case, we imp
at the lower wall the following boundary condition:

T~1,t !5cost, ~4a!

while the upper boundary is assumed to be perfectly cond
tive so that

T~0,t !50. ~4b!

In the case of Niemela and Donnelly@4#, the modulation is
prescribed on the upper wall but there is no mention ab
the thermal boundary condition at the lower wall. In Sw
and Hohenberg@5#, the modulation is on the lower wa
while a thermal boundary condition of the mixed type
applied at the upper wall. Our perfectly conductive upp
wall corresponds tolw5` in the upper-wall thermal condi
tion given by their equation~2.5!, whereas Swift and Hohen
berg used a valuelw50.27 in order to compare with exper
mental results.

The second case we consider corresponds to an anti
metric modulation of the basic temperature. We then imp
at the upper wall the following boundary condition:

T~0,t !5cost, ~5a!

and at the lower boundary

T~1,t !52cost, ~5b!

which are the same boundary conditions used in Yih and
@6#. The governing equation is

2vTt5Tzz. ~6!

The solutionT(z,t) to the asymmetric problem from Eqs
~4a!, ~4b! and ~6! is

T~z,t !5
1

2 H sinh~ iv!1/2z

sinh~ iv!1/2 eit1c.c.J , ~7a!

where ‘‘c.c.’’ denotes the complex conjugate. Similarly, t
solutionT(z,t) to the antisymmetric problem from Eqs.~5a!,
~5b!, and~6! is

T~z,t !5
1

2 H sinh~ iv!1/2~1/22z!

sinh„~ iv!1/2/2…
eit1c.c.J . ~7b!

We now superimpose a perturbation temperatureu(x,y,z,t)
on T and introduce the corresponding perturbation veloc
componentsu,v,w and pressurep. After eliminating the
pressure and horizontal velocities, we obtain the follow
perturbation equations:

2vPr21¹2wt2¹4w52R¹'
2 u, ~8!

and

2vu t2¹2u52Tz~z,t !w. ~9!

The horizontal Laplacian¹'
2 is defined as (]xx1]yy). For

the perturbationsw and u, symmetric rigid and isotherma
boundary conditions are imposed atz50 and 1, giving
ric
se

c-

ut

r

m-
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w~0!5u~0!5w~1!5u~1!50. ~10!

Because of the horizontal isotropy of the layer, it is sufficie
to look for two-dimensional solutions of the following form

~w,u!5„W~z,t !,Q~z,t !…eikx1c.c. ~11!

The numerical method used for solving the above problem
standard~see, for example, Or@10#!. We first expand thez
dependence of the variables using the Chebyshev functi
as follows:

W~z,t !5 (
n50

Nt

an~ t !Tn~x!, Q~z,t !5 (
n50

Nt

bn~ t !Tn~x!,

~12!

whereNt is a truncation number andx exists in@21,1# and
can be transformed to the physical domain@0,1# by z5(x
11)/2. Upon the substitution from Eqs.~11! and ~12! into
the governing equations~8! and~9! and utilizing the bound-
ary conditions~10! ~using the Tau method!, we obtain a fi-
nite matrix equation of the following form:

2vBẋ5Ax1 iF~ t !x, ~13!

where all the matrices are real;B andA are time-independen
and F(t) is 2p-periodic. The state vectorx consists of an
arrangement of the Chebyshev coefficientsan(t) and bn(t)
~for 0<n<Nt!. We then apply Floquet theory to expand th
vector-dependent variable in the form of Fourier series. T
general response ofx(t), for example; is given by

x~ t !5 (
m52Np

Np

xme~ im1s!t, ~14!

where thex ~2Np<m<Np for a truncation numberNp! is a
set of constant vector Fourier coefficients ands is in general
a complex Floquet exponent. We look for synchronous a
subharmonic solutions separately using an iteration
proach, corresponding tos i50 and1

2, respectively. We have
also considered more general values ofs i but so far no un-
stable quasiperiodic solution has been found. The convec
occurs in the form of either synchronous or subharmo
modes, as will be described in the next section.

III. NUMERICAL RESULTS

We first present results for the asymmetric case. This c
is studied more extensively here in order to compare with
experimental results@4#. Then we present some results on t
antisymmetric case, which serve as an extension of Yih
Li’s results @6#.

A. Asymmetric case

First, we consider a fluid with Pr57. Results for other
values of Pr will be given later. For this case, numeric
convergence is good at largev at which we use 14 Cheby
shev modes inz and 24 Fourier modes int as representations
At lower v, convergence becomes slower in terms of t
number of iterations required as well as largerNt and Np
required for convergence. As discussed by Barenghi
Jones@11# and others, the use of Floquet theory to descr
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PRE 60 1743TIME-MODULATED CONVECTION WITH ZERO MEAN . . .
the stability of the system becomes questionable for lowv.
Nevertheless, in this case we compute results down tov
50.09.

Figures 1~a! and 1~b! show plots of critical-curve depen
dence on frequency. Due to the large range of freque
scale, we divide the stability curves into two parts. Figu
1~a! shows the lower-frequency and Fig. 1~b! shows the
higher-frequency range. The log-log scale in Fig. 1~b! ap-
pears more suitable for the purpose of presentation of
high-frequency range in order to demonstrate the asym
totic limit of the thermal Stokes layer asv˜`. However,
for clarity we also include the more customary plot of t
same curves in the inset. Forv smaller than 1, Fig. 1~a!
reveals an alternating pattern ofS and H modes. Asv be-
comes smaller, the critical curves appear to decreas
width. At low frequency a larger number of base functions
needed to achieve numerical convergence of the soluti
For example, atAv50.3, bothNt and Np have to be 80%
larger than those corresponding values atAv51. Computing
the critical curves becomes increasingly difficult belowAv

FIG. 1. ~a! A low-frequency plot ofRc vs v1/2 for the case of an
asymmetric basic temperature with Pr57; ~b! a higher frequency
log-log plot of Rc /v3/2 vs v1/2. The inset to~b! shows the same
curves without the asymptotic scaling to emphasize the alterna
characteristics of the curves.
y

e
o-

in
s
s.

50.3. Therefore, we cut off the plot atAv50.3.
The appearance of increasingly closely spaced lo

while taking the limitv˜0 is a behavior reported by Cerd
and Tirapegui@8,9# and Dowden@12#. These two studies
concern, respectively, an isothermal layer with a free surf
undergoing low-frequency gravitational modulation and t
problem of Rayleigh-Be´nard convection with free-slip
boundary conditions. The difference between Dowden’s a
Cerda and Tirapegui’s results, however, is the absence o
subharmonic loops in the case of Dowden’s result~see Fig. 1
of @12#!. The alternating stable regions in the case
Dowden are filled by the unstable loops of subharmonic
lutions in our case and in the case of@8,9#.

In the inserted panel in Fig. 1~b!, we reveal the structure
more clearly by plottingRc . The striking feature shown
there of alternating synchronous~S! and subharmonic~H!
critical curves was also observed earlier for the antisymm
ric case by Yih and Li@6# ~we also use their abbreviations fo
the two modes!. While previous results have either explore
thev1/2;O(1) region or the region for asymptotically larg
v, Figs. 1~a! and 1~b! together give a display of the critica
curves for a wide-continuous range of frequency. Figure 1~b!
shows that the alternating pattern ceases whenv1/2'1.9,
which is a new result. Beyond this value, instability is di
tated solely by a subharmonic response. Furthermore,
quantityRc /v3/2 asymptotes to a constant value, correspo
ing to Rc'65.5v3/2 when v1/2.10, indicating the onset o
an asymptotic balance. In Figs. 2~a! and 2~b!, respectively,
we show a regular and a log-log plot forkc and kc /v1/2

versusv1/2. These critical wave-number curves correspo
to the critical curves of Figs. 1~a! and 1~b!. For v1/2

;O(1), thecritical wave number becomes discontinuous
intersections between the synchronous and subharmonic
tral curves. The variouskc associated with the neutral-curv
loops appear as the slanted curves bounded approxim
between values 2 and 5. Figure 2~b! shows that there is a
characteristic change for the lastkc curve corresponding to
the asymptotic subharmonic mode. This lastkc curve tilts in
an opposite sense to that of the other curves. The asymp
relationship iskc;0.525v1/2, approximately. The alternating
structure betweenS and H modes for moderatev does not
seem to have a simple explanation. We examined the m
nitude of uxmu2 of each harmonic mode and found that t
fundamental mode (m51) is always the dominant mode
Thus, it is unlikely that the individual critical curves are du
to different higher harmonics that become unstable. We n
that Cerda and Tirapegui@8# interpret the alternating struc
ture that they found at low frequency for an isothermal lay
undergoing gravitational modulation as indicating the a
pearance of an additional mechanism for instability, name
Rayleigh-Taylor instability in addition to the usual mech
nism of parametric resonance. In@9#, the authors present th
results in significantly greater detail. Here, the sign of ba
temperature gradient is analogous to the sign of vertical
celeration in the case of@8,9#. The physical instability
mechanisms for the two situations differ, but the bifurcati
structures are sufficiently similar in the low-frequency ran
that a broader view of the modulated instability is approp
ate. Since the asymptotic limitv˜0 cannot be approache
by direct numerical computations, in a separate note@13#,

g
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1744 PRE 60A. C. OR AND R. E. KELLY
this limit will be analyzed by the WKB approach to bridg
the gap.

Results at other values of the Prandtl number are avail
from the previous work of Gershuni and Zhukhovitskii@3#
and Niemela and Donnelly@4#. We extend our results to
lower Prandtl numbers in order to make comparisons p
sible. We first compute the critical Rayleigh number vers
Pr for two cases of frequency:~i! v1/2530 and ~ii ! v
˜`. In case~ii ! the problem is computed on a semi-infini
domain@3#. The Chebyshev base functions are still used,
thex domain@21,1# for this set of functions is mapped to th
j domain@0,̀ # by using an algebraic transformation@14# j
5L(11x)/(12x), whereL is a length scale of the mapping
Here we have usedL53. Case~i! should in principle pro-
duce the same result as case~ii ! if the v value for case~i! is
large enough to reach the asymptotic limit. Figure 3 sho
the variation ofRc /v3/2 with Pr. The variation becomes ver
steep as Pr becomes small. The dashed curve correspon
case~i! with v530. The solid curve corresponds to case~ii !
with the semi-infinite domain formulation. The two curve
almost overlap each other. Furthermore, when we comp
the result with that from Gershuni and Zhukhovitskii@3#, or
equivalently with Fig. 4 of Niemela and Donnelly@4#, who

FIG. 2. ~a! Corresponding plot ofkc vs v1/2, and ~b! corre-
sponding log-log plot ofkc /v1/2 vs v1/2 for the asymmetric case.
le
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reproduced the result of Gershuni and Zhukhovitskii, we
that the agreement is reasonably good. Our result sh
Rc /v3/2'104 and 87.2 at Pr50.49 and 0.75, respectively
compared with the values of 122 and 83 of Niemela a
Donnelly @4# at the same Prandtl numbers. The result in
cates thatRc /v3/2 becomes insensitive to Pr when Pr.2. A
very similar behavior is observed for the critical wave nu
ber, which is shown in the inserted panel, wherekc /v1/2 is
plotted as a function of Pr. In the panel the two wave-num
curves for cases~i! and ~ii ! are indistinguishable.

In Fig. 4, we turn to another comparison. The dashed l
connects a set of experimental points obtained from Niem
and Donnelly~private communication! for a fluid with Pr
50.49. The solid and dashed-dotted lines connect the po
obtained from our numerical computations at the correspo
ing frequencies with the same value of Pr. The solid a
dashed-dotted lines correspond, respectively, to a perfe
conducting and an insulating upper boundary condition. T

FIG. 3. ComparisonRc /v3/2 vs Pr for~i! v5900 ~dashed line!;
~ii ! v˜`. Case~ii ! ~solid line! uses the semi-infinite domain for
mulation. The inserted panel shows the overlapping curves
kc /v1/2 vs Pr for the cases~i! and ~ii !.

FIG. 4. Comparison of the neutral curve variation inv obtained
by Niemela and Donnelly and by our numerical computations
Pr50.49.
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PRE 60 1745TIME-MODULATED CONVECTION WITH ZERO MEAN . . .
difference arising from the two thermal boundary conditio
is small, indicating that the upper wall thermal condition
unimportant for the range of frequencies shown. The diff
ence between the experimental and computational res
may be due to side-wall effects in the experiment. But
percentage of disagreement seems to be independentv,
indicating that another reason is likely.

B. Antisymmetric case

In order to compare with Yih and Li’s stability boundarie
given in their Fig. 1, we set Pr50.73, the same value as use
in their study. Thev defined in Yih and Li’s paper corre
sponds to our 2v. Only the rightmostH neutral-curve loop in
their Fig. 1 has been recalculated here for the purpose
comparison. In our inserted panel to Fig. 5, we plotRc ver-
sus 2v, the same quantities plotted in Yih and Li’s Fig.
Our leftmostH neutral-curve loop in the inset corresponds
Yih and Li’s rightmostH loop. The difference in the minima

FIG. 6. A corresponding log-log plot ofkc /v1/2 vs v1/2 for the
antisymmetric case, Pr50.73.

FIG. 5. A log-log plot of Rc /v3/2 vs v1/2 for the case of an
antisymmetric basic temperature with Pr50.73. Inset: a regular
plot of the same quantities to emphasize the alternating ne
curves.
s

-
lts
e

of

of the two curves is within 3%, indicating good agreeme
Loops to the left of thisH loop are not shown in the presen
figure. But the low-v behavior for the antisymmetric cas
appears to be similar to that of the asymmetric case. In Fi
of Yih and Li, the stability condition forv below 5~approxi-
mately! is indicated by a number of computed points~corre-
sponding to their leftmost dashed curve! representing the
mean positions of the synchronous and subharmonic loo

Starting with Yih and Li’s result corresponding to aH
loop atv'18, we extend their result further to the right. O
results show aS loop following theH loop, and then still
anotherH loop follows. In the log-log plot of Fig. 5, we
show Rc /v3/2 versusv1/2 for the critical mode of distur-
bance. The log-log result shows that this lastH loop is not
followed by anotherS loop but becomes the asymptotic crit
cal curve for the Stokes layer. Unlike the previous ca
where the critical curve tends to a constant value in a mo
tonic fashion, here the neutral curve approaches
asymptotic limit only after first encountering a dip atv1/2

'5.6. Figure 6 shows the correspondingkc in the inserted
panel and the log-log plot ofkc /v1/2 versusv1/2. In order to
compare the asymptotic values for case~ii ! to those for case
~i!, we set Pr57.0. At v1/2530 we obtainRc'65.304v3/2

andkc'0.525v1/2. The corresponding values for the asym
metric case at v1/2530 are Rc'65.483v3/2 and kc
'0.525v1/2. The differences for the two cases are insign
cant, suggesting that the two boundary layers can be tre
independently of each other forv1/2>30 when Pr57.0.

Since there are two Stokes layers, the disturbance mo
can be realized in even or odd symmetry with respect to
midplane whenv is sufficiently large. Their mode shape
will be illustrated in Fig. 8~see below!. The difference inRc
for the even and odd modes is small for highv. For example,
at Av520, theRc for the even and odd modes are, respe
tively, 87.247v3/2 and 87.031v3/2. The difference is small,
suggesting that both modes might have an equal chanc
being realizable in experiments at high frequencies. But
lower frequency, the difference between the two modes
become more pronounced. The results in Fig. 5 are for
even mode. In Fig. 7, we plot the quantityRN /v3/2 versus

FIG. 7. Plot shows the variation ofRN /v3/2 for the even mode
~solid! and odd mode~dashed! in the antisymmetric case. The wav
number is prescribed atk50.7v1/2.al
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1746 PRE 60A. C. OR AND R. E. KELLY
v1/2 for neutral instability of the even mode~solid line! and
odd mode~dashed line! for the frequency range betwee
v1/2510 and 20. Since the variation inkc appears small, we
consider the wave number fixed at 0.7v1/2, the critical value
for v'20 and higher. The neutral curves for the even a
odd modes intersect three times in the range. Forv1/2.18,
the odd mode is slightly more critical. Forv1/2,11, the two
curves start to diverge from one another and the even m
becomes critical.

In Figs. 8~a!–8~d! we show thez dependence ofŴ1(z)
andW̌1(z), which are the first two Fourier coefficients of th
cosine and sine components ofW(z,t) of the subharmonic
solution. Figures 8~a! and 8~b! show theŴ1(z) and W̌1(z)
functions, respectively, for the asymmetric case. Note t
there is a pronounced change in the decay of the disturb
outside the Stokes layer, namely, from monotonic to osci
tory decay, asv1/2 increases from 10 to 30. The three curv
from left to right correspond toAv510, 20, and 30. Figures
8~c! and 8~d! show theŴ1(z) andW̌1(z) functions, respec-
tively, for the antisymmetric case. The three curves from
to right correspond again to the same values ofAv. In Figs.
8~c! and 8~d!, we show the even eigenfunctions for the an

FIG. 8. Vertical dependences of the first two functions in t
Fourier expansion corresponding to the cos(t) term @~a!, ~c!, and
~e!#, and to the sin(t) term@~b!, ~d!, and~f!#. Results ofAv510, 20,
and 30 show that the disturbances are localized to the boun
layer whenv becomes large.
d

de

at
ce
-

ft

-

symmetric case. For a givenv, the maximal disturbance lo
cation appears to be shifted slightly towards the interior
comparison with the asymmetric case. In Figs. 8~e! and 8~f!
we showŴ1(z) andW̌1(z) for the odd eigenfunction for the
two casesAv520 and 30. The odd mode is no long
present atAv510.

The value ofz at which the maximal amplitude of th
disturbance occurs appears to be correlated with the
marks on the horizontal axis of each panel, which meas
the boundary-layer thickness. The correlation is strong av
becomes larger. In the plots we calibrate the tick marks w
the quantity 3/Av, where 1/Av is proportional to the Stokes
layer thickness. A factor 3 is introduced to position the
marks roughly at the maxima of the disturbance amplitu
for the result of Fig. 8~a!. It should be noted, however, tha
the disturbances penetrate well into the interior of the la
as well.

IV. DISCUSSION

In most of the studies of modulated thermal convect
done so far, the modulation occurs about a state with a n
zero mean temperature gradient, i.e., the effects of mod
tion upon classical Rayleigh-Be´nard convection have bee
studied. Upon the use of Floquet theory for the lineariz
equations, the classical linear critical value ofRc'1707.76
without modulation has been shown to increase with mo
lation but it has also been shown that the shift becomes s
as v becomes large for moderate amplitudes of modulat
@15#. However, it is now clear that, at high frequencies a
large modulation amplitudes, a second instability associa
with the thermal Stokes layer can occur. It is therefore
interest to estimate the range of meanDT* for which the
present analysis describes adequately the instability of
thermal Stokes layer when a mean gradient of temperatu
present. Conversely, it is important to state the conditio
under which the instability of the thermal Stokes layer can
ignored if one is primarily interested in estimating the effe
of modulation upon conventional Rayleigh-Be´nard convec-
tion based on the results of earlier studies.

The mean and oscillating effects are characterized by
nondimensional parameters,

RDT* 5
agDT* d3

nk
, RTd*

5
agTd* d3

nk
, ~15!

which are the Rayleigh numbers measuring the mean t
perature difference and the oscillating wall temperature,
spectively. From the foregoing results, an asymptotic re
tionshipRTd*

5av3/2 is obtained roughly forv1/2.10, where

‘‘ a’’ is a constant for a given fluid. For a layer which i
unstable to Rayleigh-Be´nard convection at a certain temper
ture differenceDT* , a moderate magnitude ofTd* typically
exerts a stabilizing effect. But asTd* increases, there is a
point where the layer becomes unstable solely due toTd* .
This value ofTd* can be estimated as follows:

Td*

DT*
5

RTd*

RDT*
;

a

1707.76
v3/2.

ry
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Now, a depends on Pr. But according to the result of Fig.
a becomes insensitive to the change of Pr for Pr.2. We take
this value ofa equal to 80.4~see the results in Sec. III A! and
estimate that

Td*

DT*
50.0471v3/2.

If v is large, sayv5102, we obtainTd* '47.1DT* . In other
words, the oscillating temperature must be more than
times the mean temperature difference if the latter is to h
an insignificant effect.

V. CONCLUSION

The problem of the onset of convection in a fluid lay
when the temperatures of one or both walls vary periodic
with time about a reference temperature has been stu
numerically in this paper for more general values of the n
dimensional frequency parameterv than done previously
For the case of asymmetric modulation of one wall, it
shown that the alternating sequence of synchronous and
harmonic instabilities characteristic of the low-frequency
gime disappears whenv1/2 reaches a value of 1.9 approx
.

,

0
e

y
ed
-

b-
-

mately. Forv1/2.1.9, the critical disturbance corresponds
only a subharmonic solution. For the case with antisymm
ric modulation, there are two localized disturbances, each
which is associated with a Stokes layer at the wall. Bo
even and odd critical modes can exist for the antisymme
case at sufficiently largev. For v1/2;O(1), our recalcula-
tion agrees reasonably well with Yih and Li’s. The layer
more unstable to the antisymmetric than the asymme
modulation. There appear to be interactions between the
unstable Stokes layers forv as large as 93102 via penetra-
tion of the disturbance outside the Stokes layers. It wo
naturally be of interest to explore the weakly nonlinear pro
lem in order to get a better idea of the role of the subcriti
instability discussed by Swift and Hohenberg@5# over a
wider range ofv. We hope to pursue this aspect in anoth
paper.
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