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Time-modulated convection with zero mean temperature gradient

A. C. Or and R. E. Kelly
Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095-1597
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We study numerically the onset of temporally modulated RayleighaB# convection with zero mean
gradient for cases of antisymmetric and asymmetric boundary temperatures over a continuous range of non-
dimensional frequencies, from w~0(10™1) to w~0O(10%). For w below 1, the neutral curves for £i7 in
both cases alternate between synchronous and subharmonic responses, with increasingly shorter intervals as
becomes small. At large, the critical wave numbet, asymptotes ta*? and the critical Rayleigh numb&;
asymptotes tav>?, via a subharmonic response in both cases. A comparison with the experimental results of
Niemela and DonnellyPhys. Rev. Lett57, 583 (1986 ] shows fairly reasonable agreement.
[S1063-651%99)08608-0

PACS numbdss): 47.20.Bp

[. INTRODUCTION exist as the frequency variéthis kind of behavior has been
found more recently by Kumdr7] for the case of Faraday
Many investigations have been aimed at determining howvaves on the surface of a viscous layer of liquid; see also
periodic modulation with time of the temperature of one orCerda and TirapeguB,9]).
both of the horizontal walls affects the onset of Rayleigh- It is not obvious how the solution regime existing for
Bénard convection; for a report of experimental results fornondimensional frequenay= (w*d?/2«) of O(1) changes
heating at the lower wall and a survey of theoretical analy-as @ increases so as to permit only a subharmonic solution
ses, see the paper by Meyatral.[1]. An interesting limit of ~ rather than further alternating solutions. The present calcula-
this problem concerns the case when the modulation amplfions have been done mainly to fill in this gap. However, in
tude is very large in comparison to the characteristic temthe process, more accurate, fully converged results in general
perature difference of the mean state and when the charabave naturally been obtained and are presented.
teristic diffusion length associated with the modulation, i.e.,
(w*2k) Y2, wherew* is the dimensional frequency and Il. MATHEMATICAL FORMULATION

is the thermal diffusivity, is small in comparison to the thick- . L . .
ness,d, of the fluid layer. When these conditions are ful- We consider an infinite horizontal layer of an incompress-

filled, the linear problem reduces to determining the stabilityP!€ fluid of thicknessd. The layer is bounded above and
of a thermal Stokes layer with zero mean gradient. This nmnbf'QW by rigid walls. The layer is isothermal at a temperature
of the general problem was studied first by Gershuni ando In the absence of modulation. Then we impose a sinu-
Zukhovitskii [2] (see also Sec. 36 of the book by these au-Soidal temperaturel’; cosw*t* (asterisk denotes dimen-
thors[3]) by means of a severely truncated Fourier expansional quantitieson the lower wall. We scale length, time,
sion. Nonetheless, their theoretical result compares reasoMelocity, pressure relative to the hydrostatic reference value,
ably well with the more recent experimental results ofand temperature relative 55 by d, o* %, x/d, pv«/d?,
Nimela and Donnelly{4]. In particular, a subharmonic dis- and T% , respectively. The governing nondimensional equa-
turbance was observed to be most critical. The same numeriions are as follows:
cal approach was used for the nonlinear problem by Swift
and Hohenberg5], except that they allowed for the genera- 2wPr '9U+U-VU=-VP+V2U—-RTk, (1)
tion of a mean temperature field. They found that a subcriti-
cal bifurcation is possible, which was evident in the experi- V.-U=0, (2
ment of Nimela and Donnellj4] via the occurrence of
hysteresis. and

When (w*/2«) %2 is comparable tal, the approximate ,
results of Gershuni and ZukhovitskB] and the more accu- 20 T+U-VT=VT, (©)]
rate results of Yih and Lfi6] exist for the case of zero mean ) ) )
temperature gradient. The former results at best are restrictéf’€rek denotes the vertical downward direction so that the
to very low nondimensional frequencies because the temiPPer and lower walls are located &0 and 1, respec-
perature gradient is taken to be independent of distance notVely: 2The nondimensional frequency is given by
mal to the wall. Although the numerical results of Yih and Li =®”*d“/2«, the Prandtl number by Prv/«, and the Ray-
are not restricted by this assumption, the accuracy of theileigh number byR=agT5d* x», so thatR depends on the
results is restricted somewhat by the fact that only two term@mplitude of the modulation. The basic state is one of no
were used in their spectral expansions. However, the resulfgotion, withU=0, and a nondimensional basic temperature,
of both research groups agree in the prediction that alternafF(z,t), defined by the relationship T*(z,t)=Tg
ing regions of synchronous and subharmonic critical modes- T T(z,t). To computeT(z,t), we consider in turn two
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situations. The first case corresponds to an asymmetric w(0)=6(0)=w(1)=6(1)=0. (10)
modulation of the basic temperature. In this case, we impose
at the lower wall the following boundary condition: Because of the horizontal isotropy of the layer, it is sufficient
to look for two-dimensional solutions of the following form:
T(1}t)=cost, (4a) )
(W,0)=(W(z,),0(z1t))e*+c.c. (11)
while the upper boundary is assumed to be perfectly conduc-
tive so that The numerical method used for solving the above problem is
standard(see, for example, Of10]). We first expand the
T(0t)=0. (4b) dependence of the variables using the Chebyshev functions,

) ~as follows:
In the case of Niemela and Donnel[l#], the modulation is

prescribed on the upper wall but there is no mention about Nt Nt
the thermal boundary condition at the lower wall. In Swift W(z,1)= > a,(O)Ty(x), O(zt)= > by(1)Ty(x),

. . n=0 n=0
and Hohenberd5], the modulation is on the lower wall (12)
while a thermal boundary condition of the mixed type is
applied at the upper wall. Our perfectly conductive upperwhereN; is a truncation number arndexists in[—1,1] and
wall corresponds ta.,,= in the upper-wall thermal condi- can be transformed to the physical dom&ni] by z=(x
tion given by their equatiof2.5), whereas Swift and Hohen- 1 1)/2. Upon the substitution from Eqél1) and (12) into
berg used a value,,=0.27 in order to compare with experi- the governing equation®) and(9) and utilizing the bound-

mental results. ary conditions(10) (using the Tau methodwe obtain a fi-
The second case we consider corresponds to an antisyrite matrix equation of the following form:

metric modulation of the basic temperature. We then impose

at the upper wall the following boundary condition: 2wBX=Ax+iF(t)Xx, (13
T(0t)=cost, (58  where all the matrices are re&@;andA are time-independent
and F(t) is 2m-periodic. The state vector consists of an

and at the lower boundary arrangement of the Chebyshev coefficieatgt) and b,(t)

(for 0O=n=N,). We then apply Floquet theory to expand the
vector-dependent variable in the form of Fourier series. The
peneral response aft), for example; is given by

T(1t)=—cost, (5b)

which are the same boundary conditions used in Yih and L
[6]. The governing equation is Np
— (im+ o)t
20T =T,,. (6) X m; e ’ (19

The solutionT(z,t) to the asymmetric problem from Egs. where thex (—N,<=m=N, for a truncation numbeN) is a
(4a), (4b) and(6) is set of constant vector Fourier coefficients ant in general

a complex Floguet exponent. We look for synchronous and
1(sinhiw)z ; subharmonic solutions separately using an iteration ap-
2 sink(i w)ﬂ? etee, (7a) proach, corresponding @, =0 and3, respectively. We have

also considered more general valuesspfbut so far no un-
where “c.c.” denotes the complex conjugate. Similarly, the stable quasiperiodic solution has been found. The convection
solutionT(z,t) to the antisymmetric problem from Eq&a),  occurs in the form of either synchronous or subharmonic
(5b), and(6) is modes, as will be described in the next section.

1[sinh(iw)1’2(1/2— 2)

T(z,t)=

_ it . NUMERICAL RESULTS
T(z,1) 5 sini((i @) 722) e'+c.c.. (7b)

We first present results for the asymmetric case. This case
We now superimpose a perturbation temperati(pey,z,t) is studied more extensively here in order to compare with the
on T and introduce the corresponding perturbation velocityexperimental resulfst]. Then we present some results on the
componentsu,v,w and pressurg. After eliminating the antisymmetric case, which serve as an extension of Yih and
pressure and horizontal velocities, we obtain the followingLi’s results[6].
perturbation equations:
A. Asymmetric case

2wPr V2w, — V4w=—RV?9, (8) _ _ o
First, we consider a fluid with RBr7. Results for other
and values of Pr will be given later. For this case, numerical
convergence is good at largeat which we use 14 Cheby-
20w6,—V20=—T,(z,t)w. (9) shev modes iz and 24 Fourier modes inas representations.

At lower w, convergence becomes slower in terms of the
The horizontal LapIaciaer is defined as dxx+dyy). For — number of iterations required as well as largér and Np
the perturbationsv and 6, symmetric rigid and isothermal required for convergence. As discussed by Barenghi and
boundary conditions are imposedzt 0 and 1, giving Joned[11] and others, the use of Floquet theory to describe
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6000 ' ' ' ' =0.3. Therefore, we cut off the plot afw=0.3.
/] The appearance of increasingly closely spaced loops
e /7 while taking the limitw—0 is a behavior reported by Cerda
soo0l o and Tirapegui[8,9] and Dowden[12]. These two studies
< - concern, respectively, an isothermal layer with a free surface
4500 1 undergoing low-frequency gravitational modulation and the
s problem of Rayleigh-Beard convection with free-slip
40001 1 boundary conditions. The difference between Dowden’s and

Cerda and Tirapegui’'s results, however, is the absence of the

asoer subharmonic loops in the case of Dowden'’s re&de Fig. 1

sa00| s 71 ] of [12]). The alternating stable regions in the case of
. / Dowden are filled by the unstable loops of subharmonic so-
2500 | /H : lutions in our case and in the case[8f9].
A In the inserted panel in Fig.(i), we reveal the structure
2000, 02 04 e Y ’ 1o more clearly by plottingR,. The striking feature shown
(a) Nz there of alternating synchronoy$) and subharmonicH)

critical curves was also observed earlier for the antisymmet-

o ric case by Yih and Lj6] (we also use their abbreviations for

the two modep While previous results have either explored
5, 12000 y\\ H the a_)1’2~0(1) region or the reg_ion for_asymptotically _Ia_lrge
\ 10000 Wy T o , Figs. &) and 1b) together give a display of the critical
o a00 ’s/ curves for a wide-continuous range of frequency. Figute 1
\\ 8000 HY shows that the alternating pattern ceases whéf~1.9,
10°F SIS wonol” ‘ I which is a new result. Beyond this value, instability is dic-
o CIUUNTTT 000 : tated solely by a subharmonic response. Furthermore, the
S k ’ . Co quantityR. / w®? asymptotes to a constant value, correspond-
. ing to R.~65.50%? when w?> 10, indicating the onset of
N S R an asymptotic balance. In Figs(a2 and 2Zb), respectively,
: v N we show a regular and a log-log plot fég and k./w*?
10%) L ENUUUIE SO I SO U S TP versusw? These critical wave-number curves correspond
‘ : e L to the critical curves of Figs. (& and ib). For w®?
. = ~0O(1), thecritical wave number becomes discontinuous at
(b) N intersections between the synchronous and subharmonic neu-
tral curves. The variouk, associated with the neutral-curve
FIG. 1. (a) A low-frequency plot oRR; vs w'/?for the case of an  |oops appear as the slanted curves bounded approximately
asymmetric basic temperature with=P7; (b) a higher frequency petween values 2 and 5. Figuréb? shows that there is a
log-log plot of R./w¥? vs w2 The inset to(b) shows the same characteristic change for the ldst curve corresponding to
curves Wi_thqut the asymptotic scaling to emphasize the alternating,q asymptotic subharmonic mode. This lesturve tilts in
characteristics of the curves. an opposite sense to that of the other curves. The asymptotic
relationship isk,~0.5250%2, approximately. The alternating
the stability of the system becomes questionable for daw structure betwee® and H modes for moderate does not
Nevertheless, in this case we compute results doww to seem to have a simple explanation. We examined the mag-
=0.09. nitude of |x.,|? of each harmonic mode and found that the
Figures 1a) and 1b) show plots of critical-curve depen- fyndamental modeng=1) is always the dominant mode.
dence on frequency. Due to the large range of frequencyhuys, it is unlikely that the individual critical curves are due
scale, we divide the stability curves into two parts. Figuretg different higher harmonics that become unstable. We note
1(a) shows the lower-frequency and Fig(bl shows the that Cerda and Tirapeg(i8] interpret the alternating struc-
higher-frequency range. The log-log scale in Figh)lap-  ture that they found at low frequency for an isothermal layer
pears more suitable for the purpose of presentation of thgndergoing gravitational modulation as indicating the ap-
high-frequency range in order to demonstrate the asympgsearance of an additional mechanism for instability, namely,
totic limit of the thermal Stokes layer as—. However, Rayleigh-Taylor instability in addition to the usual mecha-
for clarity we also include the more customary plot of the nism of parametric resonance.[19], the authors present the
same curves in the inset. Fer smaller than 1, Fig. B  results in significantly greater detail. Here, the sign of basic
reveals an alternating pattern 8fand H modes. Asw be-  temperature gradient is analogous to the sign of vertical ac-
comes smaller, the critical curves appear to decrease igeleration in the case of8,9. The physical instability
width. At low frequency a larger number of base functions ismechanisms for the two situations differ, but the bifurcation
needed to achieve numerical convergence of the solutionstructures are sufficiently similar in the low-frequency range
For example, at/w=0.3, bothN, andN,, have to be 80% that a broader view of the modulated instability is appropri-
larger than those corresponding valuesat=1. Computing  ate. Since the asymptotic limib— 0 cannot be approached
the critical curves becomes increasingly difficult belgs by direct numerical computations, in a separate rja®,
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FIG. 2. (a) Corresponding plot ok, vs o2 and (b) corre-
sponding log-log plot ok, /w*? vs w'? for the asymmetric case.

this limit will be analyzed by the WKB approach to bridge
the gap.
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FIG. 3. ComparisomiR, /%2 vs Pr for(i) =900 (dashed ling
(i) w—oo. Caselii) (solid line) uses the semi-infinite domain for-
mulation. The inserted panel shows the overlapping curves of
k./w'? vs Pr for the case€) and ii).

reproduced the result of Gershuni and Zhukhovitskii, we see
that the agreement is reasonably good. Our result shows
R./w%?~104 and 87.2 at Pr0.49 and 0.75, respectively,
compared with the values of 122 and 83 of Niemela and
Donnelly [4] at the same Prandtl numbers. The result indi-
cates thaR./w*? becomes insensitive to Pr when>P2. A

very similar behavior is observed for the critical wave num-
ber, which is shown in the inserted panel, whigéw’? is
plotted as a function of Pr. In the panel the two wave-number
curves for casef) and(ii) are indistinguishable.

In Fig. 4, we turn to another comparison. The dashed line
connects a set of experimental points obtained from Niemela
and Donnelly(private communicationfor a fluid with Pr
=0.49. The solid and dashed-dotted lines connect the points
obtained from our numerical computations at the correspond-
ing frequencies with the same value of Pr. The solid and
dashed-dotted lines correspond, respectively, to a perfectly
conducting and an insulating upper boundary condition. The

Results at other values of the Prandtl number are available

from the previous work of Gershuni and Zhukhovitsk3i|
and Niemela and Donnelly4]. We extend our results to

lower Prandtl numbers in order to make comparisons pos-
sible. We first compute the critical Rayleigh number versus '

Pr for two cases of frequency:(i) w?=30 and (i) o
—o, In case(ii) the problem is computed on a semi-infinite

domain[3]. The Chebyshev base functions are still used, but

thex domain[ —1,1] for this set of functions is mapped to the
& domain[0,] by using an algebraic transformatiph4] &
=L(1+x)/(1—x), whereL is a length scale of the mapping.
Here we have used=3. Case(i) should in principle pro-
duce the same result as cdse if the w value for casei) is

large enough to reach the asymptotic limit. Figure 3 shows

32

the variation ofR. /< with Pr. The variation becomes very

steep as Pr becomes small. The dashed curve corresponds

case(i) with w=30. The solid curve corresponds to casg
with the semi-infinite domain formulation. The two curves
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almost overlap each other. Furthermore, when we compare FIG. 4. Comparison of the neutral curve variationirobtained

the result with that from Gershuni and Zhukhovitdii, or
equivalently with Fig. 4 of Niemela and Donnell¢], who

by Niemela and Donnelly and by our numerical computations at
Pr=0.49.
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FIG. 5. A log-log plot of R./w*? vs »'? for the case of an FIG. 7. Plot shows the variation & /»>? for the even mode

antisymmetric basic temperature with=F0.73. Inset: a regular (solid) and odd modédashedin the antisymmetric case. The wave
plot of the same quantities to emphasize the alternating neutralumber is prescribed &t=0.7w?.
curves. of the two curves is within 3%, indicating good agreement.
difference arising from the two thermal boundary conditions-C0PS t0 the left of thisH loop are not shown in the present
is small, indicating that the upper wall thermal condition is figure. But the lowe behavior for the antisymmetric case
unimportant for the range of frequencies shown. The differ-2PPears to be similar to that of the asymmetric case. In Fig. 1
ence between the experimental and computational resul Yih and Li, the stability condition for below 5(approxi-
may be due to side-wall effects in the experiment. But thdn&tely is indicated by a number of computed poittsrre-
percentage of disagreement seems to be independant of SPOnding to their leftmost dashed curvespresenting the
indicating that another reason is likely. mean positions of'the synthonous and subharmonlc loops.
Starting with Yih and Li’'s result corresponding toHh
loop atw~ 18, we extend their result further to the right. Our
results show & loop following the H loop, and then still
In order to compare with Yih and Li’s stability boundaries anotherH loop follows. In the log-log plot of Fig. 5, we
given in their Fig. 1, we set Pr0.73, the same value as used show R./»*? versusw'’? for the critical mode of distur-
in their study. Thew defined in Yih and Li's paper corre- bance. The log-log result shows that this lastoop is not
sponds to our @. Only the rightmosH neutral-curve loop in  followed by anotheSloop but becomes the asymptotic criti-
their Fig. 1 has been recalculated here for the purpose afal curve for the Stokes layer. Unlike the previous case
comparison. In our inserted panel to Fig. 5, we gigtver-  where the critical curve tends to a constant value in a mono-
sus v, the same quantities plotted in Yih and Li's Fig. 1. tonic fashion, here the neutral curve approaches the
Our leftmostH neutral-curve loop in the inset corresponds toasymptotic limit only after first encountering a dip @t/
Yih and Li's rightmostH loop. The difference in the minima ~5.6. Figure 6 shows the correspondikgin the inserted

panel and the log-log plot &./w'? versusw'’. In order to
\ ’ ‘ | compare the asymptotic values for cdigto those for case

B. Antisymmetric case

(i), we set P=7.0. At w¥>=30 we obtainR,~ 65.3040»>2
andk,~0.525»'2. The corresponding values for the asym-
metric case atw'?=30 are R.~65.483,°? and k.
H s ~0.52502. The differences for the two cases are insignifi-
/ ] cant, suggesting that the two boundary layers can be treated
independently of each other fer*?=30 when P#7.0.
o f / e T Since the_:re are two Stokes layers, the di_sturbance modes
2 can be realized in even or odd symmetry with respect to the
midplane whene is sufficiently large. Their mode shapes
" will be illustrated in Fig. 8see below. The difference iR,
A for the even and odd modes is small for highFor example,
[ at o =20, theR, for the even and odd modes are, respec-
tively, 87.24%°%?% and 87.03b%2 The difference is small,
suggesting that both modes might have an equal chance of
N 10’ being realizable in experiments at high frequencies. But at a
lower frequency, the difference between the two modes can
FIG. 6. A corresponding log-log plot &, /w? vs w*? for the ~ become more pronounced. The results in Fig. 5 are for the
antisymmetric case, Pr0.73. even mode. In Fig. 7, we plot the quantiRy/w>? versus

Lk Jwlf?
T
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) @ 03 ® symmetric case. For a givan, the maximal disturbance lo-
' cation appears to be shifted slightly towards the interior in
08 Y /Y\ 025 2% comparison with the asymmetric case. In Fige) &nd §f)
06 02 o/ [ \\ we showW; (z) andW; (z) for the odd eigenfunction for the
0.4 za/ /\ 018 [\ two casesyw=20 and 30. The odd mode is no longer
/ \ 041 / 20/ I present at/w= 10.
02 /30 005 )30 The value ofz at which the maximal amplitude of the
0 At 0 X /\\, ++ disturbance occurs appears to be correlated with the tick
02 -0.05 J marks on the horizontal axis of each panel, which measure
0 05 ! 0 05 ! the boundary-layer thickness. The correlation is strong as
, © . (@ becomes larger. In the plots we calibrate the tick marks with
/X\AMX\ o o the quantity 3{/w, where L(/E_ is proportional to the Stokes
08 IV\ N\\ er / \ Iayeli th|cknﬁ|ss. tAt r:‘actor 3 is |r}trt(r)]dug_e(il tg position tlf_leze
06 : /\r\/ \/\/\ marks roughly at the maxima of the disturbance amplitude
I o A

04

oalf] |

the disturbances penetrate well into the interior of the layer
as well.

. for th It of Fig. 89). It should b ted, h , that
04 INN 20/\/\;;0 or the result of Fig. 8). It should be noted, however, tha

/
LI 2L [ ONAAN

e o B IV. DISCUSSION
02 05 1 04y 05 1
z z In most of the studies of modulated thermal convection
© 06 ® done so far, the modulation occurs about a state with a non-
1 04 A% Zero mean temperature grad[ent, i.e., the effects of modula-
i\\éo ' l/\ \zo tion upon classical Rayleigh‘Bard convection have been
O'SI/ \\ 02 M studied. Upon the use of Floquet theory for the linearized
ol 44\ bt o U \;\ R + j/ equations, the classical linear critical valueRyf~1707.76
\\ o “/f \’\ 77 without modulation has been shown to increase with modu-
-0.5 :

\ Vl lation but it has also been shown that the shift becomes small
w 0.4 V\/ as w becomes large for moderate amplitudes of modulation
[15]. However, it is now clear that, at high frequencies and
large modulation amplitudes, a second instability associated
with the thermal Stokes layer can occur. It is therefore of
FIG. 8. Vertical dependences of the first two functions in thejnterest to estimate the range of meAf* for which the
Fourier expansion corresponding to the €p&rm [(a), (), and  present analysis describes adequately the instability of the
(8], and to the sirtf term[(b), (d), and(f)]. Results 0w=10, 20,  thermal Stokes layer when a mean gradient of temperature is
and 30 show that the disturbances are localized to the boundarlgresent_ Conversely, it is important to state the conditions
layer whenew becomes large. under which the instability of the thermal Stokes layer can be
ignored if one is primarily interested in estimating the effects
' for neutral instability of the even modsolid line) and  of modulation upon conventional Rayleigh+&ed convec-
odd mode(dashed ling for the frequency range between tion based on the results of earlier studies.
?=10 and 20. Since the variation k3 appears small, we The mean and oscillating effects are characterized by two
consider the wave number fixed at 832, the critical value  nondimensional parameters,
for ~20 and higher. The neutral curves for the even and

0 05 1 0 05 1
z z

odd modes intersect three times in the range. &8f>18, _ agAT*d? agTsd®

the odd mode is slightly more critical. Far’?< 11, the two Ryp=—1] " Rm=—1—, (19
curves start to diverge from one another and the even mode

becomes critical. which are the Rayleigh numbers measuring the mean tem-

In Figs. §a)—8(d) we show thez dependence o#V,(z) perature difference and the oscillating wall temperature, re-
andW,(z), which are the first two Fourier coefficients of the SPectively. From the foregoing results, an asymptotic rela-
cosine and sine components Wf(z,t) of the subharmonic tionshipRyx=aw™*is obtained roughly for~=>10, where
solution. Figures @) and 8b) show theW,(z) andW,(z) “a’is a constant for a given qui(_j. For a Iaygr which is
functions, respectively, for the asymmetric case. Note thatnstable to Rayleigh-Berd convection at a certain tempera-
there is a pronounced change in the decay of the disturbandere differenceAT*, a moderate magnitude aT; typically
outside the Stokes layer, namely, from monotonic to oscillaexerts a stabilizing effect. But as increases, there is a
tory decay, aso'? increases from 10 to 30. The three curvespoint where the layer becomes unstable solely du@o
from left to right correspond te/w= 10, 20, and 30. Figures This value ofT% can be estimated as follows:

8(c) and 8d) show theW,(z) andW,(z) functions, respec-

tively, for the antisymmetric case. The three curves from left T* RT*(; a

to right correspond again to the same values/ef In Figs. =~ w2,
8(c) and 8d), we show the even eigenfunctions for the anti- AT* Ramx  1707.76
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Now, a depends on Pr. But according to the result of Fig. 3,mately. Foro>>1.9, the critical disturbance corresponds to
a becomes insensitive to the change of Pr forRPrWe take  only a subharmonic solution. For the case with antisymmet-
this value ofa equal to 80.4see the results in Sec. ll)/and  ric modulation, there are two localized disturbances, each of

estimate that which is associated with a Stokes layer at the wall. Both
. even and odd critical modes can exist for the antisymmetric
Ts 3o case at sufficiently large. For w>~0(1), ourrecalcula-
AT—*:O-O‘W]‘U : tion agrees reasonably well with Yih and Li's. The layer is

more unstable to the antisymmetric than the asymmetric
modulation. There appear to be interactions between the two
nstable Stokes layers for as large as 8 10 via penetra-

on of the disturbance outside the Stokes layers. It would

aturally be of interest to explore the weakly nonlinear prob-

lem in order to get a better idea of the role of the subcritical

instability discussed by Swift and Hohenbel§] over a

V. CONCLUSION wider range ofw. We hope to pursue this aspect in another

The problem of the onset of convection in a fluid layer Paper.
when the temperatures of one or both walls vary periodically

If wis large, sayw=10?, we obtainT%~47.1AT*. In other
words, the oscillating temperature must be more than 5(?:
times the mean temperature difference if the latter is to hav%
an insignificant effect.
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