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Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. Il. Numerical study
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We implement a phase-field simulation of the dynamics of two fluids with arbitrary viscosity contrast in a
rectangular Hele-Shaw cell. We demonstrate the use of this technique in different situations including the
linear regime, the stationary Saffman-Taylor fingers, and the multifinger competition dynamics, for different
viscosity contrasts. The method is quantitatively tested against analytical predictions and other numerical
results. A detailed analysis of convergence to the sharp interface limit is performed for the linear dispersion
results. We show that the method may be a useful alternative to more traditional methods.
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I. INTRODUCTION not guarantee its practical usefulness for several reasons. On

the one hand, the stability of both the bulk phases and the

In the preceding papel] we presented a phase-field kink profile must be assured, since this might not be the case
model for the Saffman-Taylor problem with an arbitrary vis- in general. On the other hand, a direct empirical test is nec-

cosity contrast. The problem consists of determining the tim&ssary to determine quantitatively how close a firitsitua-

evolution of the interface between two inmiscitﬂescous tion is to the Sharp-interface limit. This means flndlng a set
fluids within a Hele-Shaw ce[l2]. This can be done analyti- ©f explicit quantitative criteria to choose all the nonphysical
cally only in very restricted situations, so numerical work is Parameters in order to ensure a desired accuracy. Finally, itis
usually required. Like other free-boundary problethsik interesting to evaluate the capability of that model to provide

problems with boundary conditions on a moving bounglary quant.itative.results with reasonable computing efforts in ac-
Hele-Shaw flows have traditionally been formulated by pro—tual simulations.
jecting the bulk dynamics onto the interface using boundary-
integral methods which lead to integrodifferential equation

[3—8]. An alternative approach, namely, the so-called phas

The rest of the paper is organized as follows: In Sec. Il we
resent the phase-field equations and the boundary condi-
ions, discretization, and parameters used. Some preliminary
fests on phase conservation are carried out in Sec. Ill. In Sec.

f'elld rgodelt,)lhas alsl(()s b_?ﬁ.n used tthEjUdy §t())lld|ﬂhcat|on angy we show how to choose these computational parameters
related problemf9-16|. This approach describes the SYSteMip, the linear regime, and how to obtain the growth rates in

in terms of a set qf partial differential_equations, avoiding thethe numerical linear dispersion relation, which we compare
treatment of the interface as a moving boundary. To do so

" AR X ; satisfactorily with the sharp interface limit and with a thin-
an additional field is introduced which locates the interface afhterface model Convergence with these parameters is also
a region of thicknes. The equations are then required to '

eld th iinal ina-bound blem in the sharb i tested. Section V is devoted to the steady state. Saffman-
yield the original moving-boundary problem in the sharp In'Taylor fingers are obtained from single-mode initial condi-
terface limite—0. For Hele-Shaw flows, such a phase-field

del introduced i hi ind tions in the nonlinear regime, and their velocities and widths
model was introduced in Refl]. In this case two indepen-  ,ro compared with previous results. Multifinger configura-

dent small parameterse (and €) were actually introduced, tions arising from a random initial condition in the linear
over which three distinct conditions control the convergencgegime are obtained in Sec. VI, which are morphologically
to the sharp-interface limi¢,e—0. In that paper we proved and dynamically consistent with existing evidence both from
that model to yield the right sharp-interface equations in thixperiment$17] and simulation$6]. Finally, we discuss the
limit, and obtained a “thin-interface” model, which consists applicability of the model and its possible future extensions
of a set of effective sharp-interface equations which keepn Sec. VILI.

finite-e and = effects up to first order. This provides appro-

priate criteria to choose the computational parameters for Il. IMPLEMENTATION OF THE MODEL

numerical simulations, and, for the linear regime, it enables

us to compute explicitly deviations from the Hele-Shaw We will consider a rectangular Hele-Shaw cell of widfth

growth rates. (x direction and gapb (z direction, containing two fluids
The purpose of the present paper is to check the phasavith distinct viscosities f1,u,) and densitiesd; ,p,). Both

field model, and eventually the corresponding thin-interfacdluids are separated by an interface with surface tension

approximation, numerically against known sharp-interfaceand move under an effective gravity (negativey direc-

solutions, and to assess its usefulness in practice. Indeed, ttien) and an injection velocity/., (positivey direction. It is

fact that the model has the correct sharp-interface limit doesonvenient to introduce the stream functigrithe harmonic
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conjugate of the velocity potentjalvhich can be defined by
Uy=dyt and uy=—d,, whereu, andu, are thex andy

components of the fluid velocity field. In terms of the
stream function, the governing equations in dimensionles
form read

VZ4=0,
$r(07) = (07)=—y—c[¢(0")+ ¢, (07)], (2.2
¢s(0+):¢s(0_):_vni (2.3

wherer (s) is a coordinate normgktangential to the inter-
face, 0° means on the interface coming from either fluid, the
subscripts stand for partial derivatives except fof(s),
which is the normal velocity of the interface, and

(2.2

¥(s)

> BKS-HA/-%,

(2.9
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the interfacelw| ). On the other hande is basically the
interface thicknesgwhich is required to be much smaller
than the length scal| ~1). €2 also stands for the relaxation
gme of the phase field toward the kink profile, which in turn
must be kept well below the inverse growth réid ! (see
Ref.[1], Sec. I\). These inequalities control the convergence
to the Hele-Shaw dynamics and, for the linear regime, the
deviation from it can be computed analytically from them
(see Ref[1], Sec. I}, thus providinga priori criteria for the

choice ofe and e to obtain a prescribed accuracy.

To be consistent with the frame change and adimension-
alization inherent to the parametddsand c previously de-
fined, we use a cell of width 1, with periodic boundary con-
ditions in thex direction (which include rigid walls as a
particular caseand no flux(constant stream function, e.g.,
=0) in they direction. Whenever some symmetry of an
initial condition exists and is preserved by the time evolu-
tion, we use a properly reduced integration domeery.,
left-right symmetry for a single mode, or up-down symmetry

with k(s) the interface curvature. The dynamics are con-for an up-down symmetric initial condition witb=0).

trolled by the two dimensionless parameters
b2o

B= )
L2WA[V oot — p2) + Jer(D2/12) (p1— po) ]

o= M1 M2
Mt uo

(2.9

Herec is the viscosity contrast that without loss of generality
is taken as positive (€c<1), andB is a dimensionless

surface tension, measuring the ratio between the stablizin

force of the capilarity and the destabilizing driving force in-
duced by injection and gravity. We will restrict ourselves to
the unstable case, i.e., positive value8oThe equations are
then written in the frame moving with the fluid at infini¢gr,
equivalently, with the mean interfageand takingW as the
length unit andU, =cV.,+ge b?(p1— p2)/12(uq+ p2) ]
the velocity unit(see Ref[3]).

The corresponding phase-field model which we have use
was proposed in Refl], with # the phase field:

”(w—vz +cV- (v +l ! 0)(1— 62
€= Y+cV-(0VY) ;m?’( )( ),

(2.6

a0 - " -
EZEZf(H)—FezVZH—i- €?k(0)|V |+ €2z (VX V6),
2.7

where f(6)=6(1— 6?), and y(6)/2=s(6)-[BV «(6)+Y],
k(6)=—V-r(6), with r(8)=V 6/|V 6| ands(6)=r(6) Xz,
together with the boundary condition

O(y— *o)==+1, (2.8

wheref#=+1 (—1) corresponds to fluid 12).
‘e can be regarded as a diffusion time of the stream func

tion over a characteristic length of wave numbere/(1
+c)k? (which must be chosen much smaller than the char

Numerical integration of the above equations has been
carried out on a grid of siza,xXn, with equal spacing\x
=Ay=1/n, in both x andy directions, using an explicit
centered-space algorithm, is chosen so thaAx at most
equalse for the profile of the fields across the interface to be
properly resolved. The value thus constrainAx and, in
turn, the minimum size of the system and the maximum time
step, so that the computing time required to integrate a cer-
tain physical dynamics goes @s“. Then ny is chosen so
that there is always a distance of at least one of the largest

resent wavelengths between the interface and kel
oundary condition at the end of the channel. An increase in
this distance does not seem to affect appreciably the interface
evolution. This is what is expected in the linear regime,
where the stream function decays exponentially with the
present wavelengths, but is @anposteriori observation for
the Saffman-Taylor fingers.

As for the initial condition, in general one should set the
ghase field tod=tanh¢/\2¢€), with r being the signed dis-
tance to the desired interface, which is the model solution at
least up to first order ire (see Ref[1]). Then the corre-
sponding stream function should be close to the stationary
solution of Eq.(2.6) for that phase field. This can be ob-
tained either by solving the stationary version of E2j6) (a
Poisson equatignor by letting the stream function in Eq.
(2.6) relax while keeping the phase field frozen. However in
the present paper, since we will consider perturbed planar
interfaces as initial situations, we will make use of the fields
predicted by the linear theoryi=tanh§/\2¢), wherey is
signed vertical distance to the desired interface, and the thin-
interface resul{see Ref[1])

l//(x,y):aiAeikX*Q:f‘Yh (29)
with
i(1)0 1
_a.=—| ————7cek|\2| +O(c?) +O(e?)
k V1+(ewlk?)

(2.10

acteristic inverse growth rate of the corresponding mode ofnd
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Qu=|k /14—, (2.12)
K(1=c)

100

@

©

=]

lll. PHASE CONSERVATION g

£

Before testing the model in physical situations, a prelimi- §
N 10

nary test is that of the conservation of the two fluid phases:
Due to incompressibility and immiscibility, the Hele-Shaw
dynamics preserve the area and phase purity of each domail
In contrast, model A, starting point for the equation for the
phase fieldEq. (2.7)] (see Ref[1]), does not even preserve
the global balance between phases. For reasonable values 1 |
the interface thickness these nonconserved dynamics are 0 1
given aproximately by Allen-Cahn lawv (o ). Thus phase !
conservation within the phase-field scheme depends on the FIG. 1. Measure of the interface growth rate f8=6.5

accuracy of both thee?«(6)|V 6| term in canceling out > 10 % Crosses ¢) correspond to the average ovth of the
Allen-Cahn law and the couplin@ (V* WX V*g) in introduc- interface ofy(t)/y(0) (y is the interface heightand the dotted line
ing the Hele-Shaw dynamics. to the average ovegth of the bulk of| (t)/(0)|. The growth rate

First we test Allen-Cahn law cancellation by considering's e slope of the linear fitsolid line).
situations in which the stream function drops from the equa-

tions. For a circular droplet of one phase embedded in the _ _ o
other in absence of gravity Eq2.7) reduces toe?(36/dt) the dimensionless surface tens[Bnn order to change t_he
= () + €2(d26/dr?) (becauseif/ds=0), wherer is the growth rate of that mode according to the Hele-Shaw disper-

radial coordinate. This is exactly model A in one dimension,Sion refation

and therefore Allen-Cahn law cannot arise. Starting with

=tanh ¢/\2¢€) as the initial condition, there is some slow

dynamics which soon becomes stacked because of the lim-

ited numerical resolution. From then on, the fluid phases ardhis is physically completely equivalent to fixing the surface

completely conserved. In contrast, if the term canceling outénsion and varying the wave vector of the mode, as can be

the Allen-Cahn law is removed from E.7), the droplet seen through the rescaling’ = Bk, w)= VBwo=k'|(1

quickly collapses. —k’2). However, it is numerically more convenient, since it
The same test can be carried out for a marginal mode in allows one to use the same value offor all the modes,

nearly flat interface with identical results: If the Allen-Cahn pecausek is fixed. Thus, according to the finite-and <

law correction is removed, the mode quickly flattens,dispersion relation derived in Refl],

whereas, if it is not, some slow dynamics soon is stacked

within the numerical resolution. This corresponds to the

|

normal

wo=|k|(1—BK?). 4.1

. L 1 5
pointk’=1 in Fig. 2(see Sec. I}, whose measured growth w=wn —————— Z| +0(c?)+0(€?).
rate ' vanishes exactly. Both tests suggest that the ° V1+ (cwlk?) elkdl2 6
€2k(6)|V 6| term cancels out Allen-Cahn law even at higher (4.2

orders ine than those computed in RéfL].

As for general situations in which the coupling term canwe have use&=0.01 ande=0.1 in order to keep the de-
also play a role, significant violation of phase conservationjiation from the sharp-interface one, below a 10%(we
has only been observed for such large value_s ofiat ex have used its maximump=27, to compute the required
>1. We therefore conclude that the two fluid phases arg e of%). Finally, the initial amplitude of the mode is
conserved for reasonable valueseyfand that, in practice, chosen to equal the mesh sixe—which in turn is set ta/2

this is not a restrictive condition oa for reasons explained below— so that we stay for a while in
the linear regime for unstable modes, and yet have enough
IV. LINEAR DISPERSION RELATION numerical subgrid resolution for the stable ones also for a
while.

The first physically relevant situation in which we have  The time evolution of a relevant modene close to the
tested the model is the linear regime of a perturbed planaiost unstable onewith B=6.5x10"3, is shown in Fig. 1.
interface. The linear dispersion relation has been computegihe points (+) have been obtained by averaging the ratio of
for vanishing viscosity contrasc(0). The sharp-interface  the interface heighy at a certain timet and the initial one
model predicts a linear growth that does not depenct.on y(0) over one fourth of the interface. The slope of the re-
However, the phase field model should exhibit some depersyiting curve in a linear-log plot is the growth rate. Where
dence in the viscosity contrast related to the firitand €  this is constant, the growth is exponential and we are in the
corrections(see Ref[1], Sec. I\). linear regime. This corresponds to the linear fit plotted in

We use a single mode occupying the whole channel widthrig. 1, from which we obtain the growth rates shown in Fig.
(i.e., of wavelength 1 and wave vector 27) and then vary 2. Beyond this regime the points curve down because of the
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FIG. 2. Linear dispersion relation in appropriate variatse FIG. 3. Convergence to the Hele-Shaw value for the maximum

the explanation in the textCrosses ) represent the growth rates of the linear d'SPErS'On relation curvB=8.44x10 °, wo=4.18,

obtained as in Fig. 1. The Hele-Shaw res(golid line) and the aSe€ (x axi9 and e (1 for circles, 0.25 for triangles, and 0.1 for

thin-interface prediction of Eq(4.2) (dotted line are shown for squarey are decreased. The dashed line corresponds to the thin-

comparison. interface prediction of Eq(4.2) for €é=0. Empty (filled) symbols
have been obtained withx= e (Ax=€/2).

nonlinearities. The crossover corresponds to an amplitude of

about one tenth of the wavelength of the mode. describing the Hele-Shaw problem. The slope then relaxes
The behavior of the stream function has been plotted in &ward the thin-interface one, and the growth becomes expo-

dotted line for purposes of Comparison' According to thenential, but nonlinearities soon set in. In contrast, if the thin-

linear theory(see, e.g., Ref1]), the absolute value of the interface growth rate is set into the initial stream function,

stream function at any point of the system should also grovne obtains constant slopes from the very beginning. This

exponentially with the same growth rate as the interface, angllows one to measure the growth rate in a wider range of

this is indeed the case, since the dotted line—the averagéne, and is indeed also an indication that the thin-interface

over the whole bulk of the absolute value of the ratio be-model is valid.

tween the stream functiofr in a certain point at a certain ~ The growth rate values shown in Fig. 2 could still be

timet and the initial one at the same poipf0)—is parallel  refined by further decreasing and e. This is not only a

to the interface evolution in the linear regime. The gap betheoretical possibility, but can also be done in practice as we

tween the two straight lines is due to the initial, very short—show in Fig. 3, although the computation time increases as

and therefore not visible in the figure—decay of the streanexplained above. Here, we study the convergence of the

function, which reflects the rounding on a scaleQife) of  growth ratew (y axig for the maximum ofe’ (k') (B

the gradient on the interface of the sharp-interface result used 8.443< 10~ %) to the Hele-Shaw resulb,=4.188(left up-

as initial condition. per corner as we decrease (x axis) and e (various sym-

In Fig. 2 we present the linear dispersion relation thushols). The empty symbols have been obtained witk= ¢,
obtained in the rescaled variables defined above. The poini§hereas the filled ones correspondA®= e/2. The growth
(+) correspond to the growth rates measured as in Fig. 1, fofates obtained witiAx= e are always below the ones for
times ranging from 0.3 to 0.7, i.e., for roughly a decade inAx= ¢/2, probably because of the stabilizing effect of the
the amplitude. Their deviation from the sharp-interface resulinesh size. I\ x is further decreased, the differences with the
of Eq. (4.1) (solid line) keeps below the desired 10% error q)ues computed with\x= /2 are tiny, whereas the gap
and is fairly well quantitatively predicted by the thin- panyveen theAx=e and theAx= e/2 points is rather large

interface dispersion relation of E4.2) (dotted ling. This (clearly more than the differences between distinct

quantitative ggreement petween theory and UMETICS 1S qUItseymbols—distinctE values—or adjacent values @j. This
remarkable if we take into account that the thin-interface

model is based on an asymptotic expansiow.iThis good means that the discretization has practically converged to the

agreement is indeed an indication that the value abed is continuum model fosx=€/2, but not forAx=e. That is the
9 reason why we have usetk=€/2 in Figs. 1 and 2.

in the asymptotic regime of the sharp-interface limit, as we Moreover, theAx= e/2 points should be described by the

will see more clearly in Fig. 3. . L
Although we in fact introduce the thin-interface growth thin-interface model of Eq4.2), and this is indeed the case
for small enough values of. To see this visually, we have

rate[Eq. (4.2)] into the initial condition for the stream func- - oo ~ _
tion, the results do not depend on this after a certain tranPlotted the thin-interface prediction far=0 (dashed ling
sient. If one more naively sets the sharp-interface growth rat@hich is, of course, a straight line ia Each set of points
wq into the initial condition for the stream function, one with the samee value clearly tends to align parallel to this
obtains a rather long transient in which the slope of anline ase decreases—as E@4.2) predicts— whereas they
amplitude-time log-linear plot like that of Fig. 1 initially curve up and even cross the line for large valueg,ofor
curves down(up) for an unstable(stable mode, i.e., the which we are beyond the asymptotic regime of validity of
growth is not exponential, and we are therefore not properlfeq. (4.2), apparently ending neae=0.01. This makese
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=0.01 very suitable for simulations, and confirms it to be

The finest comparable simulation runs are shown in Figs.

within the asymptotic regime as we pointed out above. Notel(a)—4(d). For B=10"2 [Figs. 4a)—4(c)], we have used
as well how the growth rate increases with decreasing values .02, twice less accurate than the one used in the linear

of € within the same value of (vertical columns of points

regime(Figs. 1 and 2 whereas foB= 102 [Fig. 4d)] we

and how it approaches the dashed line in good agreemepke ¢=0.01, three times less accurate. As fgrwe have

with the values predicted by E.2) for values ofe within
the asymptotic regime.

V. SAFFMAN-TAYLOR FINGERS

used'e=0.2 for c=0 [Figs. 4a) and 4d)], €=0.1 for ¢
=0.5[Fig. 4(b)], and'e=0.02 forc=0.9 [Fig. 4(c)], all of
them twice less accurate than the one in the linear regime.
However, convergence iaseems to be achieved, at least in

Once the model has been tested in the linear regime, the finger widths. We cannot assure it ferbecause the
seems mandatory to check a highly nonlinear situation sucfinger tip splits forB=10"3—probably because of numeri-
as the steady state, for which many analytical and numericala| noise—ife is further lowered. In all cases we have used
results are available. We start with a single mode occupyingx=¢/2 as in the linear regime tests, although we have

the whole channel, and with an amplitude equal to the chanfund that already foAx= e, the differences in widths are at
nel width, i.e., clearly in the nonlinear regime. Obviously the most within 1%.

initial condition predicted by the linear theory is not accu-

Figures 4a)—4(d) show single fingers that are formed and

rate, but this just introduces a transient during which thee|ax to a certain width to just advance with a steady veloc-
dynamics is not the Hele-Shaw one. By the time the formingty This can be measured plotting the tip position against
finger is close to the steady shape, all transients must haxine, finding excellent linearity front=1.15 to at least
decayed. Moreover, starting with a single mode we not only=3 3 (for the fastest finger Four successive interfaces at
check that the model exhibits a finger solution, which weconstant time intervals are shown covering this whole re-
could do much faster by starting with that solution, but thatgime, Except for the=0.9 case of Fig. &), the finger has
the model is robust to inaccurate initial conditions for thenot completely relaxed to its final width for the first plotted

bulk, and also that single fingers have a reasonable basin gf

terface, which means that we are not yet in the steady state.

attraction, which may be a rather nontrivial point for small from the second to the last shown interfaces, no observable

c [6].

change in width, tip velocity, or shape is seen anymore. Tak-

Here we do not have a theoretical prediction for the dejng into account that Figs. (9—4(d) show the whole

viations from the Hele-Shaw steady state due to fieit@d

channel—although simulations were carried out using half

“¢ effects. However, we know that the inequalities of Sec. ll(c#0) or a quarter ¢=0) of it—it is clear from Fig. 4d)

still control the convergence. The differences are thatow
stands for the steady advance velodiyhich should be in

that the end of the channel can be set even closer to the tip of
the finger than a channel width.e., closer than what the

the range 0.7-0.8, not far from the maximum growth rate inlinear regime would have suggeste®egarding the values
the linear regimev=2), and that all unstable modes—and of this steady velocity, they are always 10—20 % below what
not only the one set by the initial condition—are present inis predicted for an(infinite) Saffman-Taylor finger of the
the steady state, so th&tmust be chosen to be the less same width without surface tension, although velocity does

favorable in each inequality. This continues tokse2 1 for
the condition one, but becomesk=1/\/3B, the most un-

increase with decreasing finger width, as can be seen com-
paring Figs. 4a) and 4d). The origin of this quantitative

stable mode, for the one on We thus progressively de- discrepancy must lie necessarily on finkeand < effects,

crease the values afande and look for convergencgn the
finger widthg within the computational resources.

most likely related to the non-Laplacian character introduced
by e, which produces a finite diffusion length.
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Note thatc=0 fingers[Figs. 4a) and 4d)] are up-down 1
symmetric (also if one uses the whole cell as integration
domain, whereas the# 0 ones are not, but the less viscous
fluid (down, negativey values propagates into the more vis-
cous oneg(up, positivey values in the shape of a Saffman-
Taylor finger, whereas the more viscous propagates into th(x
less one in the shape of a drop. If Figajis compared to
Figs. 4b) and 4c) (all with B=10"2, but increasing viscos-
ity contrastc), one sees that the higher the viscosity contrast,
the longer the Saffman-Taylor finger and the shorter the drog
part(the initial condition was centered about 0). All such
dependences on coincide with Tryggvason and Aref's ob-
servations from their vortex sheet numerical sch¢#le

As for the finger widths, all above one-half of that of the
channel, they decrease with decreasing dimensionless su
face tensionB and increasing viscosity contrast This c
dependence can also be seen in Fig. 1 of REf.Quantita-
tive comparison with McLean-Saffman numerical solvability
theory results for=1 is only feasible to some extent df
=1 widths are extrapolated from the#1 ones obtained,
since our model cannot treat the limiting casel. By do-
ing this for B=102 [A=0.63 for c=0, A=0.61 for c
=0.5, and\ =0.60 forc=0.9, Figs. 4a)—4(c)], one obtains
A=0.60 forc=1, 6% below the McLean-Saffman valae
=0.637. ForB=103, ¢>0 fingers would become very
computationally demanding, but if the same gap between e I Err
=0 and 1 widths as foB=10 ? is assumed, this would -0.5 0.0 0.5
yield \~0.56 forB=10"2, c=1, within 5% distance of the y
McLean-Saffman value.=0.528. Of course this latter ex-
trapolation is not rigorous, since the differences in width due FIG. 5. Time evolution forB=10"3, Ax=e=0.00625 of an
to the viscosity contrast are likely to diminish with decreas-jnitia| condition (solid line) combining\ =1,3, . . . ,% with random,
ing B, so that they vanish fdB—0 and\ =3 is selected for  yniformiy distributed amplitudes betweer0.005 and+0.005. In-
all c, as is generally believed to be the case. In any case, thgrfaces at time intervals 0.1 are shown in dotted lines starting at
deviations from the McLean-Saffman results fouwdthin ~ t=0.15. The latest interface shown1.25) is represented in bold.
5-6 9 are surprisingly lower than what the used valueg of (g) Lack of competition forc=0 (¢=0.5). (b) Competition forc
and e would have suggested, taking into account the ob—=0.8 (¢=0.2).
served deviations in the linear regime.

=0.006 25, withAx= € to save computation time. The value

VI. MULTIFINGER DYNAMICS of e is quite crudee=0.5 for the equal viscosities case

) ) ) =0; Fig. 5a)], especially for the high viscosity contrast (

We have finally tested the model in the nonlinear dynam-_ . ~
ics appearing between the precedent situations, i.e., after th_eo'S) run(Fig. 5(b)] (=0.2).

C The results are shown in Figs(a and §b) for 0.15<t

departure of the linear regime and before reaching the steady 5 ! . Is 0(d he | :
state. Here we use a somewhat experimentally realistic initial™ +- _5 at constgnt tlme intervals O ots).. T, e latest inter-
condition consisting of a superposition of sinusoidal moded@ce is émphasized in bold, and the solid line corresponds to

with random, uniformly distributed amplitudes between the initial condition fort=0. As we can see, the initial con-

~0.005 and+0.005 for each wavelength=1,%,1 1 dition happens to have six maxima. Rather quickly, only

o ' i the Iineér reqime and random hase’sz'lel’i,g.ur.l.(),j?: three of them are left as predicted by linear stability, even

t'he; most amplified %f these WavelengF[)hs wiII. he-® so before entering the nonlinear regime, in which these maxima
3

that we expect three unequal fingers to appear, and there iSeglongate into We_II developed fir_lgers. For vanishing vis_c_osity
chance for mode interaction and competition to set in. WaveSontrasfc=0; Fig. Sa)], there is no apparent competition,
lengths belowh =0.161 are stable and will decay. We in- N @greement with experimentel 7] and numerical3,6] evi-
clude some of them anyway. Then all modes are added up gence. _Longer and shorter flngers all advance. Shorter fin-
find the interface position. The stream function predicted byders might not advance so quickly, but they expand to the
the linear theory is also obtained by adding up each mode’sides, so they clearly keep growing. In contrast, starting with
stream function, but all with their peaks centered at the sam#he same initial condition foc=0, thec=0.8 run[Fig. 5(b)]
final interface position, to avoid the formation of more thanshows competition between fingers of the less viscous fluid
one peak of the stream function across the interface. advancing into the more viscous one—and not the other way
Since harmonics of the channel width are present, waround—as is known to happen in the Hele-Shaw problem.
have to refine thee used in the linear regime. We use The shorter finger now also expands laterally, but it soon
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begins to move backwards as a whole. Longer times magZPU hours on a Pentium Pro processor at 200 MHz. On the

lead to the pinch-off of droplets in both cases. other hand, in general the potentially most costly situation is
the multifinger dynamics. Here, Fig(&® took about 70 CPU
VII. CONCLUDING REMARKS hours in the same processor. The method could be made

. ) i more efficient by using a semi-implicit scheme, an adaptative

We have numerically integrated the phase-field modefnesh, or(possibly by canceling out the corrections to the
proposed in Refl1] for the Hele-Shaw problem in the un- sharp-interface equations remainirfge., other than the
stable configuration. Simulations have been carried out inyjien-Cahn law in the thin-interface model. For high viscos-
several situations: a circular dropl@b test conservation of ity contrastsc~ 1, a distinct model could possibly be more
each fluid, the linear regime of a perturbed planar interface gfficient.
the steady state, and the nonlinear regime in between. The Eyiensions to less studied, related problems are also en-
performed tests guarantee that the model can be used in Pragghted, including the study of noise and spatial disorder
tice to reproduce the HSIe-Shaw dynamics. In the model tWgnstance to simulate porous megithe study of liquid crys-
small parameterg and e, whose zero limit corresponds to tals and other complex fluids, and problems with a physically
the sharp interface limit, can be independently chosen, beingdiffuse interface, such as thermal plunjd$] or motion of
the dynamics well described by the thin-interface model dethe salt-water—fresh-water interface in coastal aquifers.
rived in Ref.[1]. In general, the conditions anande allow
one to control the accuracy of the simulations. ACKNOWLEDGMENTS
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