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Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study
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We implement a phase-field simulation of the dynamics of two fluids with arbitrary viscosity contrast in a
rectangular Hele-Shaw cell. We demonstrate the use of this technique in different situations including the
linear regime, the stationary Saffman-Taylor fingers, and the multifinger competition dynamics, for different
viscosity contrasts. The method is quantitatively tested against analytical predictions and other numerical
results. A detailed analysis of convergence to the sharp interface limit is performed for the linear dispersion
results. We show that the method may be a useful alternative to more traditional methods.
@S1063-651X~99!08308-7#

PACS number~s!: 47.54.1r, 05.10.2a, 47.11.1j, 47.20.Hw
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I. INTRODUCTION

In the preceding paper@1# we presented a phase-fie
model for the Saffman-Taylor problem with an arbitrary v
cosity contrast. The problem consists of determining the t
evolution of the interface between two inmiscible~viscous!
fluids within a Hele-Shaw cell@2#. This can be done analyti
cally only in very restricted situations, so numerical work
usually required. Like other free-boundary problems~bulk
problems with boundary conditions on a moving boundar!,
Hele-Shaw flows have traditionally been formulated by p
jecting the bulk dynamics onto the interface using bounda
integral methods which lead to integrodifferential equatio
@3–8#. An alternative approach, namely, the so-called pha
field model, has also been used to study solidification
related problems@9–16#. This approach describes the syste
in terms of a set of partial differential equations, avoiding t
treatment of the interface as a moving boundary. To do
an additional field is introduced which locates the interface
a region of thicknesse. The equations are then required
yield the original moving-boundary problem in the sharp
terface limite˜0. For Hele-Shaw flows, such a phase-fie
model was introduced in Ref.@1#. In this case two indepen
dent small parameters (e and ẽ) were actually introduced
over which three distinct conditions control the convergen
to the sharp-interface limite,ẽ˜0. In that paper we proved
that model to yield the right sharp-interface equations in t
limit, and obtained a ‘‘thin-interface’’ model, which consis
of a set of effective sharp-interface equations which ke
finite-e and -ẽ effects up to first order. This provides appr
priate criteria to choose the computational parameters
numerical simulations, and, for the linear regime, it enab
us to compute explicitly deviations from the Hele-Sha
growth rates.

The purpose of the present paper is to check the ph
field model, and eventually the corresponding thin-interfa
approximation, numerically against known sharp-interfa
solutions, and to assess its usefulness in practice. Indeed
fact that the model has the correct sharp-interface limit d
PRE 601063-651X/99/60~2!/1734~7!/$15.00
e

-
-
s
e-
d

e
o,
t

-

e

s

p

or
s

e-
e
e
the
s

not guarantee its practical usefulness for several reasons
the one hand, the stability of both the bulk phases and
kink profile must be assured, since this might not be the c
in general. On the other hand, a direct empirical test is n
essary to determine quantitatively how close a finite-e situa-
tion is to the sharp-interface limit. This means finding a
of explicit quantitative criteria to choose all the nonphysic
parameters in order to ensure a desired accuracy. Finally,
interesting to evaluate the capability of that model to prov
quantitative results with reasonable computing efforts in
tual simulations.

The rest of the paper is organized as follows: In Sec. II
present the phase-field equations and the boundary co
tions, discretization, and parameters used. Some prelimin
tests on phase conservation are carried out in Sec. III. In S
IV we show how to choose these computational parame
in the linear regime, and how to obtain the growth rates
the numerical linear dispersion relation, which we comp
satisfactorily with the sharp interface limit and with a thi
interface model. Convergence with these parameters is
tested. Section V is devoted to the steady state. Saffm
Taylor fingers are obtained from single-mode initial con
tions in the nonlinear regime, and their velocities and wid
are compared with previous results. Multifinger configu
tions arising from a random initial condition in the linea
regime are obtained in Sec. VI, which are morphologica
and dynamically consistent with existing evidence both fro
experiments@17# and simulations@6#. Finally, we discuss the
applicability of the model and its possible future extensio
in Sec. VII.

II. IMPLEMENTATION OF THE MODEL

We will consider a rectangular Hele-Shaw cell of widthW
(x direction! and gapb (z direction!, containing two fluids
with distinct viscosities (m1 ,m2) and densities (r1 ,r2). Both
fluids are separated by an interface with surface tensions,
and move under an effective gravitygeff ~negativey direc-
tion! and an injection velocityV` ~positivey direction!. It is
convenient to introduce the stream functionc ~the harmonic
1734 © 1999 The American Physical Society
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conjugate of the velocity potential! which can be defined by
ux5]yc and uy52]xc, whereux and uy are thex and y

components of the fluid velocity fielduW . In terms of the
stream function, the governing equations in dimensionl
form read

¹2c50, ~2.1!

c r~01!2c r~02!52g2c@c r~01!1c r~02!#, ~2.2!

cs~01!5cs~02!52vn , ~2.3!

wherer ~s! is a coordinate normal~tangential! to the inter-
face, 06 means on the interface coming from either fluid, t
subscripts stand for partial derivatives except forvn(s),
which is the normal velocity of the interface, and

g~s!

2
[Bks1 ŷ• ŝ, ~2.4!

with k(s) the interface curvature. The dynamics are co
trolled by the two dimensionless parameters

B5
b2s

12W2@V`~m12m2!1geff~b2/12!~r12r2!#
,

c5
m12m2

m11m2
. ~2.5!

Herec is the viscosity contrast that without loss of general
is taken as positive (0<c<1), and B is a dimensionless
surface tension, measuring the ratio between the stabli
force of the capilarity and the destabilizing driving force i
duced by injection and gravity. We will restrict ourselves
the unstable case, i.e., positive values ofB. The equations are
then written in the frame moving with the fluid at infinity~or,
equivalently, with the mean interface!, and takingW as the
length unit and U* [cV`1geff@b2(r12r2)/12(m11m2)#
the velocity unit~see Ref.@3#!.

The corresponding phase-field model which we have u
was proposed in Ref.@1#, with u the phase field:

ẽ
]c

]t
5¹2c1c¹W •~u¹W c!1

1

e

1

2A2
g~u!~12u2!,

~2.6!

e2
]u

]t
5 f ~u!1e2¹2u1e2k~u!u¹W uu1e2ẑ•~¹W c3¹W u!,

~2.7!

where f (u)[u(12u2), and g(u)/2[ ŝ(u)•@B¹W k(u)1 ŷ#,
k(u)[2¹W • r̂ (u), with r̂ (u)[¹W u/u¹W uu and ŝ(u)[ r̂ (u)3 ẑ,
together with the boundary condition

u~y˜6`!561, ~2.8!

whereu511 (21) corresponds to fluid 1~2!.
ẽ can be regarded as a diffusion time of the stream fu

tion over a characteristic length of wave numberk, ẽ/(1
6c)k2 ~which must be chosen much smaller than the ch
acteristic inverse growth rate of the corresponding mode
s

-

ng

d

-

r-
f

the interfaceuvu21). On the other hand,e is basically the
interface thickness~which is required to be much smalle
than the length scaleuku21). e2 also stands for the relaxatio
time of the phase field toward the kink profile, which in tu
must be kept well below the inverse growth rateuvu21 ~see
Ref. @1#, Sec. IV!. These inequalities control the convergen
to the Hele-Shaw dynamics and, for the linear regime,
deviation from it can be computed analytically from the
~see Ref.@1#, Sec. IV!, thus providinga priori criteria for the
choice ofẽ ande to obtain a prescribed accuracy.

To be consistent with the frame change and adimens
alization inherent to the parametersB and c previously de-
fined, we use a cell of width 1, with periodic boundary co
ditions in the x direction ~which include rigid walls as a
particular case! and no flux~constant stream function, e.g
c50) in the y direction. Whenever some symmetry of a
initial condition exists and is preserved by the time evo
tion, we use a properly reduced integration domain~e.g.,
left-right symmetry for a single mode, or up-down symme
for an up-down symmetric initial condition withc50).

Numerical integration of the above equations has b
carried out on a grid of sizenx3ny with equal spacingDx
5Dy51/nx in both x and y directions, using an explicit
centered-space algorithm.nx is chosen so thatDx at most
equalse for the profile of the fields across the interface to
properly resolved. Thee value thus constrainsDx and, in
turn, the minimum size of the system and the maximum ti
step, so that the computing time required to integrate a
tain physical dynamics goes ase24. Then ny is chosen so
that there is always a distance of at least one of the lar
present wavelengths between the interface and thec50
boundary condition at the end of the channel. An increas
this distance does not seem to affect appreciably the inter
evolution. This is what is expected in the linear regim
where the stream function decays exponentially with
present wavelengths, but is ana posteriori observation for
the Saffman-Taylor fingers.

As for the initial condition, in general one should set t
phase field tou5tanh(r/A2e), with r being the signed dis-
tance to the desired interface, which is the model solution
least up to first order ine ~see Ref.@1#!. Then the corre-
sponding stream function should be close to the station
solution of Eq.~2.6! for that phase field. This can be ob
tained either by solving the stationary version of Eq.~2.6! ~a
Poisson equation! or by letting the stream function in Eq
~2.6! relax while keeping the phase field frozen. However
the present paper, since we will consider perturbed pla
interfaces as initial situations, we will make use of the fie
predicted by the linear theory:u5tanh(y/A2e), wherey is
signed vertical distance to the desired interface, and the t
interface result~see Ref.@1#!

c~x,y!5a6Aeikx2q6uyu, ~2.9!

with

a65
iv0

k S 1

A11~ ẽv/k2!
7ceukuA2D 1O~c2!1O~e2!

~2.10!

and
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1736 PRE 60R. FOLCHet al.
q65UkA11
ẽv

k2~16c!
U . ~2.11!

III. PHASE CONSERVATION

Before testing the model in physical situations, a prelim
nary test is that of the conservation of the two fluid phas
Due to incompressibility and immiscibility, the Hele-Sha
dynamics preserve the area and phase purity of each dom
In contrast, model A, starting point for the equation for t
phase field@Eq. ~2.7!# ~see Ref.@1#!, does not even preserv
the global balance between phases. For reasonable valu
the interface thicknesse these nonconserved dynamics a
given aproximately by Allen-Cahn law (vn}k). Thus phase
conservation within the phase-field scheme depends on
accuracy of both thee2k(u)u¹W uu term in canceling out
Allen-Cahn law and the couplingẑ•(¹W c3¹W u) in introduc-
ing the Hele-Shaw dynamics.

First we test Allen-Cahn law cancellation by consideri
situations in which the stream function drops from the eq
tions. For a circular droplet of one phase embedded in
other in absence of gravity Eq.~2.7! reduces toe2(]u/]t)
5 f (u)1e2(d2u/dr2) ~because]u/]s50), where r is the
radial coordinate. This is exactly model A in one dimensio
and therefore Allen-Cahn law cannot arise. Starting withu
5tanh (r/A2e) as the initial condition, there is some slo
dynamics which soon becomes stacked because of the
ited numerical resolution. From then on, the fluid phases
completely conserved. In contrast, if the term canceling
the Allen-Cahn law is removed from Eq.~2.7!, the droplet
quickly collapses.

The same test can be carried out for a marginal mode
nearly flat interface with identical results: If the Allen-Cah
law correction is removed, the mode quickly flatten
whereas, if it is not, some slow dynamics soon is stac
within the numerical resolution. This corresponds to t
point k851 in Fig. 2 ~see Sec. IV!, whose measured growt
rate v8 vanishes exactly. Both tests suggest that
e2k(u)u¹W uu term cancels out Allen-Cahn law even at high
orders ine than those computed in Ref.@1#.

As for general situations in which the coupling term c
also play a role, significant violation of phase conservat
has only been observed for such large values ofe that ek
.1. We therefore conclude that the two fluid phases
conserved for reasonable values ofe, and that, in practice
this is not a restrictive condition one.

IV. LINEAR DISPERSION RELATION

The first physically relevant situation in which we ha
tested the model is the linear regime of a perturbed pla
interface. The linear dispersion relation has been compu
for vanishing viscosity contrast (c50). The sharp-interface
model predicts a linear growth that does not depend oc.
However, the phase field model should exhibit some dep
dence in the viscosity contrast related to the finite-e and -ẽ
corrections~see Ref.@1#, Sec. IV!.

We use a single mode occupying the whole channel w
~i.e., of wavelength 1 and wave vectork52p) and then vary
-
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the dimensionless surface tensionB in order to change the
growth rate of that mode according to the Hele-Shaw disp
sion relation

v05uku~12Bk2!. ~4.1!

This is physically completely equivalent to fixing the surfa
tension and varying the wave vector of the mode, as can
seen through the rescalingk85ABk,v085ABv05uk8u(1
2k82). However, it is numerically more convenient, since
allows one to use the same value ofe for all the modes,
becausek is fixed. Thus, according to the finite-e and -ẽ
dispersion relation derived in Ref.@1#,

v5v0S 1

A11~ ẽv/k2!
2eukuA2

5

6D 1O~c2!1O~e2!.

~4.2!

We have usede50.01 andẽ50.1 in order to keep the de
viation from the sharp-interface onev0 below a 10%~we
have used its maximum,v52p, to compute the required
value of ẽ). Finally, the initial amplitude of the mode i
chosen to equal the mesh sizeDx—which in turn is set toe/2
for reasons explained below— so that we stay for a while
the linear regime for unstable modes, and yet have eno
numerical subgrid resolution for the stable ones also fo
while.

The time evolution of a relevant mode~one close to the
most unstable one!, with B56.531023, is shown in Fig. 1.
The points (1) have been obtained by averaging the ratio
the interface heighty at a certain timet and the initial one
y(0) over one fourth of the interface. The slope of the
sulting curve in a linear-log plot is the growth rate. Whe
this is constant, the growth is exponential and we are in
linear regime. This corresponds to the linear fit plotted
Fig. 1, from which we obtain the growth rates shown in F
2. Beyond this regime the points curve down because of

FIG. 1. Measure of the interface growth rate forB56.5
31023. Crosses (1) correspond to the average over1

4 th of the
interface ofy(t)/y(0) (y is the interface height! and the dotted line
to the average over14 th of the bulk ofuc(t)/c(0)u. The growth rate
is the slope of the linear fit~solid line!.
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PRE 60 1737PHASE-FIELD MODEL FOR HELE- . . . . II. . . .
nonlinearities. The crossover corresponds to an amplitud
about one tenth of the wavelength of the mode.

The behavior of the stream function has been plotted
dotted line for purposes of comparison. According to t
linear theory~see, e.g., Ref.@1#!, the absolute value of the
stream function at any point of the system should also g
exponentially with the same growth rate as the interface,
this is indeed the case, since the dotted line—the ave
over the whole bulk of the absolute value of the ratio b
tween the stream functionc in a certain point at a certain
time t and the initial one at the same pointc(0)—is parallel
to the interface evolution in the linear regime. The gap
tween the two straight lines is due to the initial, very short
and therefore not visible in the figure—decay of the stre
function, which reflects the rounding on a scale ofO(e) of
the gradient on the interface of the sharp-interface result u
as initial condition.

In Fig. 2 we present the linear dispersion relation th
obtained in the rescaled variables defined above. The po
~1! correspond to the growth rates measured as in Fig. 1
times ranging from 0.3 to 0.7, i.e., for roughly a decade
the amplitude. Their deviation from the sharp-interface res
of Eq. ~4.1! ~solid line! keeps below the desired 10% err
and is fairly well quantitatively predicted by the thin
interface dispersion relation of Eq.~4.2! ~dotted line!. This
quantitative agreement between theory and numerics is q
remarkable if we take into account that the thin-interfa
model is based on an asymptotic expansion ine. This good
agreement is indeed an indication that the value ofe used is
in the asymptotic regime of the sharp-interface limit, as
will see more clearly in Fig. 3.

Although we in fact introduce the thin-interface grow
rate@Eq. ~4.2!# into the initial condition for the stream func
tion, the results do not depend on this after a certain tr
sient. If one more naively sets the sharp-interface growth
v0 into the initial condition for the stream function, on
obtains a rather long transient in which the slope of
amplitude-time log-linear plot like that of Fig. 1 initially
curves down~up! for an unstable~stable! mode, i.e., the
growth is not exponential, and we are therefore not prope

FIG. 2. Linear dispersion relation in appropriate variables~see
the explanation in the text!. Crosses (1) represent the growth rate
obtained as in Fig. 1. The Hele-Shaw result~solid line! and the
thin-interface prediction of Eq.~4.2! ~dotted line! are shown for
comparison.
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describing the Hele-Shaw problem. The slope then rela
toward the thin-interface one, and the growth becomes ex
nential, but nonlinearities soon set in. In contrast, if the th
interface growth rate is set into the initial stream functio
one obtains constant slopes from the very beginning. T
allows one to measure the growth rate in a wider range
time, and is indeed also an indication that the thin-interfa
model is valid.

The growth rate values shown in Fig. 2 could still b
refined by further decreasinge and ẽ. This is not only a
theoretical possibility, but can also be done in practice as
show in Fig. 3, although the computation time increases
explained above. Here, we study the convergence of
growth ratev (y axis! for the maximum ofv8 (k8) (B
58.44331023) to the Hele-Shaw resultv054.188~left up-
per corner! as we decreasee (x axis! and ẽ ~various sym-
bols!. The empty symbols have been obtained withDx5e,
whereas the filled ones correspond toDx5e/2. The growth
rates obtained withDx5e are always below the ones fo
Dx5e/2, probably because of the stabilizing effect of t
mesh size. IfDx is further decreased, the differences with t
values computed withDx5e/2 are tiny, whereas the ga
between theDx5e and theDx5e/2 points is rather large
~clearly more than the differences between distin
symbols—distinctẽ values—or adjacent values ofe). This
means that the discretization has practically converged to
continuum model forDx5e/2, but not forDx5e. That is the
reason why we have usedDx5e/2 in Figs. 1 and 2.

Moreover, theDx5e/2 points should be described by th
thin-interface model of Eq.~4.2!, and this is indeed the cas
for small enough values ofe. To see this visually, we have
plotted the thin-interface prediction forẽ50 ~dashed line!,
which is, of course, a straight line ine. Each set of points
with the sameẽ value clearly tends to align parallel to th
line as e decreases—as Eq.~4.2! predicts— whereas they
curve up and even cross the line for large values ofe, for
which we are beyond the asymptotic regime of validity
Eq. ~4.2!, apparently ending neare50.01. This makese

FIG. 3. Convergence to the Hele-Shaw value for the maxim
of the linear dispersion relation curve,B58.4431023, v054.18,

as e (x axis! and ẽ ~1 for circles, 0.25 for triangles, and 0.1 fo
squares! are decreased. The dashed line corresponds to the

interface prediction of Eq.~4.2! for ẽ50. Empty ~filled! symbols
have been obtained withDx5e ~Dx5e/2!.
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FIG. 4. Saffman-Taylor finger
advance: four successive inte
faces at constant time intervals fo
the regime in which the tip veloc-
ity stays constant, 1.15,t,3.3.
~a!–~c! B51022, e50.02: ~a! c

50, ẽ50.2 (l50.63); ~b! c

50.5, ẽ50.1 (l50.61); ~c! c

50.9, ẽ50.02 (l50.60); ~d! B

51023, e50.01, c50, ẽ50.2
(l50.59).
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50.01 very suitable for simulations, and confirms it to
within the asymptotic regime as we pointed out above. N
as well how the growth rate increases with decreasing va
of ẽ within the same value ofe ~vertical columns of points!,
and how it approaches the dashed line in good agreem
with the values predicted by Eq.~4.2! for values ofe within
the asymptotic regime.

V. SAFFMAN-TAYLOR FINGERS

Once the model has been tested in the linear regim
seems mandatory to check a highly nonlinear situation s
as the steady state, for which many analytical and numer
results are available. We start with a single mode occupy
the whole channel, and with an amplitude equal to the ch
nel width, i.e., clearly in the nonlinear regime. Obviously t
initial condition predicted by the linear theory is not acc
rate, but this just introduces a transient during which
dynamics is not the Hele-Shaw one. By the time the form
finger is close to the steady shape, all transients must h
decayed. Moreover, starting with a single mode we not o
check that the model exhibits a finger solution, which
could do much faster by starting with that solution, but th
the model is robust to inaccurate initial conditions for t
bulk, and also that single fingers have a reasonable bas
attraction, which may be a rather nontrivial point for sm
c @6#.

Here we do not have a theoretical prediction for the
viations from the Hele-Shaw steady state due to finite-e and
-ẽ effects. However, we know that the inequalities of Sec
still control the convergence. The differences are thatv now
stands for the steady advance velocity~which should be in
the range 0.7–0.8, not far from the maximum growth rate
the linear regimev52p), and that all unstable modes—an
not only the one set by the initial condition—are present
the steady state, so thatk must be chosen to be the le
favorable in each inequality. This continues to bek52p for
the condition onẽ, but becomesk51/A3B, the most un-
stable mode, for the one one. We thus progressively de
crease the values ofe andẽ and look for convergence~in the
finger widths! within the computational resources.
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The finest comparable simulation runs are shown in F
4~a!–4~d!. For B51022 @Figs. 4~a!–4~c!#, we have usede
50.02, twice less accurate than the one used in the lin
regime~Figs. 1 and 2!, whereas forB51023 @Fig. 4~d!# we

use e50.01, three times less accurate. As forẽ, we have

used ẽ50.2 for c50 @Figs. 4~a! and 4~d!#, ẽ50.1 for c

50.5 @Fig. 4~b!#, and ẽ50.02 for c50.9 @Fig. 4~c!#, all of
them twice less accurate than the one in the linear regi
However, convergence inẽ seems to be achieved, at least
the finger widths. We cannot assure it fore because the
finger tip splits forB51023—probably because of numer
cal noise—ife is further lowered. In all cases we have us
Dx5e/2 as in the linear regime tests, although we ha
found that already forDx5e, the differences in widths are a
most within 1%.

Figures 4~a!–4~d! show single fingers that are formed an
relax to a certain width to just advance with a steady vel
ity. This can be measured plotting the tip position agai
time, finding excellent linearity fromt51.15 to at leastt
53.3 ~for the fastest finger!. Four successive interfaces
constant time intervals are shown covering this whole
gime. Except for thec50.9 case of Fig. 4~c!, the finger has
not completely relaxed to its final width for the first plotte
interface, which means that we are not yet in the steady s
From the second to the last shown interfaces, no observ
change in width, tip velocity, or shape is seen anymore. T
ing into account that Figs. 4~a!–4~d! show the whole
channel—although simulations were carried out using h
(cÞ0) or a quarter (c50) of it—it is clear from Fig. 4~d!
that the end of the channel can be set even closer to the t
the finger than a channel width~i.e., closer than what the
linear regime would have suggested!. Regarding the values
of this steady velocity, they are always 10–20 % below w
is predicted for an~infinite! Saffman-Taylor finger of the
same width without surface tension, although velocity do
increase with decreasing finger width, as can be seen c
paring Figs. 4~a! and 4~d!. The origin of this quantitative
discrepancy must lie necessarily on finite-e and -ẽ effects,
most likely related to the non-Laplacian character introduc
by ẽ, which produces a finite diffusion length.
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Note thatc50 fingers@Figs. 4~a! and 4~d!# are up-down
symmetric ~also if one uses the whole cell as integrati
domain!, whereas thecÞ0 ones are not, but the less visco
fluid ~down, negativey values! propagates into the more vis
cous one~up, positivey values! in the shape of a Saffman
Taylor finger, whereas the more viscous propagates into
less one in the shape of a drop. If Fig. 4~a! is compared to
Figs. 4~b! and 4~c! ~all with B51022, but increasing viscos
ity contrastc), one sees that the higher the viscosity contra
the longer the Saffman-Taylor finger and the shorter the d
part~the initial condition was centered abouty50). All such
dependences onc coincide with Tryggvason and Aref’s ob
servations from their vortex sheet numerical scheme@4#.

As for the finger widths, all above one-half of that of th
channel, they decrease with decreasing dimensionless
face tensionB and increasing viscosity contrastc. This c
dependence can also be seen in Fig. 1 of Ref.@4#. Quantita-
tive comparison with McLean-Saffman numerical solvabil
theory results forc51 is only feasible to some extent ifc
51 widths are extrapolated from thecÞ1 ones obtained
since our model cannot treat the limiting casec51. By do-
ing this for B51022 @l50.63 for c50, l50.61 for c
50.5, andl50.60 forc50.9, Figs. 4~a!–4~c!#, one obtains
l.0.60 for c51, 6% below the McLean-Saffman valuel
50.637. ForB51023, c.0 fingers would become ver
computationally demanding, but if the same gap betweec
50 and 1 widths as forB51022 is assumed, this would
yield l;0.56 forB51023, c51, within 5% distance of the
McLean-Saffman valuel50.528. Of course this latter ex
trapolation is not rigorous, since the differences in width d
to the viscosity contrast are likely to diminish with decrea
ing B, so that they vanish forB˜0 andl5 1

2 is selected for
all c, as is generally believed to be the case. In any case
deviations from the McLean-Saffman results found~within
5–6 %! are surprisingly lower than what the used values oe

and ẽ would have suggested, taking into account the
served deviations in the linear regime.

VI. MULTIFINGER DYNAMICS

We have finally tested the model in the nonlinear dyna
ics appearing between the precedent situations, i.e., afte
departure of the linear regime and before reaching the ste
state. Here we use a somewhat experimentally realistic in
condition consisting of a superposition of sinusoidal mod
with random, uniformly distributed amplitudes betwe

20.005 and10.005 for each wavelengthl51,1
2 , 1

3 , . . . ,1
7 ,

i.e., in the linear regime and random phases. ForB51023

the most amplified of these wavelengths will bel5 1
3 , so

that we expect three unequal fingers to appear, and there
chance for mode interaction and competition to set in. Wa
lengths belowl50.161 are stable and will decay. We in
clude some of them anyway. Then all modes are added u
find the interface position. The stream function predicted
the linear theory is also obtained by adding up each mod
stream function, but all with their peaks centered at the sa
final interface position, to avoid the formation of more th
one peak of the stream function across the interface.

Since harmonics of the channel width are present,
have to refine thee used in the linear regime. We usee
he

t,
p

ur-

e
-

he

-

-
the
dy
al
s

s a
-

to
y
’s
e

e

50.006 25, withDx5e to save computation time. The valu

of ẽ is quite crude@ ẽ50.5 for the equal viscosities casec
50; Fig. 5~a!#, especially for the high viscosity contrast (c

50.8) run@Fig. 5~b!# ( ẽ50.2).
The results are shown in Figs. 5~a! and 5~b! for 0.15,t

,1.25 at constant time intervals 0.1~dots!. The latest inter-
face is emphasized in bold, and the solid line correspond
the initial condition fort50. As we can see, the initial con
dition happens to have six maxima. Rather quickly, on
three of them are left as predicted by linear stability, ev
before entering the nonlinear regime, in which these max
elongate into well developed fingers. For vanishing viscos
contrast@c50; Fig. 5~a!#, there is no apparent competition
in agreement with experimental@17# and numerical@3,6# evi-
dence. Longer and shorter fingers all advance. Shorter
gers might not advance so quickly, but they expand to
sides, so they clearly keep growing. In contrast, starting w
the same initial condition forc50, thec50.8 run@Fig. 5~b!#
shows competition between fingers of the less viscous fl
advancing into the more viscous one—and not the other w
around—as is known to happen in the Hele-Shaw proble
The shorter finger now also expands laterally, but it so

FIG. 5. Time evolution forB51023, Dx5e50.006 25 of an

initial condition ~solid line! combiningl51,1
2 , . . . ,1

7 with random,
uniformly distributed amplitudes between20.005 and10.005. In-
terfaces at time intervals 0.1 are shown in dotted lines startin
t50.15. The latest interface shown (t51.25) is represented in bold

~a! Lack of competition forc50 (ẽ50.5). ~b! Competition forc

50.8 (ẽ50.2).
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begins to move backwards as a whole. Longer times m
lead to the pinch-off of droplets in both cases.

VII. CONCLUDING REMARKS

We have numerically integrated the phase-field mo
proposed in Ref.@1# for the Hele-Shaw problem in the un
stable configuration. Simulations have been carried ou
several situations: a circular droplet~to test conservation o
each fluid!, the linear regime of a perturbed planar interfa
the steady state, and the nonlinear regime in between.
performed tests guarantee that the model can be used in
tice to reproduce the Hele-Shaw dynamics. In the model
small parameterse and ẽ, whose zero limit corresponds t
the sharp interface limit, can be independently chosen, b
the dynamics well described by the thin-interface model
rived in Ref.@1#. In general, the conditions one and ẽ allow
one to control the accuracy of the simulations.

The basic criteria to control the closeness to the sh
interface limit areek!1, ẽv/(16c)k2!1. More precisely,
in the linear regime we find that both numerical simulatio
and the thin-interface model~with almost identical results!
are accurate with an error below 10% if one satisfies
conditionsek<0.06, ẽv/(16c)k2<0.016. In this situation
a run such as that leading to Fig. 1 typically took about th
.

. A
.

.

ut

,

,

y

l

in

,
he
ac-
o

g
-

rp

s

e

e

CPU hours on a Pentium Pro processor at 200 MHz. On
other hand, in general the potentially most costly situation
the multifinger dynamics. Here, Fig. 5~a! took about 70 CPU
hours in the same processor. The method could be m
more efficient by using a semi-implicit scheme, an adapta
mesh, or~possibly! by canceling out the corrections to th
sharp-interface equations remaining~i.e., other than the
Allen-Cahn law! in the thin-interface model. For high viscos
ity contrasts,c;1, a distinct model could possibly be mor
efficient.

Extensions to less studied, related problems are also
lighted, including the study of noise and spatial disorder~for
instance to simulate porous media!, the study of liquid crys-
tals and other complex fluids, and problems with a physica
diffuse interface, such as thermal plumes@18# or motion of
the salt-water–fresh-water interface in coastal aquifers.
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