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Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast.
I. Theoretical approach
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We present a phase-field model for the dynamics of the interface between two inmiscible fluids with
arbitrary viscosity contrast in a rectangular Hele-Shaw cell. With asymptotic matching techniques we check the
model to yield the right Hele-Shaw equations in the sharp-interface limit, and compute the corrections to these
equations to first order in the interface thickness. We also compute the effect of such corrections on the linear
dispersion relation of the planar interface. We discuss in detail the conditions on the interface thickness to
control the accuracy and convergence of the phase-field model to the limiting Hele-Shaw dynamics. In par-
ticular, the convergence appears to be slower for high viscosity contr&463-651%99)08208-2

PACS numbds): 47.54+r, 47.20.Hw, 05.90t+m, 05.10-a

[. INTRODUCTION boundary condition to apply explicitly at the interface and
the whole system is treated as bulk.

The dynamics of morphologically unstable interfaces is a This method introduces a mesoscale which is not
major problem in nonequilibrium physics from both funda- present in the original macroscopic equations and gives a
mental and applied points of view. Relevant examples ofinite thickness to the interface. The equations are then cho-
those are dendritic growth, directional solidification, flows in sen in such a way that the original bulk equations and bound-
porous media, flame propagation, electrodeposition, or baary conditions are recovered in tke»0 limit. Therefore, the
terial growth[1]. The so-called Saffman-Taylor problem has phase-field equations for a given model are not intended to
played a central role in this context because of its relativalescribe the true mesoscale physics of the system, and are
simplicity both experimentally and in its theoretical formu- then not unique. In fact there is considerable freedom in
lation[1,2]. It deals with the motion of the interface between choosing a particular form of them, with criteria of either
two inmiscible fluids within a Hele-Shaw cell. Due to the numerical efficiency and convergenidsS] or other physical
highly nonlinear and nonlocal nature of the interfacial dy-criteria such as thermodynamic consistefi4]. In any case,
namics of such systems, analytical understanding is scardbe nature of the phase-field approach is completely different
and restricted to high viscosity contr8{, so in general one from the sharp-interface models, and therefore the actual nu-
relies mostly on numerical worfd—9]. merical advantages and limitations of both are also quite

From a mathematical point of view, such systems are redistinct. This makes the two approaches complementary and
ferred to as moving boundary problems. In practice this im-competitive in different physical situations. A remarkable
plies that one has to keep track of the interface where boundxdvantage of the phase-field approach is that it is much sim-
ary conditions are applied, and solve(lmear problem in  pler to implement satisfactorily from a numerical point of
the bulk which determines in turn the motion of the bound-view. On the other hand, the phase-field approach is usually
ary. This kind of problem has traditionally been addressed inmore amenable to generalization, in the sense that it allows
terms of boundary integral methods which reduce the dyene to introduce variations and new elements without any
namics of the interface to integrodifferential equations. Themajor modification of the numerical scheme, for instance in
numerical integration of these equations is quite involvedithe treatment of fluctuations, liquid crystdts8], and other
however, particularly for long times, due to stiffness andcomplex fluids[9]. Finally, the phase-field approach can
numerical instability of the equations. In the case of Hele-handle very naturally situations where the sharp interface
Shaw flows, boundary integral methods have successfulljnodel is not appropriate, such as for instance topology
been applied6-9], although quite sophisticated algorithms changes like interface pinching leading to the breakup of
have usually been necess48y. bubbles.

Recently, so-called phase-field equations have been pro- In this paper we introduce a phase-field model for Hele-
posed in the context of solidification problems as a differentShaw flows with arbitrary viscosity contragir Atwood ra-
approach to the interface dynamid€—-19. In the spirit of  tio) c= (w1 — u2)/(p1+ p2). Although in the high contrast
the well known time-dependent Ginzburg-Landau modeldimit c=1 the Hele-Shaw dynamics is quite analogous to the
[20], the method avoids the tracking of the interface by in-one-sided solidification probleitin the appropriate approxi-
troducing an auxiliary fieldanalogous to an order param- mations[8]), the arbitrary viscosity contrast case has been
etep which locates the interface and whose dynamics isshown to exhibit quite different dynamics than solidification
coupled to the other physical fields through an appropriat@roblems, and has in fact opened some interesting questions,
set of partial differential equations. In this way, there is noparticularly concerning the sensitivity of finger competition
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to viscosity contrasf4—7,21] and the long time asymptotics Herer is a coordinate normal to the interface and with origin

of the low viscosity contrast limif7]. on it, positive in fluid 1(0* then means on the interface
The model presented here is inspired in the vortex-sheetoming from each side s is the arclength along the inter-

formulation of the probleni4], in which the relevant dy- face, and the unit vectors satishk f =% XV, the subscripts

namic variable in the bulk is the stream function. Similarstand for partial derivatives except fo(s), which is the

ideas have previously been applied to describe physicallpormal velocity of the interface, positive towards fluid 1, and

diffuse interfaces in the context of steady state selection in

thermal plumeq22]. Usually phase-field models are natu- y(s) .

rally suited to symmetric situatior(wo-sided models The T:BK5+Y' S (2.4

present case of Hele-Shaw flow is no exception and becomes

most efficient forc=0. Finite c can also be handled but the with «(s) the interface curvature, positive for a bump into

model becomes computationally inefficient in the lingit  fluid 2. The dynamics are controlled by the two dimension-

—1, since this limit must be taken formally after tee-0  less parameters

limit. A phase-field model for this one-sided case must differ

essentially from the one presented here, such as in the spirit b%o M1~ M2
B= , C= .
of Ref.[19]. 2 Mt o
The layout of the rest of the paper is as follows: in Sec. ~ 12W? Va1~ m2) + Geiry5 (P17 P2)
I A we recall the Hele-Shaw macroscopic equations in terms 2.5

of the stream function, whereas in Sec. || B we present our

phase-field equations. We then show in Sec. Il that thaye will not be interested in negative values Bf(stable
phase-field equations reduce to the macroscopic ones in t%nfiguratio,) nor ¢ (mirror image interface of-c). ThusB
sharp-interface limit. Deviations from that limiting behavior js a3 dimensionless surface tension, and can be understood as
are derived from the phase-field equations themselves to firghe ratio between the capillaristabilizing force and the
Ordetj in the int.el’fa(?,e thickness II’] Sec. IV, a.nd. their effect.omriving (destab|||z|ng force (injection p|us gravity’ andcis
the linear regime is computed in Sec. V. Finally, a briefthe viscosity contrast, which is so far completely arbitrary:
summary is given in Sec. VI. O=c=<1. This corresponds to having set ourselves in the
frame moving with the fluid at infinityor, equivalently, with
the mean interfageand takenw as the unit length and
=cV..+ ger 02(p1— p2)/12(11+ 15)] as the unit velocity

We consider the general case of an interface with surfacésee Ref[4]).
tension o between two fluids with distinct viscosities Note that Egs(2.1) and(2.2) can be written together as
(mq,m2) and densities f1,p,) moving in a rectangular
Hele-Shaw cell of widthW (x direction and gapb (z direc- VZ=—w, w={y(s)+c[(0")+ ¢ (07)]}5(r),
tion), under an effective gravitg.s; (negativey direction (2.
and with an injection velocity., (positivey direction. La-

bel 1 (2) Corresponds to the uppéower) fluid. where 5(r) is the Diracé distribution andw=z- (ﬁxﬁ) is
the fluid vorticity, which is confined to the interface.

Il. MODEL

6)

A. Macroscopic equations B. Phase-field equations

e S we put foruard te folwing phase.field mocel for he
interface. In contrast, the bulk incompressibility and the Con_above equations witi# being the phase field:
tinuity of normal velocities on the interface allow us to de- y 11
fine its harmonic conjugate, the stream functineven on e—=V2y+ Cﬁ.(gﬁ P+ = ——y(6)(1— 6%),

the interface through, = dy ¢, uy,=—d,4, whereu, andu, at €2v2

are thex andy components of the fluid velocity field. Then 2.7
Darcy’s law results in a Laplace equation for the stream »

function(potential flow and a certain jump for the tangential 200 202 2 = 25 S =

fluid veIoFéities on the interface, wh(;se 5a|ue takesg:nto ac- ¢ E_f(aHE VEO+ER(0)[V O+ €72 (VX 0),
count the Gibbs-Thomson relationship. The fact that the (2.8
stream function is continuous at the interface makes the use _

of this variable particularly convenient. The Hele-Shawwhere f(6)=6(1— 62), and y(6)/2=3(6)-(BV «(6)+9),
equations in stream function formulati¢a] can be written . (g)=—V.7(6), with 7(6)=V6/|V6| and 3(68)=F(6)

in dimensionless form as X 2, together with the boundary condition

V2y=0, (2.1 O(y—+o)==+1, (2.9

G (0H) = 4 (07)=—y—c[ ¢ (0)+ 4,(07)], (2.2 o) that0=.+ 1(-1) c_:orresponds_ to fluid (2). y(Q) andk(6) .
are functionals which generalize the magnitudes defined
above for the interface, now to any level set of the phase-

Ps(07)=h(07)=—v,. 23 field.
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If we leave the two last terms aside, E8.8) is the Cahn-  upward velocity, and a width close tbis formed. Outside
Hilliard equation for a nonconserved order parameter othe plume the fluid is colder, and the transition between the
model A (without nois@ in the classification of Ref.20] of  two zones is relatively abrupt, so that one can think in terms
time-dependent Ginzburg-Landau models. The field in thi®f an interface of a certain small thickness. Thus the equation
model is known to relax towards a kink solution of a certainfor the phase fieldEq. (2.8)] could be thought of as a diffu-
width in a short time scale, and then to evolve to minimizeSion equation for the temperature in a thermal plume. How-
the length of the effective interface according to Allen-Cahn€Ver, the available equations for that problem hold only for

law (i.e., with normal velocity proportional to the local cur- the steady statg22], whereas our phase-field model is in-
vature. The factor multiplying the laplacian has been tended to describe the whole dynamics. Generalization of the

choosen to be? for the kink width to beO( ), so thate can th_e_rmal plume e_quz_;\tions_ to i_nclude the dynamics is not
be considered the interface thickness, i.e., the small pararr%r—IVIaI for nonvanishing viscosity contrast. As a matter of

) . . . : act, Ref. [22] must restrict itself to low viscosity
eter in the asymptotic analysis that will be performed in Sec, . )
5 ) . o contrasts—as is the case in thermal plumes—whereas we
[ll. On the other hand, the“ factor in the time derivative

. L formulate the model for arbitrary viscosity contrast. An in-
ensures that relaxation toward the kink is much faster than . Y y

the evolution of the interface. Notice that modetiescribes teresting difference is the terrr?x(a)|V0| cancelling out

the relaxational dynamics of a nonconserved order pararﬁe‘"(:“n'c‘elhn I_aw. The absence of that term in the thermal
. : lume equations does not prevent the Hele-Shaw steady state
eter, whereas our problem is actually nonrelaxational an

strictly conservedmass conservation and inmiscibilityThe quations from being recovered in the sha[p-interface limit
other two term in the phase-field equation will correct thisPecause of the lower power efused in theli- V¢ term, but

apparent contradiction. In order to cancel out the local Allenthen Allen-Cahn law arises in the corrections at first order in

Cahn dynamics of the interface which is built in modelwe thze interface thicknes;. In_contrast, by means of this
add the terme?«(6)|V ]. It will be shown that such term € k(0)|V 6| term we achieve cancellation of the Allen-Cahn

cancels out Allen-Cahn law by giving rise, to leading order,/2W €ven in such corrections, as we will see in Sec. IV.
to an identical contribution but with opposite sign. with Finally, another major difference in the case of thermal
these elements so far, our phase field relaxes to a kink profil@lUmes is the absence of surface tension.

located along an arbitrary interface whi¢hi sufficiently

smooth remains almost completely stationary, regardless of . SHARP-INTERFACE LIMIT

its shape. This is because the dynamical effect of surface ) ]
tension associated with the Ginzburg-Landau free energy has I order to analyze the smadibehavior of the phase-field
been removedup to first ordey, and the interface has not yet €duationg2.7) and(2.8), we expand their fields in powers of
been coupled to the fluid flow, represented by the strean: The exp(_ected ab_rupt variations of these flelds_through the
function. This coupling is achieved by adding the last term ininterface will make it necessary to perform two different ex-
Eq. (2.8), which stands for— €G-V, and thus sets the Pansions. In the interface regiéinner region we rescale the
phase field—and therefore the interface—in the frame movg'fferem""II operators appearing in these phase-field equa-

ing with the fluid velocityd. This term restores the fully tions by rewriting them in terms of the stretched normal

nonlocal dynamics of the Hele-Shaw model. In particular it_coordinatepzr/e (see the Appendjx The expansions in the

yields the continuity of normal velocitiefEq. (2.3)], and inner region will be matched order by order in powers: ¢

reintroduces surface tension, which is contained in the d 'ghr?se n;hthe outgr r?gloﬁn thetbulk falr f(;or_:_whthe |r;terfac)§'
namical equation for the stream function througl®). where the coordinates are not rescaled. The outer and inner

As for Eq.(2.7), its right hand side is intended to repro- expansions are written, respectively, as
duce Eq.(2.6), and therefore also Eq&.1) and(2.2). If the
phase fieldd has a kink shape, 162 is a peaked function a(r,s,t)y=ao(r,s,t)+ea;(r,s,t) + e%a,(r,s,t)+--,
which, when divided by, gives rise to the’ distribution for (3.1
the vorticity. However, this only accounts for thein the
weight of thes. The part proportional to the viscosity con-  A(p,s,t)=Aq(p,s,t) + €A1(p,S,t) + €2Ay(p,S,t) +- -+,
trastc must be put apart as trteﬁ'(eﬁ ) term because of (3.2
the nonlocal character af,(0")+ ,(07). Finally, the time
derivative is multiplied bye to recover the Laplaciafand  where capital letters denote fields written in terms of the
not diffusive behavior of the Hele-Shaw flow in the sharp- rescaled coordinate. This results in the following matching
interface limit. conditions:

In spite of important differences, the proposed phase field
equations(2.7) and (2.9 cont.ain certain similarities to the Ao(p,s,t)=an(0%,s,t),
problem of a thermal plume in a Hele-Shaw cell under grav-
ity [22]. In such a problem there is only one fluid heated
from the center of the channel. The heat diffuses toward the
lateral walls, but the temperature profile is not linear, since
the fluid density and viscosity decrease with temperature, so . . p? .
that the fluid in the middle of the channel raises because ofA2(p,S:t)=25(07,8,0)+pay(07,8,1)+ S-a9,(07,s,1),
buoyancy. As a result a so-called plume of hot fluid with a
shape similar to the Saffman-Taylor finger, with a stationary (3.3

Ai(p,s,it)=a;(0",s,t)+pag,(07,s,t) as p—o*x»
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Therefore, strictly speaking, we do not really get the right sharp-
interface limit forc exactly equal to 1. However, the model
Ao (£0,5)=Ay,,(£%,5t)=-=0, can be applied to physical high viscosity contrast pairs of

fluids. We shall come back to this point in Sec. IV.

Ap, (+2,5t)=ag,(07,s,t),
B. Inner equations

Az‘p(p,s,t)=a1,r(0:,s,t)+pa0,rr(0i,s,t) as p— oo, In turn, the interface boundary conditions for the stream
function are given by the leading-order outer quantities
(3.4 0s(07) and ¢, (0) — ¢4,(07). According to the match-
ing conditions(3.3) and (3.4), these equal the inner ones

fields, but some set of equations for them. A sharp-interfacgoys(iw) and Wy, (+) =Wy, (=), respectively. Be-
model for the smalk dynamics of the phase-field equations cause of the specm.c structure ‘.Jf our phase-ﬁgld quatlons,
(2.7 and (2.8) is then given by the set of equations 0beyed(2.7)_and(2.8), we will need the first tw_o orders in the inner
by the outer fields: Those obtained at lowest order in the/€rsion of EE'(Z'S) and the lowest one in that of EQ.7) to
interface thickness (O(°)) constitute thee—0 limit of the ~ 0Pt@INWos(*), and the two firstin Eq(2.7) and the low-

phase-field model, which we carry out in this section;®Stin EA:(2.8), to obtainW, ,(+ ) =Wy ,(—). Therefore,
whereas those obtained up @ ¢) represent what we will W& compute the two first orders in both E¢8.8) and(2.7),

call (following Karma and Rappél3]) a “thin-interface” by substituting the inner expansidB.2) in the inner(re-

model, a model keeping finite interface thickness effectsg_c"’;led equationgall whose terms are derived in the Appen-
iX):

such as the one derived in Sec. IV. .
Equation(2.8) up to O(€) reads[see Eqs(3.2), (A10),
(A11), and(A19)]

In practice, one does not find explicit solutions for the

A. Outer equations

Straightforward substitution of the outer expans|&y. —€evp0o,=f(0)+€0,f'(0)+0,,,+€0,,,
(3.1)] in the outer equationg2.7) and (2.8), will yield the

bulk fields: a functional dependence for the phase-field and a +e(00,Vos=OosWo,)- (3.10
differential equation for the stream function. Its O( '
Equation(2.8) reads s O(€") part,
fo(0)=1(60y)=0=09=0,=1=const atO(e), f(©0)+00,,=0, 3.1)
3.
S together with the boundary conditions specified by the
B _ _ matching[Egs.(3.3) and(3.4)] with the outer expansion Eq.
f1(6)=—26,=0=06,=0 at O(e), (3.6 (3.5, gives the so-called kink solution
and iterating, we obtain
0= tanh’- =6, = —sech2 = - (1-63
6,=0 Vi>0. (3.7 o=tan \/E: pr—‘/isec ‘/2—‘/2( 0)-

Due to Egs.(3.5 and (3.7), 6==1 to all orders, and, (312
therefore, the (+ 6°) term in Eq.(2.7) does not enter this Hence we find th@ , term to vanish, and Ed3.10 reads,
outer limit, whereas the viscosity contrast term in that equaz; O(e), ’
tion becomes*cV?2y, depending on the phase. Hence Eq.

(2.7) in this outer region reads

_Vﬂ®0,p:1f,(0)+®l,pp+ O,p\IIO,S' (313

W _ 42 As for Eq. (2.7), it reads, up toO(1/e) [see Egs(3.2),
€5 ~ 1=V, 38 (a9), (A10), (A12), and(AL7)],

which implies

1 1 1
?’\POYPP_F ;(q,l,pp_ quo,p) +cC ?(@0\?04])’)

i

2 _ ad)

=(1*c)V?%y;.,, Vi=0, (3.9 1
+ E[(G)O\Pl,p)p_l— (®1\P0,p)p_ KG)O\PO,p]]
except forc=1. Note that we have recovered the sharp-

interface equatiof2.1) in the e—0 limit. Forc=1, Eq.(2.1) 1 1
is still recovered in thei-1 phaseviscous fluid, whereas in +-—9y(1-03=0. (3.19
the —1 phasdinviscid fluid) the stream function turns out to €2v2

be constant in time to all orders. Although the inviscid fluid ) 5

does not enter the problem in this linfitee Eq(2.2)], it still ~ From itsO(1/e%) part, we know that

has a nontrivial dynamics, since the stream function in it

must evolve to keep satisfying E@2.3), and therefore, W, (1+cOy)=const. (3.1
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Since¥,, has no correspondence with the outer expansionbut its aim is to ensure that the stream function is Laplacian
it must vanish at infinitf Eq. (3.4)]. Then we know the con- and not diffusive in th&—0 limit, which commutes with
stant to be zero. Now, since the term in brackets vanishethe e—0 one[the reader can convince himself of this by

only for c=1 andp— — o, we deduce that going through the limit again but now considerif&gg of
0O(€%)]: & sets the time scale of the diffusion of the stream
W,=0. (3.1  function through a given characteristic length of wave num-
ber k,&/(1+c)k? [see Eq.(3.8], which must be much
We then put Eq(3.16 into Eq. (3.14) at O(1/e): smaller than the characteristic growth rate of the interface

|w| 7%, so that the stream function is slaved to the interface:
€ w|/k?<1+c. We also realize that the viscosity contrast
O, (3.17) can be arbitrarily raised, as longass correspondingly low-
ered. So our model is valid even fer—1, as long as this
Finally, Egs.(3.13 and(3.17) will yield the macroscopic limit is taken formally after thee—0 one.
equationsg2.3) and(2.2), respectively: Eq(3.13 can be re- The €2 in €2(961dt) represents the relaxation time of the
written in the form phase field toward the steady kink solutisee Eq.(2.9)],
which must be kept well below the interface growth time
2 |w| 1 for the phase field to remain close to the kink profile
f'(@g)+ (9—[)2}(91: —0p,(Vat Vo). during the interface evolutiors?| w|<1. This factor must be
(3.19 the same that the one ief2- (VX V6) in order to obtain
the macroscopic equatig2.3). In fact there are at least two
We realize thal @, equals the partial derivative with re- distinct powers ofe for this relaxation time(e and €?) for
spect top of Eq. (3.11), which, in turn, vanishes. Hence we which the right sharp-interface limit is achieved, and the cor-

Y
\I,]_’pp'f' C(®O\I,l,p)p= - E

I:@:LE

write the solvability condition rections which we will compute would also be the same.
To sum up, there are at least two independent small pa-

+oo rameters(e and€) controlling the limit. When trying to ap-
J (Vo + W05 05,dp=0. (319  proach macroscopic solutions by means of numerical inte-

gration of the phase-field equations, it is very convenient to
vary them independently in order to save computing time,
since both affect if23].

A more quantitative answer to the question of the neces-
sary values ofe and’é to obtain a given precision can be
given by extending the asymptotic analysis of Sec. lll to first
order in the interface thickness consideringé of O(e).
Thus we will obtain a thin-interface model containing the

Using Eq.(3.16 we know thatW, =0=¥,,,, and can
takeW 5 out of the integral as well ag, . Since the quantity
left under the integral s;ignG(O,p)2 is always positive, we
find thatv,+ ¥y must vanish, and, matching with the outer
expansion, we obtain E@2.3) for .

On the other hand, integrating E@.17) with respect to

p, We obtain corrections to the limit up to that order iande.
According to the matching condition®.3), the correc-
Y tions to the interface boundary conditions for the stream
v, ,=—=0,—cO,¥, +as), 3.2 . . . =
L7 270 0W1,tas(s) (3.29 function at first order ine ;4(0) and ¢,,(07)

) ) ) ) —1,(07), are to be identified as terms in the expansion of
where a;(s) is an arbitrary fur_mtlon_ ofs. Computing Wi(+°) and W, (+%o)—W, (—), respectively. Now
Wy ,(+9) =Wy ,(—o) and matching with the outer expan- we will need the second order in E@.8) and the first in Eq.
sion[Eq. (3.4] gives Eq.(2.2 for 4. This completes the (2.7) to compute¥, (+ ), and the second in E¢2.7) and

sharp-interface limit. the first in Eq. (2.8) to obtain W, ,(+) =W, (—=).
Therefore, we must compute the next order both in EZ}8)
IV. FIRST ORDER CORRECTIONS and (2.7), but, first, we can still extract some information
TO THE SHARP-INTERFACE LIMIT from the lower orders.

In the phase-field model the interface width and the con-mt(? E(;h(e&olg)setgaggfa\{\r/]et;()eugi(:fémisal eqvunétigef(%ﬁ 'th|s
vergence to the sharp-interface limit is controlled by the
small but finite value of the parameter Then, the question
of which value ofe is needed to reproduce the actual Hele- 0,f'(00)+0,,,=0, (4.1)
Shaw dynamics accurately for given values of the physical ‘
parameter® andc arises. This question can be qualitatively
answered by noting the distinct roles played byn the ~ Wwith boundary conditions coming from the matching Eqg.
phase-field equation®.7) and(2.8). (3.3 with Eq. (3.7) @1(**)=0,,(+*)=0 and solution
The e factors appearing ine2vV2d, e2x(6)|Ve] and ©1=0. _ _
(1/€)(1/2v2) y(6)(1— 6?) all stand for the interface thick- 1€ integral with respect tp of Eq. (3.20 is
ness, and this is required to be small compared to the longi-
tudinal length scalgk| ! of the interface:|k|<1. In con- q
trast, thee in e(dy/dt) has nothing to do with the interface V,=— ZJ otlp +31(3)j
thicknesqand we will therefore denote it ¥from now on, 2 ) 1+c0O,

dp
1+cOy’

4.2
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According to the matching equatid3.3), the p— *+« as- V00— kW1 ,—dVa+C[(OgW, ), — kW1, 00— v, O]
ymptotics of ¥';(p) should consist of a finite ternk,(0*)

and a diverging ong,(0~). For vanishing viscosity con- +3Bprks®o,=0. (4.9
trast, the last integral in E¢4.2) is pa,(s), and clearly does
not contribute to the finite terng,(0~). Then, sinced is
an odd function ofp, its integral with respect te will be

Integrating this fromp— —« to p— +0, we obtain

+ o
even, and),(0")=,(07), i.e., the fluid velocity normal to [(W,,170— Kf (1+cO) V¥, ,dp—devi[p] s
the interface will be continous on it. -
For nonzero values af, however, one must compute the +e[OgV,,]72=0 4.9
pd—oo ' :

integrals in Eq.(4.2), find their p— * asymptotics, and

identify 4,(0%) and,(07). Requiring this latter quantity where we have omitted integrals of odd functionspofVe
to be consistent with Eq2.2) for 4, one fixesa;(s); put-  yse Eq.(3.20 to rewrite the integrand of the remaining in-
ting this back into the identifieg/, (0*) value, one finds tegral as— (y/2)04+a,(s). O, is an odd function op and
does not contribute to the integral, whereg$s) gives rise

wl(oi)=—Q{y+c[¢0,(0*)+z//O,(O*)]}Inli—C to a divergent term of the typgp] . According to the
2 ' ’ 2 matching equatior(3.4), ¢, ,(0™) corresponds to the finite
+a,(s) (4.3 part of V', ,(£ ), so that we find
+ -V _ + -
wherea,(s) is another arbitrary function af This will give $1p(07) = thy (07)=—Clhy(07) + 1,(0 )],(4 0
rise to a discontinuity in the fluid velocity: :
V3 which will leave the jump of the normal derivative of the
1 o(07) = h1(07) = — —{ys+Chos(0F) stream function across the interface unaffected at first order
’ ’ 2 ’ in the kink width.
14c Putting Egs(3.9), (2.3), and(2.2) for ¢y, and Egs(4.7)
+ ors(07) 1IN — and (4.10 together, we obtain an effective sharp-interface
' 1-c model for the dynamics of thé=0 level set up to first order
=—cv2{ystc| I#O,rs(0+) in € ande:
+¢O,rs(0 )]}+O(C ) (44) 'E&_:bz(lic)v2¢l, (411)
In order to fix dsa,(s), we compute the next order
(O(€?)) of Eq. (2.9 to obtain[see Eqs(3.2), (A10), (A11), G (0T) = (07)=—T, 4.12
and(A19)]
, . V2 T
O,f"(0)+0,,,—prvOq,+V100,=0. (4.5 lﬂs(o_):_Vn_f? 79:(‘3)
This has the same structure as E§.13, and an analog r.[5 2
solvability condition applies: =—v,+ efz?s gret gcz+ o(cd)|,
+ oo
f V,.03,dp=0. (4.6) (4.13

wherel'=y+c[,(0") + ,(07)] is the weight of the vor-
Substitution of the expression f&f, obtained by performing ticity defined in Eq.(2.6) evaluated up td®(e) and
the integrals in Eq(4.2) into this condition and subsequent

3)_
computation of the resulting integral fixésa,(s) so that g+(c)=1—(1/cz)+( 14 (1/c%) — (3fc) N 1+c
- - 2 1-c¢’
+ V2 s wo,rs(0+)+¢0,rs(o_) . . . .
Yr1s(07)=— 5|5 F¢ 5 Note that the desired corrections to the limiting equations

(2.1)—(2.3) in Egs.(4.11) and(4.13 go as€ and e, respec-

(1/c®)—(3lc)\ 1+c tively, and the fact that Ed2.2) remains unaffected. Note as
X[ 1=z =1+ 5 NT—¢ well that the correction i appearing in Eq(4.13 has noth-
ing to do with an Allen-Cahn law. So thé«(6)|V 6| term
_ﬁ[73+ ‘r”O,rs(0+)+ ‘/’O,rs(o)} has cancelled this out even in the first order corrections.
Vi 2
5 2 V. LINEAR DISPERSION RELATION UP TO
X g:C+ §c2+ o(c¥)|. 4.7 FIRST ORDER IN THE INTERFACE THICKNESS

In order to see how such corrections affect some relevant
Finally, to obtainW¥, (+«)—¥, (—=), we need Eq. specific situation, we compute the linear dispersion relation
(2.7) at (O(€%) [see Eqs(3.2), (A9), (A10), (A12), and of a perturbation to the planar interfagéx)=Ae*¥* for
(A17)]: Egs.(4.11)—(4.13. We make the ansatz



1730 R. FOLCHet al. PRE 60

,ﬁ(xly):a:AewHikx—q:Iyl, (5.1 value of the interface thicknessis used, so that the condi-
tion €|k|<1 is satisfied for the length scale set by the surface
inspired by the actual Hele-Shaw result, where now the cotension:e</B.
efficienta.. allows for distinct amplitudes in each phase for
the stream function to satisfy the discontinuity in the normal
velocities of Eq(4.13, whereas the decay length. in they
direction is set not only by the wavelength of the perturba- We have introduced a phase-field model for Hele-Shaw
tion 27/k, but also by the diffusion length in Ed4.11), flows with arbitrary viscosity contrast, and shown it to yield
which is also different in each phase. Thus 411 yields  the proper sharp-interface limit. We have actually found two
independent small parametefs and€) and three distinct
Zo conditions on them to control the convergence to the sharp-
q-=|klps, pr=+\/1+ DTS (5.2 interface limite,é—0. In particulargé must be lowered when
(1xc) cis increased. A thin-interface model, i.e., an effective sharp
interface model keeping finiteand %€ effects, has been de-
rived for the dynamics of the phase-field model up to first
order in both of these parameters. This thin-interface model
has then been used to compute the firitaid € corrections
to the Hele-Shaw result explicitly for a specific situation

VI. CONCLUSIONS

In turn, taking into account thav,=wAe”*™** and y
=2iA sgnk)wee”t "™ —wherewy= k| (1— BKk?) is the actual
Hele-Shaw growth rate—E@4.13 fixesa= to be

a :i_w 1— |k|§ () P++p- (5.3 such as the linear regime, thus suggesting that the single-
kK €Kiy 9= 2 ' ' finger width selection could also be affected by these finite-
thickness effects.
Finally, Eq.(4.12 requires that the following dispersion re-  In the following papef23] we perform numerical simu-
lation is satisfied: lations of the phase-field modgEgs. (2.7) and (2.8)], and
we explicitly vary the two small paramete¢sande indepen-
wo VZp_+p, dently. In this way we both control the simulation accuracy
=T T 7 1+ €|k| >3 through the conditions mentioned to show how to reproduce
[(1+c)p-+(1=c)p.] the Hele-Shaw dynamics within this method, and explicitly
1-c)p.+g (1+c)p_ check convergence in the interface thickness.
g+(1-c)p,+g_(1+c)p Lo (5.4
(1-c)p++(1+c)p-
ACKNOWLEDGMENTS
1 |k|x/?5 0(c?) +0(e2) We are indebted to J. L. Mozos, E. Corvera, and H. Guo
=wo| ——¢€ — | +0(c5)+0O(€9). i i i -
0 1+ (20lkd) 6 for collaboration in the early stages of this work. We ac

(5.5 knowledge financial support from the DirecoiGeneral de

' Ensemnza SuperiofSpain, under Projects No. PB96-1001-
|.C02-02, PB96-0378-C02-01, and PB96-0241-C02-02, and
the European Commission Project No. ERB FMRX-CT96-
0085. R.F. also acknowledges a grant from the Comissionat
gher a Universitats i Recerd&eneralitat de Catalunya

This consists of the well known Hele-Shaw growth rate mu
tiplied by a factor smaller than 1, carrying the corrections in
e and’é. We identify the conditions o and’é heuristically

derived at the beginning of Sec. IV to control how close thi
factor is to 1, and in general how close the stream function is

to the actual Hele-Shaw onéw/k?<1+c (within p.) and APPENDIX

elk|<1 in Egs.(5.2—(5.4), and the simplified version up to . , ,

0(c) Zw/k?<1 ande|k|<1 in Eq.(5.5). The amplitude fac- Ogr gloal here is to_rescale the differential operators ap-
tor [Eq. (5.3] can also be expanded in powerscofnaking ~ Pearing in the phase-field modigs. (2.7) and (2.8)]. The

use of Eq.(5.5) to find first step W_i|| be to rew_rite them in terms of t_he local coor-
dinates defined on the interfac@nds. To do this, one must
precisely define the curvilinear coordinate system and com-
_ pute its so-called scale factors:
T celklv2 | +0(c?) + O(e?). Consider the#=0 level set and its intrinsic coordinates
(5.9  (the arclength along)itandr (the signed distance to it, posi-
tive for a point with6>0), so thatSxX7=%XX¥. Let « be the
Since these corrections have a stabilizing effect, theyangle going fromX to 5. Then x= a4 is the =0 level-set
could affect the selection of the steady finger width. As acurvature. We introduc¥ andY as the values of andy for
matter of fact, Ben Amar already showed that théy-S) a point on the9=0 curve with a given value of By moving
term of I'g in Eq. (4.13 on its own was capable of selecting this point infinitesimally alongs we find that these values
a finger width greater thag [22]. Then, for small enough have changed idY=dssina, dX=dscosa. Consider also
values of the physical surface tensi@re., the physical se- the coordinateg andy of a point with 0 in terms of the
lection mechanism for which a width very close t§ should  valuesX andY of its closest neighbor on theé=0 level set,
be expected, this term could turn out to control the selectiomnd the signed distance between them. Taking into account
itself, so that an unexpected greater width could be obtainedhat « is also the angle going from to f, one findsx=X
Of course, this will not be the case if a sufficiently small —r sina and y=Y+r cosa. Now one can compute the

iwo

1
A= | T—————
Tk 1+ (Rwik?)
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(positive defineglscale factors da da da _ g
_ = =——vVv-Va
at (?t X,y=const dt
P xf+yi=1=h, =1, (A1) vo  da
=— ?Ap+ qi ViAs+O(e), (A10)
2__2 2__ 2 i 2
hs=Xs+Ys=(Xs—rascosa)*+(Ys—rassina) where the partialtotal) time derivative is computed keeping
= (cosa—r k cosa)?+ (sina—r k sina)? X _andy (r ands) fixed, and\_7 is the yelocity of ther,fs frame
with respect to the,y one, i.e., the interface velocity. More-
=(1-rk)’>=hg=|1—-rk|=1-r«. (A2)  over,

Note that the last equality in E¢A2) requires that k<1. In

the inner region, where we make use of such formulas, this . - 1

will hold as long as the interface thicknesss much smaller 2:(VxVo)=—{W0, [1+epr+t O(e?)]

than the curvature radius at any point of the interface, i.e.,

not too far from the sharp-interface limit. Otherwise the -V,04J1+0(e)]}, (A11)

present analysis would break down, because one could al-
ways find a point such thatk=1, wherehg would vanish,

reflecting the fact that the change of coordinates has become . _ 1 1

ambiguous irs. V- (V)= ?(®‘pr)p+ (OWy)— EK@‘PP(]."‘ €PK)
Then, the scale factors are used to express the differential

operators in terms aof ands: +0(e)

1 1
= 2(0W,),~ ~ KOV, ~p?OW +(OW)

Va=a,f = 5, (A3)
rK +0(e). (A12)
; s The only terms left in Eq92.7) and(2.8) to compute are
V.a=(a"), + —xka +(@)s (d=a'f+a%), (Ad) those containin_gy(a) and'K.(H). To construct them we will
l-rk need the following quantities:
o KA ags r KsAs _— \/1 y 5
Via=ay— 7 -+ (1_rK)2+ A=rr)?" (A5) |Vo|=+ 207+01+0(e)]
Finally, one sets = ep and expands in powers @f (G} 0
Y P P P =+—”\/1+e2—§[1+0(e)]2
€ @)p
(1-rk) " =1+epr+O(€?). (AB) 0, €2 02
:+T 1+EW+O(E3)
One obtains p
0, € 02 )
. —T+§p+0(6 ). (A13)
Va= A f+3A[1+epk+0(e?)], (A7)
€ (note that® ,>0, since® is monotonic inp and we defined
r to be positive for the#>0 phasg and
V.d= 1(Af)p+[(AS) — kA"[1+ epx+O(€?)] , .
€ s ’ . Vo €0, Vo F+8€(0:/0,)[1+0(e)]
(A8) F(O)=— X =

Vol €0, |V 1+e5(02/0%)+0(e)

2 02
=fl1— — 3 3
r{l 2 634‘0(6) +5S . (A14)

0, )
e®—p+O(e )

2 1 1 2
Vea= ?APP—EKAP—[)K A,+As+0(e).  (A9)

This completes the rescaling. Capital letters denote field¥ve have termed thif( 6) because it |s.|nd_ee_d the unit vector
written in the rescaled coordinates of the inner region. Anw'orrnal to th?H:COHSt level set on which it |secor*nput£ad. We
other quantity appearing in Eq&2.7) and (2.9) is derived ~similarly define$(6)=F(0)x2 and x(6)=—V-(V/|V 6])
from these. For instance, we obtain to constructy(0)/2=B3%(6)-V .(6)+V-5(6):
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Vo ¥(6) { O, 1(6Z
—-k(0)=V. —= ——=B{ kst €| 3pkk —| +5| =
|V0| 2 ° ° G)P ss 2 ®P ps
R (S 0, 0, 1/02
=—z|=3| te — k(14 epk)+0O(€?) te—|— K%+ = =
2<®pp 0, 0, 0, 2\07]
@S) 1(@5) A A ®S,\ ~ 2
=—ktela] —5la2 —pK?|+0(€?), +9-5—e—¥-T+0(e%)
CRRACHS 0,
(A15) - % +0(e). (AL7)
We should still compute the produg{ 6)|V 6| appearing in
ANECE 1 ®§ 5 Eq.(2.8), but instead we prefer to compute straight ahead the
ve(0)=-tlg,] ~2 CHI +0(e) sum  V20+x(0)|V 6| =V26—V20+(Vel|Ve])- V|V
S > >
’ or =7(0)-V|Va|:
+8] ket 9 1[0 2
S{ Ks € 1o +§W t2pKKg ® 1102 o
v o VIVel=p| =2+ 2| 2| +0(e)|+8—+0(e0)
e 2 0, ) € '
+0(€?) | [1+ epx+0(€?)] (A18)
® : V204 k(0)|F 6] = 222 4 1 O 94 L ,%
= | — K2+ _S) __(_; +0(e) K =?+§ 0/ o2 oot @ ~rs
{ 0, o 2 p oy Prp P P
+0
+8) ket € 3 (®s i1 ®§) (6)
S{ kgt €| 3pKkKg—| sl =2 2
° ° 0, ss ®p s :®_’;‘"+®S®PS 1+ . G)SGZP"
&0, 0, @2
+0(€?) }, (A16) +0(e). (A19)
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