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Decoherence and correspondence in conservative chaotic dynamics
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The quantum and classical dynamics of a conservative nonlinear Hamiltonian system in the chaotic regime
are compared in the absence and presence of decoherence effects. Results show marked improvement in
classical-quantum correspondence with the introduction of decoherence, even though the initial quantum dy-
namics is far from the semiclassical limi§1063-651X99)09208-9
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l. INTRODUCTION and p"=p"(py,py.X,y;t) is the Wigner representation of

the density matrix. The first term on the right hand side of

The means by which quantum mechanics approximategq. (1) is the classical Poisson bracket which generates clas-
classical mechanics for macroscopic systems remains a sulical dynamics, the second term is responsible for quantum/
ject of considerable interest. Traditional, often heuristic, apclassical differences, and the third term induces decoherence.
proaches argue that the equations of classical mechanig%, using Eq(]_), and by imposing restrictions on the deriva-
emerge naturally as the de Broglie wavelength becomegves of the potential to ensure the second term is small rela-
small. Strong mathematical support for this approach, bufive to the Poisson bracket term, Zurek and P2k (and
with the necessary inclusion of infinitesimal averaging overindependently, Kolovsky13]) derived the following condi-
energy, has recently been givt]. By contrast, others argue tjon for the quantum transition to classical behavior in cha-
that classical mechanics is not a limiting case of quantumptic systems:
mechanics, but rather that decoherence, i.e., loss of coher-
ence due to coupling to other degrees of freedom, is neces- /Q -7 )
sary to ensure the validity of the correspondence principle N

[2—4]. This proposal, however, is the topic of considerable

controversy, with many arguing that the relationship betweelwhere.)‘ is the LyapL_m(_)v exponent of the cla:_ssmal dynamics,
decoherence and correspondence is ten{Blis andy is a characteristic potential length, defined, for the one

In this paper we examine a nonlinear oscillator system ifiegree of freedom system that they examined, as the average

the chaotic regime and show that decoherence does inde¥g!Ue ofV|dxV/d,V|. Below we use this criterion to establish
lead to substantially improved agreement between classicHi€ range of relevant parameters in our numerical studies.
and quantum mechanics. This constitutes a major extension NOte that Eq(1) ignores the back action of the system on
of previous work on the effect of decoherence, which wadhe environment. As such, one can shaw] that the system
limited to one-dimensional driven chaotic systgi@s11]. In ~ absorbs energy from the environment @b-alependent rate.
particular, our extension is to the broad class of conservativénus, sinceD is required to be sufficiently large to satisfy
nonlinear Hamiltonian systems, and into the domain wherdd- (2), then observable energy absorption is a necessary
the system is far from the semiclassical regime. In additioncharacteristic of decoherendithout dissipation in the

we develop a quantum state diffusion-split operator methoduantum regime of non-negligibfe. In the case chosen be-
that provides a generally useful and efficient method fofOW the rate isb/m [14] per degree of freedom, wherneis
studying decoherence and gives interesting insights into thd€ mass, a theoretical prediction which we use to confirm

origins of decoherence in conservative systems. the energy absorption observed computationally.
To consider the effects of decoherence we adopt the

model of Caldeira and Leggett and of Uhruh and ZureR| Il. QUANTUM STATE DIFFUSION-SPLIT OPERATOR

in which the system interacts with a harmonic bath in the APPROACH

weak coupling and high temperature limit. Extending this . . , , .
model to a system with two degrees of freedom gives the S°lVing Eq.(1) is quite complicated for a typical two
. . . A . degree of freedom chaotic system. A useful numerical tech-
time evolution of the density matrig in the Wigner repre- . . X .
: nigue for carrying this out, as well as the specific example of
sentation a$12] . . ? -y .
interest, is described in this section.
The particular case we examine is given by the nonlinear

w iV(I1+12=1) 5(I1+15) . . .
ﬁL:{H Run (Af2i)T2727 71T 2V(X,y) oscillator Hamiltoniar{16]
at ! (1,+15) odd |1!|2! r7X|1(9y|2
1 B
><(9(|1+|2)’JW (azpw+&2pw> " H= E(p’2‘+ po+ ax?y?) + Z(x4+y4), 3
PP 2 2 |
ap, ap,; apy Py

with 8=0.01, a=1.0, a regime where the system is fully
Here (o4, py.X,y) are the system momenta and coordinatesgchaotic[16] with A~0.5. Results were also obtained far
V(X,y) is the potential contribution to the Hamiltoniath, =0.1 where the system is still chaotic but where the
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Lyapunov exponent is approximately two times smaller. whereét is the integration time step, and whég , W, are
This system is particularly useful for decoherence studieswo ordinary independent complex random variables with
becauséa) it has the simple energy scaling property that all(where M denotes the mearM ((ReW;)?)=M ((ImW,)?)
trajectories can be scaled onto one Poincamdace of sec- =M ((ReW,)?) =M ((ImW,)?)=6t; M(W;)=M(W,) =0.
tion, ensuring that the dynamics is essentially the same everhe Hamiltonian dynamics is carried out via the split opera-
if the system energy changes due to system-environment iner fast Fourer transforn@FFT) technique[18]. Thus, com-
teraction;(b) the dynamics of this system at=1.0 is very  bining the FFT approach and the Euler integration scheme
chaotic, enhancing the classical-quantum discrepancy for thgives a general systematic approach to the wave packet dy-
closed system and allowing for a study in the quantum renamics in the quantum state diffusion picture for nonlinear
gime; (c) the potential has no simple harmonic terms. Thuspscillator systems, even far from the semiclassical limit.
any observed agreement between classical and quantum be-Below we compare these results to classical mechanics by
havior cannot be attributed to the similarity of classical andobtaining the classical phase space denpilk,y,py.py)
guantum harmonic oscillator dynamics. which satisfies the Fokker-Planck equation:

To solve Eq.(1) we adapt the quantum state diffusion
(QSD) approach[15] based on the stochastic differential
equation for the state vector into a usable scheme for nonlim_tpf(x’y’ Px:Py)
ear oscillator systems. In this approach we solve for the dy-
namics of the system wave function in the presence of a  ={H,p(x,y,px,py)}
random potential, to obtain a single realizat|@r{£(t),t)).

Specifically, we considdrl5] 2 2

J J
+D _2pt(xvy1pX1py)+_2pt(xvy1pX1py) . (6)
op?2 op3

—i
|d¢>_7H|"/}>dt In the closed system cas® &0) we do this by solving
Hamilton’s equations to obtain the classical trajectories; 5
+> (2L L= LiLm= (LI (Lo ) [ dt X 10* trajectories were found sufficient for convergence.
m Similarly, in the open system casB ¢ 0) p is obtained by
+E (Lm_<|-m>\¢))|¢’>d§ma (4) !ntegra_ting the Langevin-it@quations for each sample tra-
m jectory:
where the operatork, represent the coupling between the JdH oH
system and environment, aft,) = (#|Lm| )/ (| ¢) and dx= (9_pxdt' dy= ,;_pydt'
where d¢,, are independent complex differential random
variables of a complex normalized Wiener process, with well 9H 9H
defined mean propertidd5]. Averaging over these realiza- dps=— a_de 2Dn,, dp,=- (?—dt+ 2D 7,.
tions by selecting different d¢, gives p(t) y @
= (192 |(&m(t),D)(¥(En(t), )], with S being the total
number of realizations of the time-dependent stochastic variHere 7;,i=1,2 are independent real differential stochastic
ables¢,,. Note that thep(t) is the sum of projection opera- variables satisfyingM (7:)=M(7,)=0, M(73)=M(73)
tors computed from individual realizations so that one can=dt. Once again, Monte Carlo sampling from the initial
regard each contributiopy(&,(t),t))((£n(t),t)| as repre-  distribution and Euler integration of E¢7) gave converged
senting a single laboratory experiment for a quantum opemesults forp with (2—4)x 10* sample trajectories and a total
system. Below we utilize this viewpoint to gain insight into of 30 to 50 realizations ofy; and 7, for each sample trajec-
the effects of decoherence on the evolution of individualtory.
wave packets.
Our specific implementation of the QSD method takes the lIl. COMPUTATIONAL RESULTS
operatorsL; asL;=(\/D/#)x andL,=(yJD/A)y and uses o .
thpe first-order Euler method, shown to be accurate for statis- S & SPecific example we chose to examine quantum-

tical expectation valued 7], to integrate Eq(4). That is, we classical correspondence using an initigk,y,0) given as a
solve two-dimensional coherent state with Wigner function,

_ 2 _ 2
| g(t+ 86)) = exp(—iH 8t/A)| (b)) po(x,y,px,py)z(%) exp( (x hX) W hy )
T

D 2 2
+ 3 (200x 3= (D)) (P P0?  (py—py)?
% N #

: ®

JD D
== (= OO) [Y()) Wy + ﬁ(2<y>y—y2 o _
5 wherex, y, py, andp, are mean positions and momenta,
—(y))|(1)) respectively. In the computations reported belpi®] #
VD =0.1, At=0.002, D=6X10"4 x=0.40, y=0.60, p,
5 = ODOIW,, © =0.50, p,=0.414 with a spatial grid spacing dfx=Ay
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FIG. 1. Time dependence of four statistical momexs ((y?), FIG. 2. Same as Fig. 1, but for the open chaotic system case.

(Py), and(E,)) for the closed chaotic system case. Dark dots de-

note quantum results, thin solid lines are classical results. All varie=1.0 and approximately two times smaller f@=0.1, the

ables are in dimensionless unijts9)]. inequality (2) is satisfied for at least one of these lengths.
We consider first a comparison of classical and quantum

=0.16. Convergence was checked by decreasing the tim@echanics for the closed.e., D=0) system, as shown

steps, enlarging the grid size, and by increasiigvith S through expectation values of coordinates and momenta and
=1000 found sufficient to obtain convergent results. In ad*‘energy in a zeroth-order mode,” e.g., for <Ey)=<p2/2

dition, energy absorption was in accord with the theoretical+(ﬂ/4)y4>. Figure 1 shows the classical and quantl)flm ex-
prediction cited above.

: . . pectation values for four moments associated witAnalo-
Note first that our choice db lies close to the border of

: " ; i gous results were obtained in theariable. All figures show
the quantum-classical transition predicted by 8. Thatis, g alitatively similar behavior, i.e., after an initial period of

this  two-dimensional  system has three2 characteristig|assical/quantum agreement the quantum results continue to
potential lengths x, [ V/a3V], Vg VIdaV], and  oscillate while the classical results show smooth relaxation
\/|(9XV/0"X07y2V|. For the energy region of interest their aver- [20]. Computational results in the less chaotic regine (
age values are 8, 1.5, and 1, respectively. With0.5 for ~ =0.1) showed similar results except that the deviation be-
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FIG. 3. Contours of constant wave function intensityt at25

for propagation, for the chaotic case, from the same initial state:

shows results for the closed system=0); (b), (c), and(d) show
results for different realizations with nonzdbo All variables are in
dimensionless unitgl9].

tween the classical and quantum is significantly less in the

a=0.1 case, and the classical-quantum discrepancy begins at
a later time. Note also that the quantum results do not always
simply oscillate about the classid@.g., see results fdy?))

and that the quantum fluctuations about the mean are sub-
stantial(e.g., 30% in the case dE,)).

Results for the same moments, after introducing decoher-
ence, are shown in Fig. 2. A comparison of Figs. 1 and 2
shows substantially improved classical-quantum correspon-
dence upon introducing decoherence. In particular, Rig. 2
and Fig. Zc) show that quantum oscillations in the first-order
moments are strongly suppressed by decoherence. More re-
markable is the observed correspondence for the cage of
[see Fig. 2b)], in which the long term quantum average in
the closed system deviated significantly from the long term
classical average. This indicates decoherence delocalizes
quantum distribution functions within the energy shell, a
conservative-system analog of the noise-induced delocaliza-
tion seen in one-dimensional quantum chaotic systems
[6,7,9. Finally, the correspondence {,) is shown in Fig.
2(d), suggesting that the energy transfer between different
degrees is also strongly affected by decoherence effects. We
also note that similar improved agreement was obtained for
moments ofx and for thea=0.1 case.

Further insight into the effect of decoherence results from
examining individual realizations within the QSD approach.
For example, Fig. 3 shows four quantum wave functions at
t=25, each emerging from the same time zero initial wave
function. Figure 8a) shows the result of propagation in the
absence of decoherence and Fig&)33(d) show three dif-
ferent | 4(£4(1),1)) at t=25, a time by which decoherence
appears to have restored considerable correspondseee
Fig. 2. A comparison of Figs. ®)—3(d) with Fig. 3a
shows that the former has far less structure than the latter;
indeed Fig. &) shows that decoherence has changed the
complex structure in Fig.(d) into a single peak. In essence,
the competition between the Hamiltonian ch&ekich tends
to exponentiallyf 21] increase the wave packet structuaed
the stronger decoherence efféathich tends to suppress the
wave packet structuyas vividly demonstrated here.

Note, finally, that since the parameters chosen above lie in
the range expected of a typical molecule, our results suggest
the possibility of experimentally observing these effects in
the vibrational motion of excited polyatomics. To see this,
note that a convenient dimensionless unit to compare sys-
tems is the fractior=(t) of energy absorbed per degree of
freedom from the bath per vibrational oscillatory period
27/ w, relative to the level spacinfw, wherew is the vi-
brational period. That ig5 (t) = (D/m)(27/ ) (1/h @). From
Eqg. (2) we have

F(t)=27D/(mhw?) > mhN (My?w?)~ mhl(}’mw),
9

where we have assumg2l] A ~ w. Typical sizes of the right
hand side of the equation for a small molecule are on the
order of 103, in the same range as that obtained for the
model adopted in this paper. With the right hand side of Eq.
(9) being the ratio of: to a typical system action, the small
molecule is seen to be of the same order of “quantumness”
as the adopted model.
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IV. SUMMARY between the classical results in the presence and absence of

We have shown for a generic conservative chaotic Ham”decoherence. Nonetheless, correspondence is much im-
g roved by the decoherence effects, iquantum mechanics

tonian system that dgcoherence does indeed lead to S'gn'e@'lus decoherence effedts in far better agreement with the
cant improvement in classical-quantum correspondenc

That is, the tendency for the evolving phase space distribu(-tlassmlI mechanics plus decoherence effdbin is the

L ) : . . _analogous comparison in the absence of decoherence. This
tion in chaotic dynamics to fragment exponentially fast is

. .—agreement is expected to improve even further as one ap-
compensated by the smoothing effect of the externally in roaches the classical limit

duced decoherence and classical-quantum agreement is sR
nificantly improved. Indeed, the stronger the chaos, and
hence the fragmentation, the more effective is the decoher-
ence[23], so the balance between them is expected to be
retained over a wide range ®f This is the case even though ~ We thank the Natural Sciences and Engineering Research
our studies are in the quantum regime so that the require@ouncil of Canada and the U.S. Office of Naval Research for
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