
PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Decoherence and correspondence in conservative chaotic dynamics
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The quantum and classical dynamics of a conservative nonlinear Hamiltonian system in the chaotic regime
are compared in the absence and presence of decoherence effects. Results show marked improvement in
classical-quantum correspondence with the introduction of decoherence, even though the initial quantum dy-
namics is far from the semiclassical limit.@S1063-651X~99!09208-9#

PACS number~s!: 05.45.2a, 03.65.Bz, 03.65.Sq, 05.40.2a
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I. INTRODUCTION

The means by which quantum mechanics approxima
classical mechanics for macroscopic systems remains a
ject of considerable interest. Traditional, often heuristic,
proaches argue that the equations of classical mecha
emerge naturally as the de Broglie wavelength becom
small. Strong mathematical support for this approach,
with the necessary inclusion of infinitesimal averaging o
energy, has recently been given@1#. By contrast, others argu
that classical mechanics is not a limiting case of quant
mechanics, but rather that decoherence, i.e., loss of co
ence due to coupling to other degrees of freedom, is ne
sary to ensure the validity of the correspondence princ
@2–4#. This proposal, however, is the topic of considera
controversy, with many arguing that the relationship betwe
decoherence and correspondence is tenuous@5#.

In this paper we examine a nonlinear oscillator system
the chaotic regime and show that decoherence does in
lead to substantially improved agreement between class
and quantum mechanics. This constitutes a major exten
of previous work on the effect of decoherence, which w
limited to one-dimensional driven chaotic systems@6–11#. In
particular, our extension is to the broad class of conserva
nonlinear Hamiltonian systems, and into the domain wh
the system is far from the semiclassical regime. In additi
we develop a quantum state diffusion-split operator met
that provides a generally useful and efficient method
studying decoherence and gives interesting insights into
origins of decoherence in conservative systems.

To consider the effects of decoherence we adopt
model of Caldeira and Leggett and of Uhruh and Zurek@12#
in which the system interacts with a harmonic bath in
weak coupling and high temperature limit. Extending th
model to a system with two degrees of freedom gives
time evolution of the density matrixr̂ in the Wigner repre-
sentation as@12#

]rW

]t
5$H,rW%1 (

( l 11 l 2) odd

~\/2i !( l 11 l 221)

l 1! l 2!

] ( l 11 l 2)V~x,y!

]xl 1]yl 2

3
] ( l 11 l 2)rW

]px
l 1]py

l 2
1DS ]2rW

]px
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1
]2rW

]py
2 D . ~1!

Here (px ,py ,x,y) are the system momenta and coordinat
V(x,y) is the potential contribution to the HamiltonianH,
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and rW5rW(px ,py ,x,y;t) is the Wigner representation o
the density matrixr̂. The first term on the right hand side o
Eq. ~1! is the classical Poisson bracket which generates c
sical dynamics, the second term is responsible for quant
classical differences, and the third term induces decohere
By using Eq.~1!, and by imposing restrictions on the deriv
tives of the potential to ensure the second term is small r
tive to the Poisson bracket term, Zurek and Paz@2# ~and
independently, Kolovsky@13#! derived the following condi-
tion for the quantum transition to classical behavior in ch
otic systems:

A2D

l
x.\, ~2!

wherel is the Lyapunov exponent of the classical dynami
andx is a characteristic potential length, defined, for the o
degree of freedom system that they examined, as the ave
value ofAu]xV/]x

3Vu. Below we use this criterion to establis
the range of relevant parameters in our numerical studie

Note that Eq.~1! ignores the back action of the system o
the environment. As such, one can show@14# that the system
absorbs energy from the environment at aD-dependent rate
Thus, sinceD is required to be sufficiently large to satisf
Eq. ~2!, then observable energy absorption is a necess
characteristic of decoherence~without dissipation! in the
quantum regime of non-negligible\. In the case chosen be
low the rate isD/m @14# per degree of freedom, wherem is
the mass, a theoretical prediction which we use to confi
the energy absorption observed computationally.

II. QUANTUM STATE DIFFUSION-SPLIT OPERATOR
APPROACH

Solving Eq. ~1! is quite complicated for a typical two
degree of freedom chaotic system. A useful numerical te
nique for carrying this out, as well as the specific example
interest, is described in this section.

The particular case we examine is given by the nonlin
oscillator Hamiltonian@16#

H5
1

2
~px

21py
21ax2y2!1

b

4
~x41y4!, ~3!

with b50.01, a51.0, a regime where the system is ful
chaotic@16# with l'0.5. Results were also obtained fora
50.1 where the system is still chaotic but where t
1643 © 1999 The American Physical Society
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Lyapunov exponent is approximately two times smalle
This system is particularly useful for decoherence stud
because~a! it has the simple energy scaling property that
trajectories can be scaled onto one Poincare´ surface of sec-
tion, ensuring that the dynamics is essentially the same e
if the system energy changes due to system-environmen
teraction;~b! the dynamics of this system ata51.0 is very
chaotic, enhancing the classical-quantum discrepancy for
closed system and allowing for a study in the quantum
gime; ~c! the potential has no simple harmonic terms. Th
any observed agreement between classical and quantum
havior cannot be attributed to the similarity of classical a
quantum harmonic oscillator dynamics.

To solve Eq.~1! we adapt the quantum state diffusio
~QSD! approach@15# based on the stochastic differenti
equation for the state vector into a usable scheme for non
ear oscillator systems. In this approach we solve for the
namics of the system wave function in the presence o
random potential, to obtain a single realizationuc(jm(t),t)&.
Specifically, we consider@15#

udc&5
2 i

\
Huc&dt

1(
m

~2^Lm
† & uc&Lm2Lm

† Lm2^Lm
† & uc&^Lm& uc&)uc&dt

1(
m

~Lm2^Lm& uc&!uc&djm , ~4!

where the operatorsLm represent the coupling between th
system and environment, and^Lm& uc&5^cuLmuc&/^cuc& and
where djm are independent complex differential rando
variables of a complex normalized Wiener process, with w
defined mean properties@15#. Averaging over these realiza
tions by selecting different djm gives r(t)
5(1/S)(jm

uc„jm(t),t…&^c„jm(t),t…u, with S being the total
number of realizations of the time-dependent stochastic v
ablesjm . Note that ther(t) is the sum of projection opera
tors computed from individual realizations so that one c
regard each contributionuc„jm(t),t…&^c„jm(t),t…u as repre-
senting a single laboratory experiment for a quantum o
system. Below we utilize this viewpoint to gain insight in
the effects of decoherence on the evolution of individ
wave packets.

Our specific implementation of the QSD method takes
operatorsLi as L15(AD/\) x̂ and L25(AD/\) ŷ and uses
the first-order Euler method, shown to be accurate for sta
tical expectation values@17#, to integrate Eq.~4!. That is, we
solve

uc~ t1dt !&5 exp~2 iHdt/\!uc~ t !&

1
D

\2
~2^x&x2x22^x&2!uc~ t !&

1
AD

\
~x2^x&!uc~ t !&W11

D

\2
~2^y&y2y2

2^y&2!uc~ t !&

1
AD

\
~y2^y&!uc~ t !&W2 , ~5!
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wheredt is the integration time step, and whereW1 , W2 are
two ordinary independent complex random variables w
~where M denotes the mean! M „(ReW1)2

…5M „(Im W1)2
…

5M „(ReW2)2
…5M „(Im W2)2

…5dt; M (W1)5M (W2) 50.
The Hamiltonian dynamics is carried out via the split ope
tor fast Fourer transform~FFT! technique@18#. Thus, com-
bining the FFT approach and the Euler integration sche
gives a general systematic approach to the wave packe
namics in the quantum state diffusion picture for nonline
oscillator systems, even far from the semiclassical limit.

Below we compare these results to classical mechanic
obtaining the classical phase space densityr t(x,y,px ,py)
which satisfies the Fokker-Planck equation:

]

]t
r t~x,y,px ,py!

5$H,r t~x,y,px ,py!%

1DS ]2

]px
2
r t~x,y,px ,py!1

]2

]py
2
r t~x,y,px ,py!D . ~6!

In the closed system case (D50) we do this by solving
Hamilton’s equations to obtain the classical trajectories
3104 trajectories were found sufficient for convergenc
Similarly, in the open system case (DÞ0) r is obtained by
integrating the Langevin-Itoˆ equations for each sample tra
jectory:

dx5
]H

]px
dt, dy5

]H

]py
dt,

dpx52
]H

]x
dt1A2Dh1 , dpy52

]H

]y
dt1A2Dh2 .

~7!

Here h i ,i 51,2 are independent real differential stochas
variables satisfyingM (h1)5M (h2)50, M (h1

2)5M (h2
2)

5dt. Once again, Monte Carlo sampling from the initi
distribution and Euler integration of Eq.~7! gave converged
results forr with (2 –4)3104 sample trajectories and a tota
of 30 to 50 realizations ofh1 andh2 for each sample trajec
tory.

III. COMPUTATIONAL RESULTS

As a specific example we chose to examine quantu
classical correspondence using an initialc(x,y,0) given as a
two-dimensional coherent state with Wigner function,

r0~x,y,px ,py!5S 1

p2D expS 2
~x2 x̄!2

\
2

~y2 ȳ2!

\

2
~px2 p̄x!

2

\
2

~py2 p̄y!2

\
D , ~8!

where x̄, ȳ, p̄x , and p̄y are mean positions and moment
respectively. In the computations reported below@19# \

50.1, Dt50.002, D5631024, x̄50.40, ȳ50.60, p̄x

50.50, p̄y50.414 with a spatial grid spacing ofDx5Dy
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50.16. Convergence was checked by decreasing the
steps, enlarging the grid size, and by increasingS, with S
51000 found sufficient to obtain convergent results. In a
dition, energy absorption was in accord with the theoreti
prediction cited above.

Note first that our choice ofD lies close to the border o
the quantum-classical transition predicted by Eq.~2!. That is,
this two-dimensional system has three characteri
potential lengths x, Au]xV/]x

3Vu, Au]xV/]x
2]yVu, and

Au]xV/]x]y
2Vu. For the energy region of interest their ave

age values are 8, 1.5, and 1, respectively. Withl'0.5 for

FIG. 1. Time dependence of four statistical moments (^y&, ^y2&,
^Py&, and^Ey&) for the closed chaotic system case. Dark dots
note quantum results, thin solid lines are classical results. All v
ables are in dimensionless units@19#.
e

-
l

ic

a51.0 and approximately two times smaller fora50.1, the
inequality ~2! is satisfied for at least one of these lengths

We consider first a comparison of classical and quant
mechanics for the closed~i.e., D50) system, as shown
through expectation values of coordinates and momenta
‘‘energy in a zeroth-order mode,’’ e.g., fory, ^Ey&5^py

2/2
1(b/4)y4&. Figure 1 shows the classical and quantum e
pectation values for four moments associated withy. Analo-
gous results were obtained in thex variable. All figures show
qualitatively similar behavior, i.e., after an initial period o
classical/quantum agreement the quantum results continu
oscillate while the classical results show smooth relaxat
@20#. Computational results in the less chaotic regimea
50.1) showed similar results except that the deviation

-
i-

FIG. 2. Same as Fig. 1, but for the open chaotic system cas
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FIG. 3. Contours of constant wave function intensity att525
for propagation, for the chaotic case, from the same initial state~a!
shows results for the closed system (D50); ~b!, ~c!, and~d! show
results for different realizations with nonzeroD. All variables are in
dimensionless units@19#.
tween the classical and quantum is significantly less in
a50.1 case, and the classical-quantum discrepancy begi
a later time. Note also that the quantum results do not alw
simply oscillate about the classical~e.g., see results for^y2&)
and that the quantum fluctuations about the mean are
stantial~e.g., 30% in the case of^Ey&).

Results for the same moments, after introducing decoh
ence, are shown in Fig. 2. A comparison of Figs. 1 and
shows substantially improved classical-quantum corresp
dence upon introducing decoherence. In particular, Fig. 2~a!
and Fig. 2~c! show that quantum oscillations in the first-ord
moments are strongly suppressed by decoherence. Mor
markable is the observed correspondence for the case of^y2&
@see Fig. 2~b!#, in which the long term quantum average
the closed system deviated significantly from the long te
classical average. This indicates decoherence deloca
quantum distribution functions within the energy shell,
conservative-system analog of the noise-induced deloca
tion seen in one-dimensional quantum chaotic syste
@6,7,9#. Finally, the correspondence in^Ey& is shown in Fig.
2~d!, suggesting that the energy transfer between differ
degrees is also strongly affected by decoherence effects
also note that similar improved agreement was obtained
moments ofx and for thea50.1 case.

Further insight into the effect of decoherence results fr
examining individual realizations within the QSD approac
For example, Fig. 3 shows four quantum wave functions
t525, each emerging from the same time zero initial wa
function. Figure 3~a! shows the result of propagation in th
absence of decoherence and Figs. 3~b!–3~d! show three dif-
ferent uc„jm(t),t…& at t525, a time by which decoherenc
appears to have restored considerable correspondence~see
Fig. 2!. A comparison of Figs. 3~b!–3~d! with Fig. 3~a!
shows that the former has far less structure than the la
indeed Fig. 3~c! shows that decoherence has changed
complex structure in Fig. 3~a! into a single peak. In essenc
the competition between the Hamiltonian chaos~which tends
to exponentially@21# increase the wave packet structure! and
the stronger decoherence effect~which tends to suppress th
wave packet structure! is vividly demonstrated here.

Note, finally, that since the parameters chosen above li
the range expected of a typical molecule, our results sug
the possibility of experimentally observing these effects
the vibrational motion of excited polyatomics. To see th
note that a convenient dimensionless unit to compare
tems is the fractionF(t) of energy absorbed per degree
freedom from the bath per vibrational oscillatory perio
2p/v, relative to the level spacing\v, wherev is the vi-
brational period. That is,F(t)5(D/m)(2p/v)(1/\v). From
Eq. ~2! we have

F~ t !52pD/~m\v2!.p\l/~mx2v2!'p\/~x2mv!,
~9!

where we have assumed@22# l'v. Typical sizes of the right
hand side of the equation for a small molecule are on
order of 1023, in the same range as that obtained for t
model adopted in this paper. With the right hand side of E
~9! being the ratio of\ to a typical system action, the sma
molecule is seen to be of the same order of ‘‘quantumne
as the adopted model.
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IV. SUMMARY

We have shown for a generic conservative chaotic Ham
tonian system that decoherence does indeed lead to sig
cant improvement in classical-quantum corresponden
That is, the tendency for the evolving phase space distr
tion in chaotic dynamics to fragment exponentially fast
compensated by the smoothing effect of the externally
duced decoherence and classical-quantum agreement is
nificantly improved. Indeed, the stronger the chaos, a
hence the fragmentation, the more effective is the deco
ence @23#, so the balance between them is expected to
retained over a wide range ofl. This is the case even thoug
our studies are in the quantum regime so that the requ
magnitude of the decoherence leads to substantial differe
n
ca

et

v.

.

l-
ifi-
e.
u-

-
sig-
d
r-
e

d
ce

between the classical results in the presence and absen
decoherence. Nonetheless, correspondence is much
proved by the decoherence effects, i.e.,quantum mechanics
plus decoherence effectsis in far better agreement with th
classical mechanics plus decoherence effectsthan is the
analogous comparison in the absence of decoherence.
agreement is expected to improve even further as one
proaches the classical limit.
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[A1/m1vl p̃x , y[Am2v/l ỹ, andpy[A1/m2vl p̃y . Herel

has units of action, andmi andv are ordinary constants with
units of mass and frequency. Typically,v is taken as the av-
erage frequency of this system andl is taken to scale the true

Planck constant; that is,\5\̃/l , where \̃ is the ordinary
Planck constant and\ is the dimensionless scaled Planck co
stant. The scaled variables satisfy the canonical equation

motion for the scaled timet5v t̃ and the scaled Hamiltonian

H5H̃/l v. For quantum descriptions one can verify th
@x,px#5 i\, @y,py#5 i\.

@20# Analogous results were observed previously for the stad
billiard. See K.M. Christoffel and P. Brumer, Phys. Rev. A33,
1309 ~1985!.

@21# J. Gong and P. Brumer~unpublished!.
@22# P. Brumer and M. Shapiro, Adv. Chem. Phys.70, 365 ~1988!.
@23# A.K. Pattanayak and P. Brumer, Phys. Rev. Lett.79, 4131

~1997!.


