PHYSICAL REVIEW E VOLUME 60, NUMBER 2 AUGUST 1999
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We study analytically the N—1)-fold degenerate Hopf bifurcation at whidk stationary modes with
identical parameters become unstable in a model of a solid-state laser with intracavity second harmonic
generation. We use the normal form method and exploit the symmetries of the problem NJp3tostable
periodic antiphased solutions emerge from the Hopf bifurcationN=e4, stable quasiperiodic solutions arise
from the degenerate Hopf bifurcation. FNE>4, the quasiperiodic solutions may be unstable. Then chaotic
itineracy is observed numerically close to the degenerate Hopf bifurca8d063-651X99)07808-3

PACS numbgs): 05.45.Xt, 05.40-a, 42.65.Ky

[. INTRODUCTION We describe the instabilities of the AD1 solution leading to
quasiperiodic antiphase states. Though the validity of our
Antiphase oscillations were studied theoretically and ex-analytical results is limited to a small vicinity of the degen-
perimentally in coupled Josephson junctidis?], coupled erate Hopf bifurcation point, qualitative results concerning
chemical oscillatord3], olfactory systemg4], multimode the antiphased properties of these quasiperiodic solutions
lasers[5—15], and coupled laser array6]. In a solid-state turn out to be in a good agreement with those obtained by
laser with intracavity second harmonic generat(d)ﬁHG) nl:]merical integl‘ation -Of the Ol’iginal laser equations in a
operating orN longitudinal modes, this type of oscillations Wide parameter domain. o _
can appear after a Hopf bifurcation of the cw regime char- This paper is organized as follows. After this introduction,
acterized by an equal intensity of all the modes. When all th&ve present the model for ISHG lasers in Sec. II. In Sec. III,
excited modes belong to the same electric field polarizatioive introduce the general formalism for the analysis of the
and have equal gainsl |osseS, and cross-saturation Coefﬂegenerate HOpf bifurcation of tidemode solution based on
cients, this bifurcation is degenerate and produces differerffymmetry considerations. The main section is Sec. IV where
kinds of antiphase states. In particular, there is a periodiéhe explicit normal form is derived from the physical equa-
solution in which all modes oscillate with the same wavetions. In Sec. V, the general analysis is applied to the three-
form but each mode has its phase shifted by/I8 from the ~ mode regime, the only regime for which stable periodic AD1
previous mode. Permutation among the modes produses (solut_lons emerge th_ough the Hopf blfurca_tlon is deg_enerate.
—1)! such states. These solutions have been referred to &ection VI deals with the four-mode regime in which the
type-1 antiphase dynamicéAD1) in the ISHG problem Hopf bn‘urcanon_ leads to stable _quaS|per|odI|C soIqUons. In
[10,11. They have also been called splay-phase stateS€C: VIl we derive some properties of the bifurcating solu-
[16,17] or ponies on a merry-go-rourfd8]. AD1 solutions  tion for _f|ve and more OSCI!|atII’lg modes._ The results are
are similar to the travelingrotating wave solutions de- Summarized and discussed in the conclusion.
scribed in a ring of coupled oscillatof46,19,2Q. Due to
their high multiplicity, the AD1 solutions have potential ap- Il. MODEL EQUATIONS
plications as basic elements of rewritable dynamic pattern
memory[21]. Although these solutions are most commonly,[h
found in the context of laser antiphase dynamics, their sta-

A frequency-doubled solid-state laser can be described by
e equation$22]

bility properties for the ISHG model have never been studied dl N

systematically. This paper is an attempt to fill this gap. For n—kzlk{Gk—aﬂlek—ZsE I 1, (1)
that purpose, we derive the normal form equations governing dt r=1

the evolution of the laser modal intensities near the Hopf N

instability threshold. Using these equations we analyze the dGy

stability properties of the AD1 solutions oscillating on an gt 7~ Gk 1+(l_'8)|k+'321 - 2)

arbitrary number of modes. We show that for the model we

study, near the degenerate Hopf bifurcation point the periHerel, (G,) is the intensity(gain of the modek. The pa-
odic AD1 solutions are unstable N>3. Stable AD1 re- rametery is defined asy=7./7; where 7. and 7 are the
gimes can appear only at a finite distance from the degenecavity round-trip and fluorescence lifetime, respectively. The
ate bifurcation point if the mode numbbris small enough. cavity loss parameter ig, the linear gain isy, andg is the
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cross-saturation parameter. These three parameters are agierex=(X;,Xo, ... Xon) | andK(x,x) is a vector whose
sumed to be the same for all the modsss the total number components are homogeneous second order polynomials in
of laser modes. We assume that all modes have the santiee x;. The 2NX2N Jacobian matrix) has the structure
electric field polarization. The parameter describes the

nonlinear losses due to the frequency doubling process in the Ly Lz ... Lo
KTP (KTiOPO) crystal. Note that all modes are strictly L, Ly ... Ly
equivalent since they have exactly the same parameters. ST E (6)
Therefore Egs(1) and (2) are Sy equivariant, wheresy is B ‘ )
the symmetry group consisting of all possible permutations L, L, ... L

of modal indices. ,
wherelL, andL, are the 2<2 matrices

IIl. DEGENERATE HOPF BIFURCATION L ( -1 1 L ( -2 0)
1= ’ 2= '
It has been shown that far,7<1 andy small enough, —x —1+2p —Bx 0
the only stable steady-state solution of Ed$.and(2) is that (7)
for which all N lasing modes have equal intensities and equal a 0
gains[9] X=0(2N—l+§), p:m(l—lo),
lj=1>0, G;=G>0, j=1,...N. (3 andl, is the critical modal intensity defined by E@). The

matrix L, results from the coupling between modes. The
Increasing the pump parameter, this solution undergoes @igenvalues of the matri¢6) are
Hopf bifurcation leading to antiphase oscillations of the

modal intensities. The Hopf bifurcation condition[B] Nj=p—io, Aysj=A, AN=—N+p-iQ,
o sl aN= )], 1= o han A
v=glatelo@N=DL oSN DA withj=1,... N—1, and
(4 ) )
0 =x(1-pB)—(1-p)%,

wherel, is the critical modal intensity ané= »/e. At the 5 _ N 2
bifurcation boundary(4) the linear stability analysis of the Q7=x[1+(N=1)B]=(N=1+p)" (8)

solution (3) yields N—1 identical pairs of pure imaginary The parametep is the deviation from the Hopf bifurcation
eigenvalues. Hence, fdN>2 the condition(4) defines a point, andw and Q are the two relaxation oscillation fre-
degeneratéHopf bifurcation(hereafter referred to &g) that quencies[12]. The Hopf bifurcation is possible only b2
cannot be described by means of the usual Hopf bifurcation.g | the following analysis we assume th@g is also
formalism. The dgge.neracy of the Hopf_ bifurcation reSU“Spositive. The stable eigenvaluag, and \,y are associated
from the symmetries imposed by the equivalence of the lasefth the eigenvectors belonging to the synchronization mani-
modal parameters. Unlike a nondegenerate Hopf bifurcatiofyq X1 =Xg= - =Xon_1 ANd Xa=X4= - - =Xoy, Whereas
which produces only a single branch of periodic solutionsne remaining eigenvalues are associated with the eigenvec-
the number of solutions bifurcating from tiémode solu- 4, orthogonal to this manifolf23]. The eigenvectors,

tion at’H increases with increasing. Among these solutions ={Vim} (W, ={w,;,}) of the matrixJ (transposed matrid")
are the N—1)! AD1 antiphased periodic solutions for .5n pe chosen as

which all N modes oscillate with the same wave form but

with the phase shifted by 2/N from another modd1]. _ ie?mite DN

However, we show in the next sections that more solutions Vix-1T 7 TONIm Y

can exist, in particular, stable quasiperiodic antiphased solu-

tions. Vi k= _(1_2p+)\N+j)Vj,2kfl! (9)

_ _ _ ~—2mij(k—1)/N
IV. NORMAL FORM EQUATIONS Wiz 1= (1=2p+ AW, Wya=e 2D, (10

. . —__\* —arx
A. Linear transformation N+ TV, W =W, (13)

Consider the Hopf bifurcation point defined by Hd). with j,k=1,... N. The eigenvectory, and w,, are bior-
As already mentioned, foN>2 Egs.(4) correspond to a thogonal,
degenerate bifurcation. After introducing the variables

2N
Xoi_1=e(l;—1), Xy =Gj—a—el(2N-1), 7=tl/6, 2, VipWmp= dim,
0=
wherej=1,... N andl is the steady-state modal intensity and obey the relations

(3), Egs.(1) and(2) are transformed into N N N

N
. = . = W B W; :O, 12
9.x=JIx+K(x,X), (5) kzl ME k§=:1 Vi k§=:l J2-l k§=:1 1% (12
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with j=1,... N—1. The relationg12) are equivalent to the 1 1
sum rule derived if10,11]. v v
We introduce the linear change of variables (a)
2N 2N 2 33 2
yj:kzl Wi Xk s YN+1:k21 Wi Xk=Y) s (13 1 1,3 1
- - Vi V3
with j=1, ... N in Egs.(5) which are transformed into b)) 2 4 V2 4 2
dyj * * 3 24 3
E:)\]y]_FY](ylv '--1yN1ylv '--vyN)! (14) 1 1 ’ 1 1
2 54 33 45 2
wherej=1,... N andY; are homogeneous second order (c) v, v, v Va4
polynomials iny, andyj .
Since all lasing modes have identical parameters, @9s. 3 4 2 505 2 4 3
L9 : 1 14 135 14 1
and(2) are equivariant under any permutations of the modal Vi Vs
indices. As a result, Eq$14) must also possess symmetry d 2 Vs vi| w4 6 2
properties. Let us consider the transformation defined by the (d)
cyclic permutation of the modal indices 3 525 3,6 36 255 3
(123... N)=(N,1,2... N—1). (15) w
FIG. 1. Schematic representation of the eigenvectors

Taking into account Eq913) and (10), it is easy to show
that the symmetry propert{l5) of Egs.(1) and(2) implies
that Eqgs.(14) are equivariant under the action of the cyclic
groupZy which is defined by

Y1 -

Let us fix the index of the first lasing modg=1) and
consider all possible permutations of the remainhg 1
modal indices,j=2, ... N. It follows from Eq. (13) that
each of these permutations generates a linear transformati
of the variablesy,, ..., yn. According to Eq.(10), wyy
does not depend da Henceyy is invariant under any mode
permutation. Using the relation®) we get the following
transformation rule for the remaining— 1 variables:

yn) = (€%, ... eNyy), (=2m/N. (16

S,=V PV, n=1,...(N=-1)!, (17
where y=(y;, ....yn_1)". The elements of theN—1)
X (N—1) matrix V={V,,,} in Eq. (17) are V,,=e?™mN
while Py, ... ,P(-1)! are the unitary matrices obtained
from the N—1)X (N—1) identity matrix using all possible
row permutations. The linear transformatiofls) define a
unitary representation of the symmetric grdgp_, consist-
ing of all the permutations among ti—1 modal indices,
j=2,... N. The symmetries of Eqgl) and(2) imply that
the right hand side of Eq$14) commutes with all the trans-
formations defined by Eq17). The symmetry grougsy_ 1
has (N—1)! elements, each corresponding to a unitary ma
trix S,. Note, however, that the action of this group can b
generated by onl\N—2 linear transformations. Every per-
mutation of the modal indices can be obtained by the seque
tial application ofN—2 permutations, each of which inter-
changes only two neighboring indicggndj+1.

There is also a transformation in E(L7) which corre-
sponds to the flip symmetry of Eq&l4) defined by

Y1,Yn). (18)

This symmetry corresponds to the permutation

y—Shy,

K(Y1,Y2s - YN-1,YN) = (YN-1,YN-2) - - -

e

Vi, ... Vn_1 defined by Eqs(9) for the casga) N=3, (b) N=4,

(c) N=5, and(d) N=6. The arrow labeled corresponds to the
modal intensityl . . Phase shift between the oscillating modal inten-
sities is determined by the angle between the rays. If the greatest
common divisor ofm andN is equal top, the vectorv,, is repre-
sented by a diagram havimgrays.

(1,2,3... N)=(1N,N—1, ... 2.

In the new variableg13), the sum of the mode intensities
oakes the form

N N X
> =2 |1+ Zk‘l)
k=1 k=1 €
1 N N
=NI+— 2 Vj,2k—1yj+C-C-
e\k=1i=1
Imyn(7)
=NI-— O (19

whereNI is the sum of the steady-state modal intensities. It
follows from Eq. (19) that the time-dependent part of the
total intensity is proportional to the imaginary part of the
variableyy corresponding to the eigenvalueN+p—iQ.
This accounts for the fact that the total intensity of the modes
exhibits only one relaxation frequency, which(is[12]. The
relation (19) also explains another peculiar feature of the

total output laser intensity which appears in the course of the
antiphase oscillations. Singg, andyy, are the only variables

ﬁa_ssociated with eigenvalues having finite negative real parts

at the Hopf bifurcation poinp=0 in the limitt—o, these
variables and, hence, the total output laser intensity, have
much smoother behavior at least néartthan the intensities
of the individual mode$12,13], which can be expressed as
linear combinations of the order parametggsandyy with
k=1,... N—-1.

Each of the eigenvectors defined by E¢®), (10), and
(112) is associated with a type of antiphased regime. A sche-
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matic representation of the antiphased regimes corresponglormal form coefficients;,,. With these properties taken
ing to the basis eigenvectovs, ... ,vy_isshowninFig. 1 into account, Eq(20) truncated to retain terms up to third
for N=3, 4, 5, and 6. Each ray in this figure depicts a laserorder becomes
mode, whereas the angle between the rays describes the rela-

tive phase shift between the oscillations of the modal inten- dz ) )
sities. Periodic antiphase solutions emerging frantan be a4, (pTie)zi—2az gl |2

associated with linear combinations of the basis eigenvectors

(9). In particular, forN=4 there exist (4 1)!=6 types of N~1 N—1 _

antiphased AD1 regimes which can be obtained by mode —bz ;D zzn-—c > SWzhza, (23
permutations. Only two of them, those corresponding to the k=1 klm=1

eigenvectors/; andvg, are presented in Fig.(d). The re- where j=1,...N—1, 6;'=1 for modk+I—m—j,N)

maining f_our regimes are as_s_omated with two pairs .Of IInear=0, and&{{}jzo otherwise. Explicit expressions for the com-
combinations [v;+(1xi)v,*ivg]/2 and [va+(1xi)v, . :
~ivy]/2. plex coefficientsa, b, andc in terms of the parameters of

. . . . Egs.(1) and(2) are given in the Appendix.

The linear coordinate changéd3) with w,, defined by : .
Egs.(10) and(11) is similar to the discrete Fjourier transfor- The symmetry property18) results in the flip symmetry
mation which is used to study the dynamics of coupled os- K(Z1,Z0, o Zno1) = (ZNo1sZNzy - - 21)  (24)
cillators (see, for exampld,16,20,23). Therefore, the ampli-
tudesy; can be considered as Fourier modes characterized yf Egs.(20) and(23). Together with Eq(16), the symmetry
a certain wave number as shown in the next section. property (24) constitutes the dihedral symmetry groDg, .
Therefore, the symmetry group of the normal form equations
containsDy as a subgroup.

In the following sections we analyze the stability proper-

Close to the Hopf bifurcatio), we can transform Egs. ties of the third order normal form equatio(®9) in the limit
(14) into normal form equations governing the time evolu-

tion of the order parametess, ..., yny—1. The transforma- n,e<1, a,B,0=7e=0(1), (25

tion is performed in the vicinity of the steady-state solution . o

with the help of near identity polynomial changes of vari- Which is suggested by the experimefi In the limit (25),
ables[24-26. In the new variableg;, j=1,2,...N—1, the ~ Using the_ asymptotic expressions for the normal _form coef-
resulting unfolded normal form equations take the form  ficients given in the Appendix, we obtain the scalings

N—-1

B. Nonlinear analysis

dz, s ; . . . Rea,Rec=0(1), Ima=0(s 2, Reb=0(g?),
—=(p—iw)zj+ 2 Ajpgzyt - Nz N
dr j = ipg<1 N—1“1 N—1 Imb,ImC=O(s*3’2), 26)
(20)
Rea,Reb>0, Rec,Ima,Imc<0. (27
where j=1,...N=1, p=(p1,....pPn-1)=0, and q
=(dy, ... .An-1)=0. The coefficientsA,, of the normal  If N—c the normal form equation&3) can be written as
form depend on the parameters of the original laser equa- i
tions. According to the normal form theof24] the sum over P _ J 2
p andq in the right hand side of Eq$20) contains only third IW=(p=iw)W-2aW _1/2|W| dé

and higher order resonant terms which are characterized by "
EE‘;ll(pk—qk)=l_ Thi; meanf that the right hgnd side of _bwkf W2 dé—cWIW|2, (28)
Egs. (20) commutes with theS* circle group action gener- -1/2
ated by the transformation
with a periodic boundary conditiow/(r, —1/2)=W(7,1/2),
92y, 2N ) =62y, . Zno1), PeSh (2D) where ¢ is the continuous analog of the discrete variable
JIN—1/2. For even N, substituting W(r,§)
_sN-1 2mi(j—NIR)E ;
This property is inherent in the Hopf bifurcation. In addition, =21 ZJ(T_)e N _ into Eq. (28) we get thg normal
the normal form equation€20) preserve all the symmetries [O'M €quationg23) which govern the time evolution of the
of Egs. (14). In particular, it follows from the symmetry Fourier modes;. Hence, the Fourier modg can be asso-

property (16) that only the nonlinear terms which obey the ¢iatéd with the wave numbef;=j—N/2. In Eq. (28) the
relation terms proportional ta andb describe the global coupling. In

the absence of couplingaEb=0) the Hopf bifurcation is
N—1 subcritical if Rec<0. As will be shown later, this inequality
mo E k(pk—ql(),N> = (22) leads to the instability of the periodic AD1 solutions in a
k=1 laser with mode numbédx>3.

According to the scaling€26), the real parts of the
are present in the right hand side of the equation governingormal form coefficients can be neglected to leading order
the evolution of the variable; . By definition mod@,b) is  in &. Then, Eqs(23) at p=0 become conservative with an
the fractional part of/b. The remaining symmetry proper- energy integral defined bi,==}_1|z|2. The correspond-
ties (17) of Egs. (14) imply certain relations between the ing integral of Eq.(28) is Ey= 1,"‘;,2|W|2d§. This result is
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in agreement with a more general result valid not onlylow-frequency antiphased envelope of the quasiperiodic so-

in the vicinity of the instability threshol@27]. In the con- lution (31) has the temporal pattern associated with the ei-

servative limit the third order normal forrt23) has an ad- genvector,, (Vn_m)-

ditonal integral defined by E;=Imb|=}"}zzy_/? Similar considerations can be applied if the quasiperiodic

+imeSN-1  smisk %5 5 in the discrete case anB regime (31) itself undergoes a secondary Hopf bifurcation
i,k I,m=1%l m<k&| 1 . R X .

=Imb|f Y2 W2 d&]2+Imcf M2 JW|*dé in the continuous leading to a three-dimensiongdD) torus. If such a bifurca-

1/2 . . .
case. tion leads to the appearance of a third Fourier magle;

In order to examine the antiphase properties of the normdin#m) oscillating at frequencyo+ wn 1 such thatjdw’|
form equation solutions, we need to come back to the vari=|@n+1~ 1| <[Aw|<w, then the resulting quasiperiodic
ablesx,; -, describing the deviations of the modal intensitiesSolution will exhibit two envelopes associated with the

from the steady-state intensity eigenvectors/, (or vy_p) andv, (or vy_p). The first enve-
lope is characterized by the frequerlédyw| < w, the second
N envelope hasA o' |<[Aw|.
S(IJ_I):XZj,l:kZ]- Vkvzj,lyk-l-C.C. (29)
V. THREE MODES
Any type of AD1 regime can be associated with a sequence For a laser operating with three identical mod&sgor-
{i1si2s - - - in}, Where two consecutive indicég andj,,1  responds to two identical pairs of pure imaginary eigenval-
correspond to modal intensities oscillating with the phasaues. In this case the normal form equationsRg& S* equi-
shift 277/N. Consider the solution of Eq623), variant, whereD; is the dihedral symmetry group which is
_ isomorphic to the symmetry group; of the original laser
z=r,e”'red7 72=0 (k>1), (300  equationsD; is generated by
wherew; is the nonlinear frequency shift proportional to the {(21,2,)=(€*2,,67"°2,), (=23, (33
unfolding parametep. It describes the periodic AD1 regime
corresponding to the temporal pattefh,2, ... N} associ- k(21,22)=(2,21). (34)

ated with the eigenvectar;. Replacingy; in Eq. (29) by z;
from Eg. (300 we get the relation xp_;
~rlv1,2j,le*'(‘”*‘”1)f+c.c., where the complex functions
Vi -1 determine the phase shift between the oscillatin

A detailed study of a Hopf bifurcation witby symmetry

was presented ifi20]. However, in our particular case, the
relations (26) and (27) reduce substantially the number of
gpossible stable solutions. Fof= 3, the normal form equa-

modal intensities and| .., which equals 2/N. tions (20) limited to the fifth order take the form
Let us suppose that the soluti¢®0) undergoes a second-

ary Hopf bifurcation leading to a quasiperiodic solution. We 9,2j=zj[p—i w—A|Zj|2— Blz/%— p|Zj|4

assume that near the secondary bifurcation point the contri- . o 12 o

butions of all the Fourier modes except fgrandz,,, ; are —alzd*=rlz|*z ]—Szﬁzj , (39

negligible and the quasiperiodic solution can be written in . ,

the form wherej,k=1,2, j#k, A=2a+c, andB=2(a+b+c). We
do not present here an explicit form of the fifth order coef-

z=rei@toDr  Z e i(@teni)T ficients_ p, g, r, ands since it is not important in the further

analysis.

Let us first neglect the fifth order terms in E¢35). Then
the solutions corresponding to the antiphase periodic oscilla-
tions of the modal intensities with the same wave forms but
with a phase shift /3 from one mode to the nexperiodic
AD1 regime$ are given by

|wimit|<w, r>rp>lz)  (k#1m+1). (31

The solution(31) is characterized by two frequencies. The
carrier frequencyw + w, is determined by the frequency of
the periodic AD1 solutiori30) and the envelope frequency is

equal to the frequency splitting of the variablgsandz,,. ;. (2,0), |z|°=p/ReA, (36)
The temporal patterdl,2, ... N} associated with the an-
tiphased carrier of the quasiperiodic soluti@1) is the same (02), |z|>=p/ReA. (37

as for the AD1 solutior{30). Replacingy, by z, in Eq. (29)
and neglecting the contributions of all the amplitudes excepfhe solution (36) is invariant under the transformation
for z, andz,,; ;, we get for the oscillating parts of the modal (z1,z2)—€™'(e'*z;,e7'“z,), while the solution(37) is in-
intensities Xy;_1~Z;(1)vy5_,e '(“*“D7+c.c. The time Vvariant under 11122)*9'19(9'(21,9_%22)_ with  9=¢
dependence oZ;(7) determines the envelope of the quasi- =27/3 and, hence, they have the isotropy subgroup
periodic solution31). Using Eq.(9), Zj(7) can be written as  Z;C D3 S' [20].

The eigenvalues determining the stability of the solutions

Z(1)=ry+e?mmU- DNy e iAo, (32)  (36) and(37) are
whereAw= w1~ 0, is the frequency splitting of; and A1=—p=iy3(ImA)?/(ReA)* -1, (38
Zm. 1 ande?™MU~1N describes the relative phase shift be-
tween the envelopes of the quasiperiodic modal intensities. It Agam p [—Re(2b+c)=i ImB]. (39

can be deduced from E@32) that for Aw>0 (Aw<0) the ReA
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The stability condition Ré ;,=—p<0 implies that the 1 - (a)

AD1 solutions can be stable only if they are supercritical I }gg:'
(ReA>0). The second pair of eigenvalug®) describes the 50
stability of the solutiong36) and (37) with respect to small 0

perturbations of the Fourier modg and z;, respectively. L 138

For ReA>0, using the relation$26) and (27), we get the 50

inequality ReA;,<0 with ReA;4~—2pReb/ReA L sk 3

=pO(e~1). Hence, in the limit(25), the solutiong36) and 3 100f

(37) are stable if and only if they are supercritical (Re i MU[“UH\l\JUUUUUHUUH‘J“JUMUUUM

>0). It can also be shown using the asymptotic expressions 0 100 200 300 400 500
of the normal form coefficients given in the Appendix that in I 1sof (b)
the limit e—0, the condition8>1/4 is sufficient for the U jooF K j\ _/L
solutions(36) and(37) to be supercritical and stable. 58 L N LN :
Apart from Eqs(36) and(37) the third order normal form I, 150 L 2
equations have the following family of periodic solutions: 128 {\ J\A /\ ‘/\
(z,z€%), |z]?=p/Re(A+B)>0, (40) L }3§ - 5
with constante. For Re @+ B)>0 Eq. (40) bifurcates su- 58 : ’/\‘ J\
percritically at™. It is stable when Re (2+c)<0. Since in o 1020 30 450
the limit (25) we have ReA+B)~Re (2b+c)~2Reb>0, t
the solution(40) is supercritical and unstable.
It can be shown that if the fifth order terms in E85) are FIG. 2. Quasiperiodic solution of Eqsl) and (2) with N=3,

taken into account, the solutiof0) splits into two limit #=10"7, =102 £=5x10"", y=43, =03, andt'=t\7. (a)
cycles withgp=0 and ¢= 7. The limit cycle withe=0 is and (b) correspond to the same solution shown on two different
invariant under Eq(34) and, hence, it has the isotropy sub- time s_cales. _The carr_ie(envelope of the gua_siperiodic_ sol_ution is
group Z,(x)CDs. For this regime, referred to as AD2 in associated with the eigenvectoyr (vz)_ WhICh is shown in Fig. (@)
[10,11, the intensities of two modes have the same Wavé‘nd corresponds to the AD1 regime with the temporal pattern
form and same phase while the third mode is dephased. by 12,3 ({1.32).
The limit cycle with¢ = 7 is invariant under the transforma- ) ) ) ) )
tion (z1,2,)—€ ™(2,,2;). Therefore, it has the isotropy sub- envelope is assoc!ated with either the elgenyeugoor the
group Z,(x,m)CDsX St and corresponds to a situation eigenvectow;. In Fig. 2 the low-frequency antlphase_d enve-
where two modal intensities oscillate with the same wavdoPe displays the temporal patteff,3,2} corresponding to
form but arer out of phase, while the third intensity has a the eigenvectov,. Therefore, in this case we haieo<<0 in
small amplitude oscillation at half the period. It follows from Ed- (32. Thus, the appearance of the quasiperiodic regimes
this analysis that for typical values of the parameters folc@n be related to the interaction between different types of
which the experiments are conducted, both limit cycles ar@€riodic antiphased states, each one associated with an ei-
unstable neaf{. genvector of the biorthogonal basis of Fourier mot®sIn
Thus, we have shown that in the lin{25) and for ReA the subsequent sections V\(e'show thatlﬁ@M'the normal .
>0 only periodic AD1 regimes can be stable near the Hopform equationg23) can exhibit undamped antiphased quasi-
bifurcation boundary in a three-mode laser. The stable eigerR€riodic oscillations.
values A3, defined by Eq.(39) are associated with an-
tiphased damped oscillations. On the other hand, numerical VI. FOUR MODES
simulations of Egs(1) and (2) indicate that far abové{
similar oscillations can become undamped. This correspond%
to a secondary Hopf bifurcation which transforms the peri-t
odic antiphased AD1 regime into a regime with quasiperi-
odic modal intensities. An example is presented in Fig. 2.
Though such secondary bifurcation far away from the first
Hopf bifurcation cannot be described in the framework of the

In the case of four lasing modes, the symmetry group of
e normal form equations is generated by

g(zl122123):(elgzlieI2§22!e7I§Z3)a 5251

normal form(35), the antiphased properties of the quasiperi- k(24,25,23)=(23,25,21),

odic solutions arising after secondary Hopf bifurcation can

be explained using the formalism presented in this paper. 7, i 1—i 1 7,
One can see that both the carrier and the envelope of the 1 11 0 14
quasiperiodic regime shown in Fig. 2 are of the AD1 type. Ki| 2| =5 ! SR
Since this quasiperiodic regime bifurcates from the AD1 so- 3 1 1+ —i Z3
lution with the temporal patter{i,2,3}, its carrier is associ- _

ated with the eigenvector; shown in Fig. 1a). The enve- N21,25,23)=€"(21,2,,25), FeSh

lope of the quasiperiodic solution results from the interaction

between the Fourier modgg andy,. Therefore, depending ForN=4 the third order normal form equatiof3) take the
on the sign of their frequency splittifd\ w in Eq. (32)], this ~ form
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9,zi=2p—iw—A|z;|>—C|z,|>—B|z/?
j j[P w | J| |2, 12,/ ] A314=RP;A[—RECii ImC], (49)
—czz} —(c+b)z3zf (41 ©
9,2y=2,[ p—iw—(A+D)|2,?~ C(|zy|?+]25|?)] AS,GZ%[—Re(ZbJrC)ti\/(ImB)2—|c|2]. (50)
—2(c+b)zy2575 (42

As for N=3, the condition R&\; ,<0 implies that the AD1
wherej,k=1,3, j#k, and solution can be stable only when it is supercritical &Re
>0). Using the asymptotic expressions for the normal form
A=2a+c, B=2(atb+c), C=2(atc). (43 coefficients given in the Appendix, it can be shown tha#Re
o ] ) ) _is always positive for3>1/5. In the following analysis we
Periodic solutions of normal form equations bifurcating assume that the inequality Re>0 is fulfilled. The eigenval-
from H can be classified by their invariance propertiss-  esA  , describe the stability with respect to small perturba-
tropy subgroups[20] . In our analysis we do not distinguish {jons of the Fourier modes. Using the relationg26) and

between the solutions belonging to the same group orbit, i.e(,27) we obtain Re\s ¢~ — 2p Reb/ReA<0. Finally, the ei-

which can be obtained from each other with the help of peryenyalues , , describe the stability with respect to small
mutations of modal indices. Since all such solutions hav ’

©erturbations of the Fourier mods. Since for physical pa-

identical stability properties it is sufficient to consider only 8 rameter values we have Re 0 (see the Appendix these
single representative for each group orbit. It follows from theeigenvalues have positive real parts. This means that the

equivariant Hopf the_orerﬁ20] that Eqs.(4_1) and (42). POS-" AD1 solutions areunstableat least neaf{ where the third
sess at least five different types of periodic solutions with

: ! _ order normal form equations are valid. This is in agreement
period 2r/w atH. These solutions are listed below together i the results of numerical simulations of the normal form
with their isotropy subgroups:

equations(41) and (42). For parameter values relevant to
experimental situations, these equations exhibit quasiperi-
odic oscillations with two frequencies, one of them being
determined by the Hopf frequenay and the second being
equal to the frequency splitting of the Fourier modesand
Z,. In the limit (25 using the inequality|Real,|Rec|
(K1) X(k), (49 <|Reb|,|/Imal,|imb],|imc| which is the consequence of
Eq. (26), the quasiperiodic solution of Eggl1) and(42) can
AD2,,:(0z,0), |z]°=p/Re(A+b), Z,X(x), (46)  pe approximated as

AD1:(z,0,0), |z|>=p/ReA, Z,, (44)

AD23,:(2,2,2), |z|?=p/Re(6a+3b+7c),

AD2,,:(2,02), |z|?=p/Re(C+b), Z,X(k), (47) P

2 o 2 2
ReA+O(8), |Zz| 2|Zl| D_F+O(8 ),

|Zl|2~

AD13:(z,z—z\/§,—22+ \/52),
|25|?~[2|°D s D_F?+0(&?), (50

z|?=pl[4(2+ V3)Re(C+ 2 . (4

[2=p/T42+ VBR(CHa,  ((xk1,2713). (49 argz; —argz,=Awr~1|z;|?Imc+0(¥?], (52
Here(k), (x1), Z,, and{(k,27/3)) are the groups gener- ,
ated, respectively, by, x;, 259 with 9=, andx; 9 with sin(argz, +argz;— 2argz,)
9=2m/3. The solution(44) is invariant under cyclic mode 31mcReb
permutation and has the isotropy subgrayp The notation ~| ——
ADZ2,,, corresponds to the solution with two groups of oscil- 2yD.,D_
lating modes consisting dfand m modes, respectively. All
modal intensities in each group have the identical wavavhere
forms and the same phase, while the intensities of the modes
belonging to different groups are out of phase. It follows 2 Rec

|z Imc+0(%?), (53

from the relationg26) and(27) that the solution$45)—(47) (3Imc)?Reb’

are always supercritical in the limi#—0. The last solution

(48) resembles the AD1 solution that appears in a three- D.=(Reb)?+[Im(4b+c=3c)/4]%. (54)

mode laser: three of the four modal intensities oscillate with

the same wave form and such that each mode is phase shiftéds seen from the data shown in Fig. 3 that in the lig25)

by 271/3 from another mode, while the fourth modal intensity these expressions are in good agreement with the results of

exhibits a small amplitude oscillation with half the period. numerical integration of Eqs(41) and (42). Using Egs.

The stability conditions for all the solutiori4)—(48) can be  (51)—(54) and the relation$26), we get the asymptotic ex-

derived analytically. In the limit25) the solutiong45)—(48)  pressions|z,|2=|z,|20(e) and |z5|?>=|z,|?0(e?) for the

are unstable with the real parts of the most unstable eigerquasiperiodic solution. Therefore, this solution is character-

values beingpO(e1). ized by the hierarchyz,|>|z,|>|z5|, which can be inter-
The eigenvalues determining the stability of the solutionpreted in the following way. Let us consider the secondary

(44) are given by Eq(38) and Hopf bifurcation of the AD1 solutiori44) leading to a qua-
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FIG. 3. Quasiperiodic solutions of the normal form equations. L ) )
N=4, p=0.2. The normal form coefficients are evaluated at ' 'C- 4. Quasiperiodic solution of Eqel) and (2) with N=4

7=0.001 25,2=0.03, and8=0.3.(a) £=0.003. The solid lines cor- 2N 7= 0.355. The values of the parametezsa;, ¢, andjs are the
respond to numerical solution of Eqgtl) and (42). The dashed Same as in Fig. @), andt =t\/7. (8 and (b) correspond to the

lines are obtained using the approximate express®hs-(53). (b) same solution shovyn on two diffe.renf[ time sc.ales. The cafeile.{
The solid lines correspond to the approximate solu®bH—(53) velope of the quasiperiodic solution is associated with the eigen-

which are constant in time. The asterisks denote the time-averagef®ctorvi (V) which is shown in Fig. (b) and corresponds to the
numerical solutions of Eqg41) and (42). AD1 regime of the typg1,2,3.4 ({1,4,3.2).

siperiodic solution that takes place at Rg,=0 (Rec=0). ated with the dominating Fourier mode and the temporal
At this boundary the antiphase oscillations associated witfpattern{1,2,3,4. According to the results of Sec. IV B, the
the Fourier modez, become undamped, leading to a weakenvelope of the quasiperiodic solution resulting from the in-
antiphased modulation of the solutiofd). The modulation teraction of the Fourier modes andz, is associated either
frequency is determined by the frequency splitting of theWwith the eigenvector; [Aw<O0 in Eq. (32)] or with the ei-
Fourier modesz, and z;. This frequency vanishes &.  genvectorv; [(Aw>0 in Eq.(32)]. Since according to Egs.
Since for R&=0 we haveF=0 in Eq. (54 and hence (52 and(27) Aw=|zy|?Imc<0, the frequency splitting of
z,=23=0 in Eq. (51), it becomes clear that the relations the Fourier modeg; andz, is negative, and the envelope of
(51)—(54) describe the quasiperiodic solution bifurcating the quasiperiodic solutiof61)—(53) corresponds to the ei-

from the AD1 solution at the secondary bifurcation boundarygenvectorvs and the temporal patter{i,4,3,3. This is in
ReA;,=0. Moreover, the relations(26) imply the agreement with the results of a numerical integration of the

asymptotic expressions Re ;= pO(1), ReAsg original laser equations. Figure 4 presents a quasiperiodic
=pO(e~1), and, hence, the relation Re 4/ReAsg

=0(¢). Therefore, the hierarchial property of the quasiperi- 0.020 Iyl

odic solution can be related to the fact that the effective 1 .......

distance from the secondary Hopf bifurcation threshold

ReA;,=0 becomes very small in the limi—0 (the sec- 0015

ondary bifurcation itself is not accessible in physical situa-
tions since Re is always negative This is why in the limit

(25) the contributions of the Fourier modesandz; in Egs. 0.010

(51)—(54) vanish and the quasiperiodic solutigl)—(54) |y |

becomes very similar to the periodic AD1 solutiga4). 3 ly.|

SinceF>0 according to Eq(27), andD .. >0, we can con- 0.005

clude from Eq(51) that the quasiperiodic solutid®1)—(54) ﬁ MM f

bifurcates supercritically at the secondary Hopf bifurcation

threshold Re\3,=0 and, therefore, is stable near this 0.000 Do P VYV Vv e —

threshold. 0 200 400 600 800
Let us examine the temporal pattern associated with the t

antiphased envelope of the quasiperiodic solut&t)—(54).

Since this solution bifurcates from the AD1 soluti@h), its FIG. 5. Same solution as in Fig. 4 presented using the coordi-

carrier is determined by the eigenvectgrwhich is associ- natesy, , 3 defined by Eq(13).
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solution of Eqs(1) and(2) calculated neat{ for the param- Lo
eter values of Fig. 3. The initial conditions were chosen in

such a way that the carrier of this solution has the temporal 0.8
pattern{1,2,3,4. The envelope of the quasiperiodic solution

shown in Fig. 4 has the temporal pattgh4,3,2 as pre- L, %°f
dicted by the normal form analysis. In Fig. 5 the same solu- !

tion is represented using the Fourier moggs 5 which in 0.4
the linear approximation coincide with , 5. As for the so-
lution of the normal form equations shown in FigaB the
Fourier modey, determining the carrier type of the quasi-

02

00-...|...| PR | Il

periodic solution dominates the hierarchy. The second domi- U0 50 100 150 200 250 300
nating mode iy/,, which determines the envelope type of the
guasiperiodic solution\z). The smallest Fourier modg; t

turns out to be of the same orderyas which is not shown in .. . .
Fig. 5. The amplitude/, determines the oscillation depth of FIG;G' Stable periodic So'““?? of Egil) and (2) V‘ftsh
the total output laser intensity. broken Z symmetry.N,=4, n=10"°, «=0.01,£=0.96x10 ",
Thus, we see that in a laser operating in four identical?~0-0151,5=0.2, andt =t\n
modes, pure periodic AD1 regimes are alwaysstablein . o
the vicinity of 4 if 8>1/5 and in the limit(25). Instead of The second factor that restricts the applicability of the
these regimes the third order normal form equations predictormal form equations is related to the possibility of syn-
quasiperiodic hierarchical solutions characterized by anghronlzanon of the_ q_uaSIperlodlc solut_lon. A(_:cordmg to Egs.
tiphased carrier and antiphased envelope. However, accorfi) and(8) in theJar/mt (25) the Hopf bifurcation frequency
ing to our numerical observations the width of the applica-26comesw=0(e~*%). On the other hand, taking into ac-
bility domain of the third normal form equation&23) qopnt the' asymptotlc expressions for the normal form coef-
decreases with the decrease of the parametarsl 7. There  ficients given in the Appendix, we conclude that the enve-
exist at least two reasons for this phenomenon. The first onl@P€ frequzency of the 7%5Ja5|per|od|c soluti¢81)—~(53) is
is that due to the singular nature of the laser equatidhs |A@|~|z|"Imc=pO(e ?). Hence, fore—0 the envelope
and (2) in the limit (25), H is a singular Hopf bifurcation frequency grows much faster than the carrier frequeacy
[28]. Very recently the singular nature of a Hopf bifurcation However, since the normal form equatio@®) and(23) are
was also established in a model of a solid-state laser operaflid only for |Aw|<w, for & small enough the applicability
ing onn-A transition. It was shown that the asymptotic ex- domain of the normal form equations becomes very narrow,
pansions used in the Hopf bifurcation analysis are valid only?<€=0(7). Outside this domain the carrier and the enve-
for p<5Y2[29]. This conclusion is supported by the results/0Pe frequencies can be of the same order and, hence, the
of numerical simulations of Eq€1) and (2), which show synchronization phenqmenon which cannot pe described by
that the quasiperiodic solution arising at the primary instabilthe normal form equation&0) and(23) is possible.
ity threshold can disappear via a secondary Hopf bifurca- FOrN=4 we have a simple pair of pure imaginary eigen-
tion of the corresponding AD1 solution. After such a bifur- values at the secondary Hopf bifurcation boundaryARg
cation, which cannot be described by the third order normaf=0. Therefore, each of the AD1 solutions generates only a
form equations(23), the AD1 solution becomes stable. single 2D torus. Therefore, one could expect that generically
Moreover, we have found that as the parametdrecomes the total number of different stable hierarchical quasiperiodic
smaller, the distance betweéi and the secondary Hopf Solutions obtained by permutations of the modal indices co-
bifurcation decreases. However, according to our numericdncides with the total number of different periodic AD1 re-
results, the stable AD1 regime arising after this secondar@imes, i.e.(4—1)!=6. However, simple considerations indi-
Hopf bifurcation usually undergoes a tertiary Hopf bifurca- cate that synchronization of these tori may produce a greater
tion leading once again to a quasiperiodic solution with anlumber of stable periodic solutions. Indeed, a synchroniza-
tiphased properties similar to those predicted using our nofion of the quasiperiodic solution characterized by the hier-
mal form analysis. This indicates that the qualitative@rchy|zi|>|z,|>|z3| would produce periodic solutions with
conclusions derived with the help of the normal form method@ll three nonzero amplitudes. Neglecting the contribution of
can remain valid even beyond the applicability domain of thethe smallest Fourier modz,, we conclude that the periodic
normal form equation$23). Moreover, far above the first antiphased regime arising after synchronization corresponds
instability threshold¥, we have observed numerically 3D to the linear combinatiom;v; +z,v,, where the phase dif-
tori with the carrier corresponding to the eigenveatpand ~ ference between the Fourier modgsandz; is fixed for a
two antiphased envelopes corresponding to the eigenvectopsire periodic solution. Though fde,|>|z,| such solutions
v3 and v,. This result indicates that when the linear gainare very similar to the AD~1 solutions which are invariant
parameter is large enough, the antiphased oscillations assonder the isotropy subgroug,, the presence of the second
ciated with the complex eigenvalués; ; describing the sta- Fourier modez,#0 breaks the symmetry with respect to
bility with respect to small perturbations of the Fourier modecyclic permutations of modal indices. Therefore, in this case
Z3 can become unstable. These oscillations produce an addiuch permutations also can produce distinct periodic solu-
tional antiphased low-frequency envelope which exhibits dions. In particular, the symmetry breaking associated with
temporal pattern associated with the eigenvecjatisplayed the synchronization of the hierarchical quasiperiodic solution
in Fig. 1(b). can lead to slightly different oscillation amplitudes for dif-
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ferent modes. Similar periodic solutions were observed nu- 1.0
merically and one of them is presented in Fig. 6. In this 1
figure two pairs of modes have slightly different oscillating 0.8
amplitudes. The existence of such a solution will imply from ‘
symmetry considerations the existence of at least

2(4—1)!=12 distinct stable solutions which can be obtained 0.6
with the help of modal index permutations. Stable periodic |zl
solutions for which all four modes have slightly different

oscillation amplitudes were also observed for parameters

close to those of Fig. 6. In this case, the number of stable
solutions obtained by permutations of the modal indices in- 0.2
creases up to 424.

0.4

0.0

VII. FIVE OR MORE MODES

In this section we restrict our considerations to the stabil- T
1ty properties of the antiphafed AD1 solutions of EGS) FIG. 7. Numerical solution of the normal form equatioi28)
having the isotropy su_bgrouZ)N. Al Su.Ch solutions belong . with N=5 p=0.2. The normal form coefficients areqevaluated at
to the same group orbit ar_ld, hence, _W|thouF loss of generalltx]: 1074, a=0.02,6=5x 104, and 4=0.34.
we can consider only a single solution defined by

z|2=p/ReA, z=0 (k>1). (55) However, Re\; g>0 in most physical situations. In this case
quasiperiodic hierarchical solutions are unstable and numeri-
The first two pairs of eigenvalues determining the stability ofcal integration of Eqs23) yields more complicated irregular
the solution(55) are given by Eqs(38) and(49). As in the  solutions as shown in Fig. 7. This kind of solution can be
caseN=4, the eigenvalued ; , determine whether the AD1 related to a chaotic intermittency between different unstable
regime bifurcates supercritically or not. It can be shown thatjuasiperiodic states, each associated with a certain AD1 re-
in the limit (25) the condition8<1/(N+ 1) is sufficient for ~gime. Similar antiphased solutions with slowly varying ir-
the AD1 solution to be supercritical. This corresponds toregular envelope were observed by numerical integration of
ReA>0 and we will assume that this inequality is fulfilled. Egs.(1) and(2) close to}. They are presented in Figs. 8 and
Since we have Re<0, the second pair of eigenvaluas ,, 9. Unlike the hierarchical quasiperiodic solution described
which describes the stability with respect to small perturbaabove, for which the carrier type does not change with time,
tions of the Fourier mode,, is always unstable. Fd{=5 the solution shown in Fig. 9 has a high-frequency carrier
the remaining four eigenvalues are given by with atime-dependertemporal pattern. This intermittent be-
havior is similar to the chaotic itineracy found [ia1].

A5,7=RL;A[—b—ReciiJ(|mc—ib)2—|c|2], (56) 5
A6,8:A§,7- (57) Il 0.40

036

For N=6 there existN—5 additional pairs of complex ei- 0.32
genvalues L, 0.44
0.40

Aoao=mex[—Reciy(IMC)?=[c]. (59 .

[ 04

Here A, B, andC are defined by Eq43). The eigenvalues 3 040
(56) and(57) describe the stability with respect to small per- 036
turbations of the Fourier modeg andzy,_ ;. In the limit (25) 0.32
the eigenvalued s s have negative real parts. 1, 0.44
We have found that foN=5, depending on the sign of 040
the real parts of the eigenvaluds g, the normal form equa- 0:36
tions can exhibit two different types of behavior. If Reg 9.2
<0, the only unstable eigenvalues &xg,. In this case the L5 0.40

solutions of the normal form equatiof3) are quasiperiodic 0.36
and characterized by a hierarchy similar to that obtained for 032
N=4. Specifically, for the hierarchical solution with domi- 0 400000 800000 1200000

nating Fourier mode,, the second dominating mode which ¢

determines the type of low-frequency modulation of modal

intensities isz,. Hence, depending on the sign of the fre- FIG. 8. Antiphased solution of Eq$l) and (2) with slowly
quency splitting of the Fourier modes and z,, this enve-  varying irregular envelopeN=5, y=0.04111, and’ =t/5. Other
lope is associated either with the eigenveatpior with v;. parameter values are the same as for Fig. 7.
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FIG. 9. Same solution as in Fig. 8 shown on two identical time

intervals separated kyt’ =89 800. The local maxima of the inten- t

sity 1, are labeleck. o . )
FIG. 10. Quasiperiodic solution of Eq$l) and (2) with N

As in the casdN=4, stable AD1 solutions can appear for =5, 7=10"7, a=10"?, §=3x10"', y=0.43, =0.3, andt’
N=5 by increasing the distance froii. Usually they ap- =t\/5. The envelope corresponding to the smallest of the three
pear in the following way. First, the quasiperiodic hierarchi-frequencies is associated with the eigenvegjshown in Fig. 1c).
cal solutions become stable. After that, these solutions mergENis €igenvector corresponds to the antiphased AD1 regime of the
into the AD1 solutions at the secondary Hopf bifurcationtyPe{1.4.2,5.3.
point. However, when the distance frofd is further in-
creased, the AD1 solutions usually become unstable agai®). As already mentioned, the variabje can be considered
via a tertiary Hopf bifurcation leading to quasiperiodic solu-as a Fourier mode corresponding to the wave nuniber
tions with the antiphased properties that can still be de=j—N/2. Now let us return to the expressi¢82) describ-
scribed qualitatively using the orthogonal Fourier bdS)s  ing the envelope of a quasiperiodic solution which arises
If, for example, the antiphased carrier type of the quasiperiafter a secondary Hopf instability of the AD1 soluti¢sb).
odic regime corresponds to the eigenvestgrthe envelope It follows from this expression that the temporal pattern of
type is determined by one of the remaining eigenvectors. Ouihe envelope is determined by the wave number difference of
numerical simulations also indicate the existence of solutionthe Fourier modes; andy,,,1 and by the sign of their
with two antiphased envelopes appearing on different timdérequency splitting w. Hence, there exists a correspondence
scales. Such solutions, obtained by numerical integration dpfetween the envelope pattern of the quasiperiodic solution
Egs.(1) and(2) with N=5, are displayed in Figs. 10 and 11. and the wave number splitting of the basic Fourier mggde
One can see from these figures that while the antiphaseahd the second dominatingnost unstable Fourier mode
carrier of the solution corresponds to the eigenveefoand Yy, 1. We illustrate this statement by Fig. 12 which shows
the temporal patterdql,2,3,4,%, the two antiphased enve- the same quasiperiodic solution as in Figs. 10 and 11, but
lopes correspond to the eigenvecterswith mode pattern presented using the antiphased Fourier basis . . \ys. Itis
{1,2,3,4,% and v, with mode patteri1,5,4,3,2. It follows  seen that the basic Fourier mode determining the carrier type
from our analysis that these envelopes can be related to thid the quasiperiodic solution is the modg. The second
eigenvalues\ 3 , and As g 76, respectively. (third) dominating Fourier modg, (y3) produces the enve-

Finally, for N=6 there areN—5 pairs of the eigenvalues lope associated with the eigenvecigy (v,). According to
(58), each of them describing the stability with respect toFigs. 10 and 11, both the Fourier modgsandy; produce
small perturbations of the Fourier modes, , andzy_,_,  undamped oscillations and, therefore, they are unstable. It
with k<N—5. Since R&<0, these eigenvalues have posi- can be seen from Fig. 12 that the most unstable secondary
tive real parts. Therefore, at least in the vicinity &fthe  Fourier mode is the modg,. It is associated with the wave
number of unstable eigenvalues of the AD1 solution in-number closest to that of the basic Fourier made(K,
creases with the mode numbir This may be one of the —K;=1). This indicates that the first instability of the AD1
main obstacles that prevents the observation of the pure pselution is associated with tHengest wavelengtperturba-
riodic AD1 regimes in a frequency-doubled laser with largetions. It should be noted that we have observed a similar
number of modes. feature in almost all cases where the secondary Hopf bifur-

The stability analysis of the solutid®5) performed using cations of the AD1 solutions have been detected by numeri-
the normal form equation®3) is valid only in the vicinity of  cal integration of Eqs(1) and (2). In Fig. 12 the Fourier
‘H. However, Eqs(14) governing the evolution of the vari- modey, with K,=—K; has the smallest absolute value.
ablesy; are isomorphic to Eqg1) and (2) if w?>0in Eq.  This could be interpreted as a result of strong competition
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FIG. 12. Same solution as in Figs. 10 and 11, but presented in
FIG. 11. Same as Fig. 6 but on a larger time scale. The envelopthe antiphased Fourier basis.
corresponding to the second smallest frequency is associated with
the temporal patterfl,5,4,3,2. The oscillations with the carrier

frequency are associated with the temporal pates8,3,4,5. quasiperiodic oscillations similar to those predicted using the

normal form method can be observed even far above the
between the counterpropagating waves with equal absolufdopf instability threshold. These solutions are characterized

values of group velocities. by antiphased carrier and low-frequency antiphased enve-
lopes, each of them corresponding to an eigenvector of the
VIIl. CONCLUSION biorthogonal basig9)—(11). Such kinds of regimes can be

interpreted as a result of interaction between different an-

We have studied theN—1)-fold degenerate Hopf bifur- tiphased state@~ourier modekoscillating with slightly dif-
cation that is responsible for the onset of the antiphase osciferent frequencies and corresponding to different wave num-
lations in a model of intracavity second harmonic generationbers. According to this interpretation the frequency and the
Using the normal form techniques and symmetry considertemporal pattern of the antiphased envelope are determined
ations, we have derived third order normal form equationdy the wave number difference and the frequency splitting of
(23) and(28) describing the mode interaction near the insta-the corresponding interacting Fourier modes each associated
bility threshold. Since the normal form equations obtainedwith a certain antiphase state.
are universal, they can be applied to study not only the ISHG It follows from our analysis that the coefficients of the
problem but also an equivariant Hopf bifurcation in othernormal form equations governing the evolution of modal in-
systems consisting of globally coupled identical elementstensities nea#{ obey the asymptotic scaling26). This im-
With the help of these equations we have performed an anglies the existence of a certain hierarchy between the real
lytical stability analysis of periodic solutions emergingtat  parts of the eigenvalues determining the stability of the AD1
Specifically, in the parameter range typical of experimentsregime, with some eigenvalues having absolute values of
we have shown that if the mode numbéis greater than 3, their real parts much smaller than the others. Therefore, one
the usual periodic AD1 solutions characterized by equatould expect that the relaxation frequencies associated with
phase shift Zr/N between neighboring modes are usuallythe eigenvalues having the smallest absolute values of their
unstablein the vicinity of H. Moreover, the number of un- real parts might be detected in the fluctuation spectra of a
stable eigenvalues for these solutions increases with the irstable AD1 regime which can appear at a finite distance from
crease of the mode numbir This might prevent the obser- H. For Rec=0 in Egs.(23) and (28), the AD1 solution of
vation of the pure periodic AD1 regimes in a frequency-the normal form equations is neutrally stable with the num-
doubled laser with large number of excited modes. Note thaber of neutrally stable eigenvalues increasing linearly With
for N>3 the instability of the AD1 solution is accompanied A related property, referred to as neutral stability of the
by the appearance ofsirong resonancé the normal form  splay-phase solution, has been reported in Josephson junc-
equationg20,24]. tion arrays[30,31] and in an array of linearly coupled solid-

The comparison of the analytical results with those ofstate laserg16]. In our model, instead of neutrally stable
numerical simulations of the original laser equations showslirections we have weakly unstable directions which corre-
that though in the limi(25) the validity domain of the third spond to eigenvalues having real parts of the opd@(<°).
order normal form equation®3) is very narrow, antiphased Numerical simulations of Egs(l) and (2) show that the



1628 A. G. VLADIMIRQOV, E. A. VIKTOROV, AND PAUL MANDEL PRE 60

weakly unstable directions can be stabilized by increasinghould be greater than the number of the usual AD1 periodic
the distance fromH and, as a result of this, stable AD1 regimes, which is equal to\(— 1)!.
solutions can appear. In the parameter ra(@fg we have
not observed this stabilization for the mode numhberss. ACKNOWLEDGMENTS
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solution with slightly broken symmetry under cyclic permu-  This research has been supported in part by the Fonds
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APPENDIX: COEFFICIENTS OF THE NORMAL FORM

The coefficients in Eq923) evaluated up to a common positive multiplicator are

(1) 0{ONB 0?+[1-6(1- B)] (N*~ 0+ OQ?)}
- 2(N2+Q?) ’

Rea

(1= B) {ON(2-3 B) w?+[26(1— B) — 0] (N2— w?+0?)}

Ima
2w(N?+0Q?)

1

T 2[N2H (2 w— Q)2 [N2+ (2 0+ Q)?]

—6%(1- B)?]+Nw?[11+ 56— 170 B+46?B(1— B)]+8 0* (1— 6B) + 6 (N?+Q?) [2— 38+ 2Bw’—260(1— B)?]}
+[1-6(1- B)[0%— 6(1— B)] (N*+4w*+ 2 N2Q?—5 0? Q2+ O%),

Reb (N w?{86%(1—B>— 6N (1-B)[11-0(3+B)]-4 0w’ [1+50—66

1
T 6w [N2H (-2 0)2] [N+ (Q+2 )]
+30Nw?{(7TB—4) w?+0(1-B)[2—B(3+w)]} (N> + Q) +[w?+360 (1-B) w?—2 0*
+60%(1- B)? (0?>—2)] (N*+4 0*—5 0? Q%+ Q%) — N?0w? (2 0?— 1) (110?+2 Q?)
+3 ON2w?[(19-238) 0?+8 B w*+2(1—B) Q%]— #°N?(1- B)?[13w*+4 Q%+ 2 0? (11-Q?)]),

Imb (—12N w*{6(1-B)(3—0)— 03+ 0—4 6B+ 6°B(1—B)]}

Rec=— %(1—,3) 9[1—6(1— B)]<0,

—0’(1+ 02+ 6(1—B)[3 w’— 0(1—B) (10+ »?)]
6w '

Imc=

Here w and() are defined by Eqg8).
In the limit (25), we have obtained the following asymptotic expressions:

NOB(1-p)

Rea= S T (N-1)4]

+0(e),

___Nop(1-p) (a(l—ﬁ)e
Ima

1/2
_ 1/
= 21T (N-1) B] ) +0(™,

SIO

_Na(1-p) 0{8(1-B)*~B[3—(N+3) B][1+6(1-p)]} Lo

1),
2elo[3—(N+3)3]? )

Reb

_ 3/2
Imb= NA (a(l B)H) +0(s~ 12,

3[3—(N+3) B8]\ el
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Imec=— = +0(eg~1?),

1(a(1—,8)0)3/2
6

8'0

wherel, is defined in Eq(4).
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