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Classical and quantum chaos in a circular billiard with a straight cut
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We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. Classically,
this system can be integrable, nonintegrable witft chaosor nonintegrable witthard chaosas we vary the
size of the cut. We plot Poincasairfaces of section to study chaos. Quantum mechanically, we look at Husimi
plots, and also use the quantum web, the technique primarily used in spin systems so far, to try to see
differences in quantum manifestations of soft and hard cH&1€063-651X99)06508-3

PACS numbegps): 05.45.Mt, 03.65.Ge, 02.70.Pt

[. INTRODUCTION ally change the system from integrable to nonintegrable.
(This makes our billiard a good candidate for analysis in
In recent years, the dynamics of noninteracting particle¢erms of the quantum wepThis transition occurs when a
in two-dimensional2D) billiards has been studied in many parameter breaks a continuous symmetry. Then, classically,
different geometrie§1—6]. Billiards here are assumed to One constant of motion gets broken to make the system non-
have hard boundaries, and the geometry of a given boundaitegrable. In quantum language, an operatpthe genera-
can solely decide the dynamics of particles inside. Thus, byor of that symmetry, no longer commutes with the Hamil-

changing the shape of a billiard, the classical system can b@nian operatofl. Even when we cannot have simultaneous

integrable or nonintegrable, and chaos arises in nonmteéigenstatesd@l andA, the quantum web uses eigenvalues of

grable systems. There are two distinct types of chaotic bex ) A .
havior, “hard chaos” and “soft chaos.” Systems whose dy- H and expectation values éf with respect to eigenstates of

namics consists of a mixture of stable and unstable periodit! to form points in a 2D spacéWhen the system is inte-
orbits are said to exhibit soft chaos. If all periodic orbits in agrable, eigenvalues ¢ andA for simultaneous eigenstates
system are unstable throughout, the behavior is called hafdrm points in that spaceBecause it deals with not only
chaos[7]. While soft chaos is more generic, hard chaos isenergy eigenvalues but also values for another operator, the
global and has ergodicity. The Poincagerface of section quantum web has more information than energy statistics. In
(PSS is a good way to observe these behaviors. In PSSquantum webs, we expect that hard and soft chaos can be
cases with soft chaos will show mixtures of island chains andlistinguished qualitatively.

chaotic regions, and cases with hard chaos will show global In Sec. Il, we study the classical billiard for integrable and
chaos. On the other hand, quantum versions of closed bikonintegrable cases, and plot PSS’s as we chanigeclas-
liards have discrete energy spectra, and chaos manifests itsgital mechanics. In Sec. lll, we calculate the quantum web
in quantum billiards in indirect ways. The Husimi function using about 100 lowest-energy eigenstates, and observe pat-
of a quantum eigenstate can show a similar pattern with theerns for classically different cases. The Husimi function
corresponding PSS when the area of the pattern is biggg7,18 that extracts the quantum Poincasection from a
than the Planck constamt [8,9]. The statistics of energy- quantum state is also calculated for some selected energy
level spacings for classically integrable systems is differentigenstates to examine the quantum web closely.

from that for strongly chaotic systemi—5,10-13, and this

differen_ce in statistics is commonly used as a signature of Il. THE CLASSICAL BILLIARD

underlying chaos.

In this paper, we study the classical and quantum dynam- In this section, we focus on the classical dynamics of the
ics of a particle in a closed circular billiard with a straight cut billiard. We defineM,, as a circular disk with a straight cut
(see Fig. 1L We introduce a dimensionless parameter with width W=wR. For exampleM,, is a full circle andM ;
=W/R to characterize the system whéh&s the width of the
billiard andR is the radius. As we change the size of the cut T

by varyingw, the classical system shows integrability, non- R /]
integrability with soft chaos, and nonintegrability with hard { N / [
chaos. We will study the manifestations of these classical ! | o

behaviors in the quantum systems using a diagnostic tool that
has proven successful for spin systems, tuantum web
[13-16. h e

The quantum web is a quantum analog of a 2D classical when R<W<2R when 0<W<R
action space in which an orbit for an integrable system is
represented by a pointJ{,J,), whereJ; andJ, are the FIG. 1. Geometry of the billiard. WhelV=2R, it is a full

actions associated with two degrees of freedom. This analyeircle, and whetW=R, it is a half circle. Heref,o, is given by the
sis is useful when a system has a parameter that can gradeguation co%,,.=(R—W)/R.
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is a half-circle, andv is in the range of 82w=2. The clas-
sical Hamiltonian of a particle insid#!,,, using polar coor-
dinates ¢, 6), is

p2 p2
0
Hw(r,e,pr,pg)=$+W+V$(r.9). (1)

wherev\fj(r,a) represents the hard-wall potential of the bil-

liard with radiusR and widthW=wR. To begin, we will
study the full circle M,) and the half-circle I1,). Both of

(a)

OO0

(1,2) (1,3) 1,4) (1,5) 2,5

(b)
these cases are integrable. Then nonintegrable cases will be E Dl: @ DD

examined.

A. Full-circle billiard, M,

The dynamics of a particle insidél, is integrable be-
cause there are two constants of motion, the enErgyd the
angular momentunp,. GivenE andpy, the orbit lies on a

(1,2) 1,4y 1,3y (1,6)

FIG. 2. Closed orbits in integrable caséa) In a full circle,
periodic orbits can be classified am,() where orbits havem
bounces and revolutions in a cycle(b) In a half circle, we can use
the notation of a full circle to classify periodic orbits as,6) .

2D torus(2-torug in phase space. There exists a canonical B. Half-circle billiard, M,

transformation to action-angle variables), (J,,®; ,¢4),
where actions are given by

2mE| -
3= / re_ Po 1P s
T 2mE V2mE

)

|Pgl
Rvy2mE

Jo=py,

with the new HamiltoniarH’ =E(J,,J,). We can also find
the angle variablenote that¢, is not equal tof). We can

find explicit expressions of angular frequenciﬁ,s: w, and
¢4,=w, as functions of andp, using Eq.(2),

. _0E [d3\7t  2mE 2
R R = \2mER—p?’ ®

. 0E (aJr)(aJr>1
= P753,” "\ a3, | 7E

_ sgr(py) o Ipdl

- T wr(E:pﬁ)COS (R\/ﬁ . (4)

It is useful to look at periodic orbitéorbits for which the
ratios of two angular frequencies are rationale classify
periodic orbits using the notatiom(,n), wherem andn are
relatively prime positive integers defined by

o It 1 DL )
o Ry2mE/ n’

where 2n<n [see Fig. 2a)]. If we have a periodic orbit
classified as rfy,n), an infinite number of rotated periodic
orbits also belong torf,n). Therefore, periodic orbits in the
full circle arenonisolated 1]. For any periodic orbit classi-
fied as (,n), there aren bounces andan revolutions in one

For the half-circle, we still have two constants of motion,
E and p2. The range ofé is reduced to a half- m/2< 6
< /2, but we can still construct 2-tori on which orbits lie.
For any orbit inM there is a corresponding orbit M. (If
there is an orbit ifM,, folding M, in half gives us a corre-
sponding orbit inM;.) Hence we can use the results found
for M, to describe some periodic orbits. A periodic orbit is
classified asr,n)’ when the corresponding orbit i, is
(m,n). Unlike M, periodic orbits inM, areisolated since
there is no rotational symmetry. In the groum,()’, there
are an infinite number of different periodic orbits, but only a
few play an important role whew is slightly less than 1. In
Fig. 2(b), those periodic orbits are shown. The stabilities of
these periodic orbits are all neutraleither stable nor un-
stablg like those inM .

It is useful to see periodic orbits in the spacefaind
[pyl. A point in this space corresponds to a group of orbits
with constants of motioe andpg. When Eq.(5) is satisfied,
the group consists of periodic orbits. Thus the condition to
have periodic orbits is given by E(), and is plotted in Fig.

3. Curves from these conditions are densely populated in the
classically allowed region. The classically forbidden region
in this space is given bf—p?/(2mR?)<0. In integrable
cases, orbits are at a poifgero-dimensionalin (E,|p4|)
space sincee and pf, are conserved, but as the rotational
symmetry breaks by changing, pf, is no longer conserved
and orbits become one-dimensional. We will see later that
Eq. (5) gives us the condition for primary resonances when

is slightly less than 1.

C. M,, when O<w<1 or 1<w<2

Except for the two cases studied abowe<(1,2), the sys-
tem is nonintegrable, becauBes an only constant of motion
in the system of two degrees of freedom. The stabilities of
periodic orbits inM,, give us one way to understand the
dynamical behavior of the system. The simplest periodic or-
bit for any w is an orbit with two bounces, going back and

cycle. On the other hand, a nonperiodic orbit will not comeforth [for example, (1,2) in Fig. 2(b)]. To calculate the sta-
back to the starting point, and eventually fill the whole bility of this orbit, we need to imagine a new billiatdZ,

2-torus in phase space.

which is a composite of circular parts of twd,,’s facing
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in (6,py) space every time it touches this surface. Therefore,
PSS becomes a 2D area-preserving map. In fully chaotic
(ergodig cases, points generated by an orbit will fill out the

8} whole allowed space in the PSS. In cases of soft chaos, we
observe some structure. Some orbits generate island chains
and some orbits will fill some remaining regions in a chaotic
manner. Since the KAM theorefi7,13] does not apply in

this system due to singularities of the boundary, the exis-
tence of KAM tori separating island chains is not guaranteed
even for smalls§ whenw=1- 4.

In Fig. 4, we show PSS'’s for variows's. In Fig. 4(a), one
orbit is filling the whole region whew=1.01. This is a fully
dlassically chaotic case. Figure(d) is an integrable case whem=1.

forbidden Whenw=0.99[Fig. 4(c)], we see island chains centered at
region the positions of periodic orbits along with stochastic diffu-
sion in the remaining region. The resonance condition, Eq.
(5), gives us locations of island chains. For example, ('1,2)
40 gives us the locatiorp,/(Ry2mE)=0, (1,4) gives us
po/(RV2ME)=+1/\2, (1,3Y gives us p,/(RyV2mE)=
+0.5, and (1,6) gives usp,/(Ry2mE)=*3/2, and so

FIG. 3. For a half circle, the condition irE(|p,|) space to have 0n. Asw decreasefFigs. 4d) and 4e)], the area of chaotic
periodic orbits (,n)’ is given by Eq.(5), and some are plotted. regions increases although some island chains remain. When
These curves are densely populated in the classically allowed rewv=0.5[Fig. 4(f)], periodic orbits that have neutral stabilities
gion. reside in two axes,{=0) axis and p,=0) axis. One cha-

otic orbit starting near the center fills out almost all the sur-
each other(A billiard of M2 when O<w<1 was named the face. Asw decreases further, the area occupied by regular
“lemon” billiard and studied by Heller and Tomsov|d9].) orbits grows as we show in Figs(g} and 4h).
It is also easy to see théd? is justM,. Orbits inM,, have In Fig. 5, we take a different look at PSS. We want to
the correspondence with orbits M}, as orbits inM, corre-  know how the angular momentum at the circular boundary,
spond to orbits ifM,=M?2. The stability of this two-bounce Which is represented by, in Fig. 4, evolves with time at
orbit in M2 can be calculated from @22 matrixm, acting ~ different parts of PSS. We take the upper half of PSS (
on (50,8p,/Ry2mE) on the boundary, which decides the < ¢ #max<1, 0<p,/V2ZmER<1), and divide it into 1250
deviation after two bounced], blocks (50 horizontally, 25 vertlcalfz_z These blocks are
numberedl ,=1, ...,1250 as shown in Fig.(8). For each
2(2w—1)?-1 4w(1-2w) block, we have 100 uniformly distributed initial conditions
m=| 42w—1)(1-w) 2(2w—1)2—1 (6) (points in the block and calculate the average valuepﬁ
for the first 50 collisions with the circular boundary for all

. . ] 100 initial conditions,
The eigenvalues ah, A .., are given in terms of the trace of
m, 100 50

2 __- — 2
<p0> at Ip_loo 50|:21 jgl pt‘)(lj)’

1000

(1.2

500 |

E (i units of /mR’)

2‘0 30
1Pl (in unitsof )

AtZ%{Trmi[(Trm)2—4]“Z}, (7)
where pyj) represents the angular momentum at fhie
where we used the relation ¢ief=1, sincem is area- collision on the circular boundary from théh initial condi-
preserving. The orbit is neutral whéfirm|=2, stable when tion. Then, we have a value of finite-time averagegfor
|Trm|<2, and unstable whefiTrm|>2. The two-bounce each block represented by, and these values are plotted as
orbit is neutral wherw=0.5, w=1, or w=2, stable when a function ofl, for four different values ofv. For cases of
0<w<0.5 or 0.5xw<1, and unstable when<dw<2. We  soft chaosw=0.5[Fig. 5b)] andw=0.9[Fig. 5c)], when
have seen that all periodic orbits are neutral when the systetwocks are in the regular region of PSS, points behave regu-
is integrable w=1,2) butw=0.5 is a special case, as we larly, and when blocks are in the chaotic region, points be-
will see later. From this result, we can predict that there ardave irregularly. For an integrable cases 1.0 [Fig. 5(d)],
no stable periodic orbits in the billiarth,_,,.,, and that the angular momentum is conserved, and the points are regu-
periodic orbits inMy.,,., are either stable or unstable, ex- larly placed. For a case of hard chawss 1.5[Fig. 5€)], the
cept whenw=0.5. (Ergodicity of the billiardM,_,,., has  position of the block does not matter since the system is
been proven by Bunimovicf20].) The system shows hard ergodic.
chaos when ¥w<2 and soft chaos when<Ow<1. The above results again show different behaviors between
The Poincaresurface of sectioriPSS is one way to ob- soft and hard chaos. For cases of soft chaos, time averages of
serve the chaos. Here PSS is a two-dimensional surfaqe% can have some distinct regular and irregular ranges. On
(0,p,) at r=R along the circular boundary{(6,<6  the other hand, for cases of hard chaos, the square roots of
< 0max, — RV2ME<p,<R2mE). Each orbit gives a point time averages op? approachy2mERy3=0.577/2mER
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regardless of the initial condition as the number of collisionswherek is a positive integel,is an integer, and, is thekth
used to calculate the average increag@$e factor 1{3  zero of the Bessel functiod,(x). And energy levels are
comes from the root mean square of a variable uniformlygiven by Ef,ﬁ’zhzaﬁ(/(Zm R%). There exist twofold degen-

distributed between-1 and 1) eracies whe#0 since the system also has the parity sym-
metry and[p,,P]#0 (P is the parity operator Then we
IIl. THE QUANTUM BILLIARD can find another set of energy eigenstates, simultaneous

. . . . . eigenstates ofl,, p2, andP,
In this section, we study the quantizétl, billiard using g 2: Py

the quantum-web analysis with about 100 lowest-energy
eigenstates, and we also look at some individual energy (r|1,k,+ )0 ocJ,( R )cos{la) (1=0),

eigenstates using Husimi plots.
g g p (10

f
A. Numerical method (rlk, _>( )“Jl

)sm(la) (1=1),

The Schrdinger equation for this 2M,, billiard is the

Helmholtz equation where— w< <. The latter will be used in the calculation

of the quantum web.
(VZ2+k?)W¥(r)=0, (8) For a half circleM (, energy levels are the same as those
of the full circle without levels withl =0, and the energy

with the Dirichlet boundary condition}’ =0, on the bound- &igenfunctions are
ary, B,=dM,,, of M,,, where k*=2mE/#%? and V?

=02/ 9r?+ (1) (9l ar) + (1Ir?) (6% 96%) using polar coordi- ([l k, +)Mec g, ( )cos(l 0 (1=1,35...),
nates.

For the classically integrable cases, this equation can be (13)
solved analytically. The HamiltoniaRl,, (w=1 or 2 and (r|l,k —>(“)ocJ,( )sm(l ) (1=244...),

the angular momenturi)(, (f)?, for the half circle commute.
They are generators of continuous symmetry tranSformaNhere w]2< < /2. Here there is no degeneracy

tions, the time translation, and the rotation. For a full circle . classically nonintegrable casq:sf; no longer com-
M,, we can find energy eigenstates which are simultaneous
mutes withH,, (but still [ P,H,,]=0 for anyw). Here Eq(8)

eigenstates OHZ andpﬁ, must be solved numerically. We use the boundary element
method(BEM) [2,21-23 to solve this nonseparable 2D par-
all, k>(f)ocJ( HJ)eM 9 tial differential equation. It is an efficient way to solve

: ' boundary-value problems, because in the BEM a 2D equa-

(c) w=0.99

FIG. 4. Poincaresurface of section of1,, billiard varyingw, wherew=W/R. We observe ergodic motions wher<v<2 and generic
chaotic behaviors when<Ow<1. (a) Ergodic whenw=1.01 with one orbit(b) Integrable wherw=1. (c) w=0.99.(d) w=0.9. () w
=0.7.(f) w=0.5. Closed orbits residing i 0) axis and p,=0) axis have neutral stabilities. One orbit is filling almost all of the space
except for two axesig) w=0.3.(h) w=0.1.
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(a)

10 to B,, atr’. With r lying on B,,, by taking the normal de-
p=1| 2 3 e o o Nl |l N rivative n- V on both sides of Eq(13), we obtain

Sﬁ N+1 | N+2 | N+3 e & o 2N-1 2N U(S):_z % dS, U(S’)(n-V)G(r,r,). (14)

Lg [} Y . [} [ Bw

N

i’@ d . * ¢ * One way to solve this equation is discretizidg by dividing

2 . N o o . it into N segments. Then E@14) becomes a matrix equation

N A-x=x, whereA=A(k) is an (NXN) matrix andx is an

0.0 2 N-component vector representingu(s;)|1<i<N}. For

givenw, energy levels of the systeri,=#%2k2/2m (n=1),

can be found by solving the equation, |@gtk) —1|=0. For
each energy levet,,, we can obtaiqu,(s;)} by finding an
eigenvector ofA(k,) —1 with a near-zero eigenvalue. Since
the numerically obtained energy levels in this way always
have some uncertainty, “degeneracyWhich is actually
near-degeneragygan occur when the difference between two
adjacent exact energy levels is less than the uncertainty. In

K ! : these cases, we can find two sets{ofs;)} with two near-

zero eigenvalues oA. Therefore, looking at eigenvalues of
A(k,) can be an easy way to check numerically for near-
degeneracies of an energy levil,.

For givenw, we found energy level§E,|n=1} and nor-
mal derivatives, on the boundary, of corresponding energy
eigenfunctions{W¥ ,(r)=(r|n)}, where |n)’s are energy
eigenstates. Then from E@L3) we can calculate the energy
eigenfunction inside,

-0
[olw]

(Average of p2)"7(2mE)"R

e
o

i
=7 § dsHOK -1 huys). (19
0.0 4 Js,

0 500 1000 0 500 1000

Ip Using Eq.(15), we can also calculatg|p?|n), which will be

FIG. 5. Finding finite-time averages pf.. (@) The upper half of used in calculations of quantum webs in the next subsection,
the Poincaresurface of section, which is divided int¢?/2 blocks,
and each block is numbered by. For each block, the root mean
square ofp, at the circular boundary for a finite time can be calcu-
lated. (b) w=0.5.(c) w=0.9.(d) w=1.0.(e) w=1.5.

2
«Vﬂm=—ﬁ2& (1)
Py G2 0N

i 92
=— ¢ ds'| =5 HP(Kalr—r']) |un(s"),
tion with boundary condition becomes an integral equation 4 j;BW Pl (ke D ]un(s")
in one variable along the boundary. The method we use is (16)
briefly outlined below.
We use a Green's functionG(r,r')=—(i/4)HP(KkIr  where
—r’]), which satisfies
2 2
2, 12 "= ' i HOPK|r—r'|)=k i r—r'[ [H (K|r=r'])
(Ve+Kk)G(r,r")y=8(r—r"), (12 9620 962 0

whereH{"(x) is the Hankel function of the first kind. We o 9 117 (1) ,
multiply Eq. (8) by G(r,r’), and multiply Eq.(12) by +k Er ik Ho " (Klr=r",
W (r'). After subtracting one from the other, integrating over
the area ofM,, with respect tar’, and using Green’s theo- (17)
rem, we finally get and we use

W(r), 1 inside By, [r—r’|=(r cosd—x")2+(r sinf—y’')?, (18

- é ds'G(r,r’)u(s’)=4 3¥(r), r on B,,
By ) and
0, r outside B,,,
(13

HEY ()=~ H{P(0),
wheres’ is the arc length along,,=JdM,,, u(s’) is defined n 0 W (19
byn’-V'¥(r(s')), andn’ is the outward normal unit vector Ho ' (X)=—Hg (x) +Hi(X)/X.
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0 3™ — ~ 108 states 0 S0~ 7 107 states 0 et -7 110 states 0 tet_ -7 115 states
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V(E|I%Z|E) (in unitsof % )

FIG. 6. Quantum web oM,, billiard varyingw. Even and odd parity eigenstates are shown togethemw=0.3. (b) w=0.5. (c) w
=0.7.(d) w=0.9. The conditions for primary resonances in classical mechanics are also $Bowr:1.0. Classically integrable casg)
w=1.01.(g) w=1.1.(h) w=1.3.(i) w=1.5.(j)) w=1.7. (k) w=1.9.(I) w=2.0. Classically integrable case. There are twofold degeneracies
when p,#0. [The arrows in(b), (d), and (i) indicate states that will be studied using Husimi plots in Fig. 7. Outside dashed lines are
classically forbidden regionk.

In calculations of¥, and (7%/96%)¥,,, care must be taken In Figs. §e) and &l), we observe the structure of a deformed
whenr is close to the boundary becausé"(|r—r’|) di- lattice. This can be understood as a mapping from an almost
verges agr—r’| goes to zero. perfect 2D square lattice inJ{,J,) space to the deformed
lattice in (E,|p,|) space. This almost perfect lattice structure
can be explained from Einstein-Brillouin-Kelle(EBK)
semiclassical quantization,

The quantum-web analysis can be used to observe the

B. The quantum web

manifestation of classical chaos in quantum mechanics. Until Jr=(n,—7)% (n,:positive integer,
now the quantum web has been used primarily in spin sys- (20
tems[15,16. We will construct quantum webs for three dif- J,=p,=1% (l:integed,

ferent cases: classically integrable cases=(,2), noninte-
grable cases showing soft chaos {@<1), and
nonintegrable cases with hard chaos<(@<2).

For classically integrable cases € 1,2), we have seen in
Sec. |l that there are two constants of moti&rand|p,|, and
that we can find two action variable3,(,J,). [There exists a

whereJ, is a very good approximation anj is exact. This

is the quantum analog of Fig. 3 in which each point repre-
sents a 2-torus. Thus, we can find a 2-torus in classical phase
space corresponding to a quantum eigenstate, and then each

nonlinear map fromd, ,J,) space to E,|p,|) space} In Fig. eigenstate here corresponds to a set of orbits that are on this

3, a classical orbit appears as a point B |p,|) space. In 2-torus. ) ) ap &

quantum mechanics, there exist simultaneous eigenstates of FOr classically nonintegrable casdgj,H,,]#0 whf:n
two operatorsH,(w=1 or 2 and p? [see Eqs(10) and W#1 or 2. We can still calculate an expectation valuepf
(11)]. We can construct a 2D space, in which a pair of ei-for an energy eigenstat@®), (n|p3/n), numerically using
genvalues E,, ,|I%]) of each eigenstate is plotted as a point.Egs.(15) and(16),
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~o ) ~z We can relate the finite-time averages of class'p,z;ll
<n|po|”>:fM d“r(n|r)(r|pgln) shown in Fig. 5 to quantum webs in Fig. 6. Energy was
v scaled away in classical mechanics unlike in the quantum
92V (1) web, where energy plays an important role. But classical
> (21 results can still help us to understand quantum webs better.
d For cases of hard chaos, we can explain why the points in
quantum webgFigs. 6f)-6(I)] are squeezed into a small
range, because cIassica{Ip%} approaches one value regard-
less of initial conditions as we saw in Figeb. For cases of

. : : soft chaos, quantum webpBigs. 6a)—6(d)] can have distinct
degeneracy we find expectation values from eigenvalues Ofregular and irregular regions as in FigébBand 5¢). These

the matrix representation qfj in the degeneratAe subspace. qualitative features are expected to remain even in higher

In this way, we obtain a pair of value&{,/(n|p?|n)) for energies.

each energy eigenstate. These points can also be plotted in a

2D space as a quantum web. We expect lattice structures that

exist for integrable cases will be broken because EBK quan-

tization does not apply to nonintegrable cases. The Husimi plot provides a method of extracting a quan-
In Figs. §a)—6(d), quantum webs are shown for cases oftum Poincaresurface of sectioiQP9S from a quant_um state

soft chaos. Whemv=0.99[Fig. 6(d)], we observe breaking [17]- The QPS is a quantum analog of PSS, which we have

of the web near conditions of primary resonances in classicdPtained in Sec. Il. The Husimi function of a 1D system

mechanics. We see patterns of crossing near (laf)d corresponding to a stafel) is defined as

(1,3)’ resonances. Although “regular” parts still exist, some _ 2

layers seem to start to shift near resonance conditions. We F(X0,Po) = (X0, Po| ¥)I*, (22

can roughly estimate the energy value at which the effec\t/vhere|x ) is a coherent state with a representation in

starts to be seen for each resonance condition by measurin% i Ot'.po P

the width of island chainsAp,, in Fig. 4d). For example, configuration space,

(1,2)' resonance has the biggest width, the next (1lréso- 1

nance, and so on. Becaupg is scaled by Ry2mE) ! in <x|x0,p0):(—2

Fig. 4, Ap, is proportional toyE. WhenAp,(=AJ,) =%, o

the resonance can be clearly seen in the quantum system, and

we can roughly obtain an estimate of the minimum energy at

= —hZJM d?r wk(r)

These values can be interpreted as time averagé§ [t4].
When there is an accidental degeneracgr near-

C. Quantum Poincare section

i
ex T'ﬁ‘ %po(x—xo) .
(23

1/4 F{_ (X_XO)Z

. L : n 2D billiards, Eq.(22) can be modified to create a Husimi
which each resonance is in effect. The smaller the width o unction using the coordinate along the boundgig]. For
an island chain and the lower the energy, the less likely to g 9 ’

find the web broken near the curve of the particular reso_example, forM,, billiard along the circular part of the

nance. Whenv=0.7[Fig. 6(c)], we see similar patterns as in boundary, the Husimi function is defined as
Fig. 6(d). Whenw=0.5[Fig. 6(b)], the classical system has P
a large chaotic region in the PSS, and has periodic orbits Fn(eo,peo):|f " A0 (00, Paol 0"V un(0)|2  (24)
with neutral stability, which reside on two axeé=0 and ~ Omax
p,=0. The quantum web, however, is quite regular although
the structure looks different from those of integrable cases. Wwhere — 6< 0p<0nax and —RyY2ME<pg <Ry2mE
looks more like a structure of layers. Whew=0.3 [Fig. Here (6’| 6y,pg) has the same form as in E@®3) with o
6(a)], the web is similar to that of Fig.(B). given by the valud 6,,,/i/(RV2mE)]¥2, andu,(6) is the

In Figs. Gf)—6(k), we show quantum webs for cases of normal derivative of the energy eigenfunction on the circular
hard chaos. Whew=1.01[Fig. 6(f)], the lattice structure is part of the boundary,& or) ¥ ,(r)|,-r-
still intact except a little kink, although this is the fully cha-  In Fig. 7, we show Husimi plots for selected eigenstates
otic case classicallysee Fig. 4a)]. For these low energies, for three casesw=0.5,0.9,1.5). And, in Fig. 8, we show
the quantum system does not see the broken symmetry wefrobability densities of wave functions¥ ,(r)|?, for some
because the wavelengths of the eigenstates are longer thafthe eigenstates chosen from Fig[Most eigenstates cho-
the deviations of the width from the half-circle. We observesen in Fig. 7 can be found in Figs(l8, 6(d), and &i) with
that the lattice structure quickly collapses as we increase arrows pointed to ther.
Whenw=1.5[Fig. &(i)], the structure is very irregular ex- Figures Ta)-7(d) show Husimi plots of energy eigen-
cept for four regularly placed points near the top-right cor-states whew=0.5. The pattern of PSS shown in Figfy
ner. (Some of the eigenstates noted by arrows here will b&an be seen in these plots. We can get some information on
examined in the next subsection using Husimi pJofhe chosen eigenstates from the quantum Wely. 6(b)]. The
case ofw=1.7[Fig. 6(j)] is the most irregular quantum web eigenstate for Fig.(3) is on the outer part, and the eigenstate
among cases shown. When=1.9 [Fig. 6Kk)], we observe for Fig. 7(b) is on the inner part of the quantum web. Figure
splitting of degeneracies and also quick collapse of lattice’(a) shows the chaotic region of PSS, and Fith) &eems to
structure from an integrable case=2 [Fig. 6(1)]. As we correspond with a two-bounce orbit with neutral stability,
have seen so far, the lattice structure tends to collapsehich we can observe in the wave functigfig. 8a]. The
quickly in cases of hard chaos, but there also exist smakigenstate for Fig. ®) is in the middle of the quantum web,
remnants of regularity in some cases. and its Husimi plot and wave functidfrig. 7(b)] lie between
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FIG. 7. Husimi plots for given eigenstatps=E/(A#%/mR)]. (8 w=0.5 ande=143.28.(b) w=0.5 ande=740.79.(c) w=0.5 ande
=1156.07.(d) w=0.5 ande=9992.23.(e) w=0.9 ande=62.513.(f) w=0.9 ande=365.64.(g) w=0.9 ande=371.99.(h) w=0.9 and
€=617.98.(1)) w=1.5 ande=258.03.(j) w= 1.5 ande=284.94.(k) w= 1.5 ande=268.80.(I) w= 1.5 ande=842.69.[A square at the top

right corner of each plot represents the sizén@Planck constant All eigenstates exceptl) and(l) are pointed in quantum webs in Fig. 6
by arrows]

two extreme cases above. The eigenstate for Fid). Ifas a  periodic orbits[see Fig. 2b)], respectively. The eigenstate
relatively high energy, but the structure is similar to Fig.for Fig. 7(h), which is on the (1,3) resonance, also shows
6(c). the pattern of the island chain of the (1,3esonance. As
Figures Te)—7(h) show Husimi plots of energy eigen- expected earlier, the (1,2yesonance is observed in the Hu-
states whemv= 0.9, and each eigenstate is picking up a classimi plot at lower-energy eigenstates than the (’1#so-
sical primary resonance shown as an island chain in PSRance.
[Fig. 4d)]. The eigenstate for Fig.(&), located near the Figures 7i)—7(l) show Husimi plots of energy eigenstates
(1,2)" resonance in the quantum wgbig. 6(d)], shows the when w=1.5. The eigenstate for Fig.(iJ, located in the
pattern of the island chain of the (1;2)esonance, although inner part of the quantum wellfrig. 6(i)], seems to be pick-
it is only the ninth highest energy eigenstate. The eigenstatéag up the periodic orbit with neutral stability, which can be
of Figs. 1f) and 7g), located at the crossing of two layers clearly seen in the wave functidirig. 8(e)]. The eigenstate
near the (1,4) resonance, show the pattern of the islandof Fig. 7(k), which is one of four regularly placed points in
chain of the (1,4) resonance. Wave function&igs. 8§c)  the quantum web, shows whispering gallerystate [Fig.
and 8d)] of these states show the trace of unstable and stabRf)]. All four of these regularly placed eigenstates show

(@ (b) (© @

FIG. 8. Probability density of some energy eigenstatesE/(A2/mR?)]. (a) w=0.5 ande=740.79.[See Fig. T).] (b) w=0.5 and
€=1156.07.[See Fig. Tc).] (c) w=0.9 ande=365.64.[See Fig. 7).] (d) w=0.9 ande=371.99.[See Fig. 7g9).] (e) w=1.5 ande
=258.03.[See Fig. 1).] (f) w=1.5 ande=268.80.[See Fig. 1k).]




PRE 60 CLASSICAL AND QUANTUM CHAOS IN A CIRCULAR ... 1615

similar Husimi plots. A relatively high energy eigenstate for structure clearly remained in the low-energy regime we ob-
Fig. 7(1) shows a more uniformly distributed Husimi plot like served. In the hard-chaos regime<{tv<2), the regular

the corresponding PSS in classical mechanics. guantum web collapses more quicklywschanges from in-
tegrable casesw(=1,2). There was no distinct layer struc-
V. CONCLUSIONS ture when the system was far from integrable except for a

) ) i _few small regularities as seen in Fig(i)6 [Corresponding
. We studied classical and quantum chaos of a circular bilsates in this particular regularity seem to be related to
liard with a straight cut. First, we studied the classical sys«gcars.” As we observe Fig. (k) and Fig. &f), those states
tem. Since we are only interested in trajectofiesbits), the  correspond to an unstable periodic orbit that looks similar to
energy of the particle is unimportant. Periodic orbits of |nte-(1,6)/ in Fig. 2(b).] Even though soft and hard chaos do not
grable cases were found, and PSS’s were plotted for severg{anifest themselves as clearly as in classical mechanics, we
w’s. Nonintegrable cases showed both hard chaoswl \yere aple to observe qualitative differences for both cases.
<2) and soft chaos (@w<1). In the quantum system, the  The authors believe that the quantum web, which has
energy plays an important role. At higher energies, we argeen studied primarily in spin systems so far, is a useful
more likely to see the quantum manifestations of classicajgchnique to understand the quantum chaos in 2D billiards,
chaos, because the higher the energy, the smaller the size ghce we can observe not only the energy eigenvalues but
h (Planck constantin the scaled quantum Poincasection.  gisg the eigenfunctions through expectation values of another
We calculated quantum webs numerically. Although aboupperator. It also shows distinct patterns for three different
100 states were used hdite cost of calculating the quan- casegintegrable, soft chaos, and hard chaos
tum web increases rapidly with enejgshey were enough to
show different behaviors of hard and soft chaos. In the re-
gime of soft chaos (&tw<1), we observed that the lattice-
like structure obtained for an integrable case<1) starts to The authors wish to thank the Welch Foundation under
break, asv decreases, near the primary-resonance condition&rant No. F-1051, the NSF under Grant No. INT-9602971,
obtained from classical mechanics. However, there remaineand the U.S. DOE under Contract No. DE-FG03-94ER14405
interesting patterns such as layers. The higher the energy afar partial support of this work. We thank NPACI and the
the larger the width of an island chain in PSS, the greater th&niversity of Texas High Performance Computing Center
effect of resonances. For the special cage=0.5), layer for use of its facilities.
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