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Classical and quantum chaos in a circular billiard with a straight cut

Suhan Ree and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 7 July 1998; revised manuscript received 12 March 1999!

We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. Classically,
this system can be integrable, nonintegrable withsoft chaos, or nonintegrable withhard chaosas we vary the
size of the cut. We plot Poincare´ surfaces of section to study chaos. Quantum mechanically, we look at Husimi
plots, and also use the quantum web, the technique primarily used in spin systems so far, to try to see
differences in quantum manifestations of soft and hard chaos.@S1063-651X~99!06508-3#

PACS number~s!: 05.45.Mt, 03.65.Ge, 02.70.Pt
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I. INTRODUCTION

In recent years, the dynamics of noninteracting partic
in two-dimensional~2D! billiards has been studied in man
different geometries@1–6#. Billiards here are assumed t
have hard boundaries, and the geometry of a given boun
can solely decide the dynamics of particles inside. Thus
changing the shape of a billiard, the classical system can
integrable or nonintegrable, and chaos arises in noni
grable systems. There are two distinct types of chaotic
havior, ‘‘hard chaos’’ and ‘‘soft chaos.’’ Systems whose d
namics consists of a mixture of stable and unstable perio
orbits are said to exhibit soft chaos. If all periodic orbits in
system are unstable throughout, the behavior is called h
chaos@7#. While soft chaos is more generic, hard chaos
global and has ergodicity. The Poincare´ surface of section
~PSS! is a good way to observe these behaviors. In P
cases with soft chaos will show mixtures of island chains a
chaotic regions, and cases with hard chaos will show glo
chaos. On the other hand, quantum versions of closed
liards have discrete energy spectra, and chaos manifests
in quantum billiards in indirect ways. The Husimi functio
of a quantum eigenstate can show a similar pattern with
corresponding PSS when the area of the pattern is big
than the Planck constanth @8,9#. The statistics of energy
level spacings for classically integrable systems is differ
from that for strongly chaotic systems@2–5,10–13#, and this
difference in statistics is commonly used as a signature
underlying chaos.

In this paper, we study the classical and quantum dyn
ics of a particle in a closed circular billiard with a straight c
~see Fig. 1!. We introduce a dimensionless parameterw
5W/R to characterize the system whereW is the width of the
billiard andR is the radius. As we change the size of the c
by varyingw, the classical system shows integrability, no
integrability with soft chaos, and nonintegrability with ha
chaos. We will study the manifestations of these class
behaviors in the quantum systems using a diagnostic tool
has proven successful for spin systems, thequantum web
@13–16#.

The quantum web is a quantum analog of a 2D class
action space in which an orbit for an integrable system
represented by a point, (J1 ,J2), where J1 and J2 are the
actions associated with two degrees of freedom. This an
sis is useful when a system has a parameter that can gr
PRE 601063-651X/99/60~2!/1607~9!/$15.00
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ally change the system from integrable to nonintegrab
~This makes our billiard a good candidate for analysis
terms of the quantum web.! This transition occurs when a
parameter breaks a continuous symmetry. Then, classic
one constant of motion gets broken to make the system n
integrable. In quantum language, an operatorÂ, the genera-
tor of that symmetry, no longer commutes with the Ham
tonian operatorĤ. Even when we cannot have simultaneo
eigenstates ofĤ andÂ, the quantum web uses eigenvalues
Ĥ and expectation values ofÂ with respect to eigenstates o
Ĥ to form points in a 2D space.~When the system is inte
grable, eigenvalues ofĤ andÂ for simultaneous eigenstate
form points in that space.! Because it deals with not only
energy eigenvalues but also values for another operator
quantum web has more information than energy statistics
quantum webs, we expect that hard and soft chaos ca
distinguished qualitatively.

In Sec. II, we study the classical billiard for integrable a
nonintegrable cases, and plot PSS’s as we changew in clas-
sical mechanics. In Sec. III, we calculate the quantum w
using about 100 lowest-energy eigenstates, and observe
terns for classically different cases. The Husimi functi
@17,18# that extracts the quantum Poincare´ section from a
quantum state is also calculated for some selected en
eigenstates to examine the quantum web closely.

II. THE CLASSICAL BILLIARD

In this section, we focus on the classical dynamics of
billiard. We defineMw as a circular disk with a straight cu
with width W5wR. For example,M2 is a full circle andM1

FIG. 1. Geometry of the billiard. WhenW52R, it is a full
circle, and whenW5R, it is a half circle. Hereumax is given by the
equation cosumax5(R2W)/R.
1607 © 1999 The American Physical Society
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1608 PRE 60SUHAN REE AND L. E. REICHL
is a half-circle, andw is in the range of 0,w<2. The clas-
sical Hamiltonian of a particle insideMw , using polar coor-
dinates (r ,u), is

Hw~r ,u,pr ,pu!5
pr

2

2m
1

pu
2

2mr21Vw
R~r ,u!, ~1!

whereVw
R(r ,u) represents the hard-wall potential of the b

liard with radiusR and width W5wR. To begin, we will
study the full circle (M2) and the half-circle (M1). Both of
these cases are integrable. Then nonintegrable cases w
examined.

A. Full-circle billiard, M 2

The dynamics of a particle insideM2 is integrable be-
cause there are two constants of motion, the energyE and the
angular momentumpu . GivenE andpu , the orbit lies on a
2D torus ~2-torus! in phase space. There exists a canoni
transformation to action-angle variables, (Jr ,Ju ,f r ,fu),
where actions are given by

Jr5A2mE

p FAR22
pu

2

2mE
2

upuu

A2mE
cos21S upuu

RA2mE
D G ,

~2!
Ju5pu ,

with the new HamiltonianH85E(Jr ,Ju). We can also find
the angle variables~note thatfu is not equal tou). We can
find explicit expressions of angular frequenciesḟ r5v r and
ḟu5vu as functions ofE andpu using Eq.~2!,

v r5ḟ r5
]E

]Jr
5S ]Jr

]E D 21

5
2pE

A2mER22pu
2

, ~3!

vu5ḟu5
]E

]Ju
52S ]Jr

]Ju
D S ]Jr

]E D 21

5
sgn~pu!

p
v r~E,pu!cos21S upuu

RA2mE
D . ~4!

It is useful to look at periodic orbits~orbits for which the
ratios of two angular frequencies are rational!. We classify
periodic orbits using the notation (m,n), wherem andn are
relatively prime positive integers defined by

Uvu

v r
U5 1

p
cos21S upuu

RA2mE
D 5

m

n
, ~5!

where 2m,n @see Fig. 2~a!#. If we have a periodic orbit
classified as (m,n), an infinite number of rotated periodi
orbits also belong to (m,n). Therefore, periodic orbits in the
full circle arenonisolated@1#. For any periodic orbit classi
fied as (m,n), there aren bounces andm revolutions in one
cycle. On the other hand, a nonperiodic orbit will not com
back to the starting point, and eventually fill the who
2-torus in phase space.
be

l B. Half-circle billiard, M 1

For the half-circle, we still have two constants of motio
E and pu

2 . The range ofu is reduced to a half,2p/2,u
,p/2, but we can still construct 2-tori on which orbits lie
For any orbit inM1 there is a corresponding orbit inM2. ~If
there is an orbit inM2, folding M2 in half gives us a corre-
sponding orbit inM1.! Hence we can use the results foun
for M2 to describe some periodic orbits. A periodic orbit
classified as (m,n)8 when the corresponding orbit inM2 is
(m,n). Unlike M2, periodic orbits inM1 are isolated, since
there is no rotational symmetry. In the group (m,n)8, there
are an infinite number of different periodic orbits, but only
few play an important role whenw is slightly less than 1. In
Fig. 2~b!, those periodic orbits are shown. The stabilities
these periodic orbits are all neutral~neither stable nor un-
stable! like those inM2.

It is useful to see periodic orbits in the space ofE and
upuu. A point in this space corresponds to a group of orb
with constants of motionE andpu

2 . When Eq.~5! is satisfied,
the group consists of periodic orbits. Thus the condition
have periodic orbits is given by Eq.~5!, and is plotted in Fig.
3. Curves from these conditions are densely populated in
classically allowed region. The classically forbidden regi
in this space is given byE2pu

2/(2mR2),0. In integrable
cases, orbits are at a point~zero-dimensional! in (E,upuu)
space sinceE and pu

2 are conserved, but as the rotation
symmetry breaks by changingw, pu

2 is no longer conserved
and orbits become one-dimensional. We will see later t
Eq. ~5! gives us the condition for primary resonances whenw
is slightly less than 1.

C. M w when 0<w<1 or 1<w<2

Except for the two cases studied above (w51,2), the sys-
tem is nonintegrable, becauseE is an only constant of motion
in the system of two degrees of freedom. The stabilities
periodic orbits inMw give us one way to understand th
dynamical behavior of the system. The simplest periodic
bit for any w is an orbit with two bounces, going back an
forth @for example, (1,2)8 in Fig. 2~b!#. To calculate the sta-
bility of this orbit, we need to imagine a new billiardMw

2 ,
which is a composite of circular parts of twoMw’s facing

FIG. 2. Closed orbits in integrable cases.~a! In a full circle,
periodic orbits can be classified as (m,n) where orbits havem
bounces andn revolutions in a cycle.~b! In a half circle, we can use
the notation of a full circle to classify periodic orbits as (m,n)8.
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PRE 60 1609CLASSICAL AND QUANTUM CHAOS IN A CIRCULAR . . .
each other.~A billiard of Mw
2 when 0,w,1 was named the

‘‘lemon’’ billiard and studied by Heller and Tomsovic@19#.!
It is also easy to see thatM1

2 is just M2. Orbits in Mw have
the correspondence with orbits inMw

2 as orbits inM1 corre-
spond to orbits inM25M1

2. The stability of this two-bounce
orbit in Mw

2 can be calculated from a 232 matrix m, acting
on (du,dpu /RA2mE) on the boundary, which decides the
deviation after two bounces@1#,

m5S 2~2w21!221 4w~122w!

4~2w21!~12w! 2~2w21!221D . ~6!

The eigenvalues ofm, l6 , are given in terms of the trace of
m,

l65
1

2
$Tr m6@~Tr m!224#1/2%, ~7!

where we used the relation detumu51, since m is area-
preserving. The orbit is neutral whenuTr mu52, stable when
uTr mu,2, and unstable whenuTr mu.2. The two-bounce
orbit is neutral whenw50.5, w51, or w52, stable when
0,w,0.5 or 0.5,w,1, and unstable when 1,w,2. We
have seen that all periodic orbits are neutral when the syst
is integrable (w51,2) but w50.5 is a special case, as we
will see later. From this result, we can predict that there a
no stable periodic orbits in the billiardM1,w,2, and that
periodic orbits inM0,w,1 are either stable or unstable, ex
cept whenw50.5. ~Ergodicity of the billiardM1,w,2 has
been proven by Bunimovich@20#.! The system shows hard
chaos when 1,w,2 and soft chaos when 0,w,1.

The Poincare´ surface of section~PSS! is one way to ob-
serve the chaos. Here PSS is a two-dimensional surf
(u,pu) at r 5R along the circular boundary (2umax,u
,umax, 2RA2mE,pu,RA2mE). Each orbit gives a point

FIG. 3. For a half circle, the condition in (E,upuu) space to have
periodic orbits (m,n)8 is given by Eq.~5!, and some are plotted.
These curves are densely populated in the classically allowed
gion.
m

e

ce

in (u,pu) space every time it touches this surface. Therefo
PSS becomes a 2D area-preserving map. In fully cha
~ergodic! cases, points generated by an orbit will fill out th
whole allowed space in the PSS. In cases of soft chaos
observe some structure. Some orbits generate island ch
and some orbits will fill some remaining regions in a chao
manner. Since the KAM theorem@7,13# does not apply in
this system due to singularities of the boundary, the ex
tence of KAM tori separating island chains is not guarante
even for smalld whenw512d.

In Fig. 4, we show PSS’s for variousw’s. In Fig. 4~a!, one
orbit is filling the whole region whenw51.01. This is a fully
chaotic case. Figure 4~b! is an integrable case whenw51.
Whenw50.99 @Fig. 4~c!#, we see island chains centered
the positions of periodic orbits along with stochastic diff
sion in the remaining region. The resonance condition,
~5!, gives us locations of island chains. For example, (1,8
gives us the locationpu /(RA2mE)50, (1,4)8 gives us
pu /(RA2mE)561/A2, (1,3)8 gives us pu /(RA2mE)5
60.5, and (1,6)8 gives uspu /(RA2mE)56A3/2, and so
on. Asw decreases@Figs. 4~d! and 4~e!#, the area of chaotic
regions increases although some island chains remain. W
w50.5 @Fig. 4~f!#, periodic orbits that have neutral stabilitie
reside in two axes, (u50) axis and (pu50) axis. One cha-
otic orbit starting near the center fills out almost all the s
face. Asw decreases further, the area occupied by regu
orbits grows as we show in Figs. 4~g! and 4~h!.

In Fig. 5, we take a different look at PSS. We want
know how the angular momentum at the circular bounda
which is represented bypu in Fig. 4, evolves with time at
different parts of PSS. We take the upper half of PSS (21
,u/umax,1, 0,pu /A2mER,1), and divide it into 1250
blocks ~50 horizontally, 25 vertically!. These blocks are
numberedI p51, . . .,1250 as shown in Fig. 5~a!. For each
block, we have 100 uniformly distributed initial condition
~points in the block!, and calculate the average value ofpu

2

for the first 50 collisions with the circular boundary for a
100 initial conditions,

^pu
2& at I p5

1

100

1

50 (
i 51

100

(
j 51

50

pu( i j )
2 ,

where pu( i j ) represents the angular momentum at thej th
collision on the circular boundary from thei th initial condi-
tion. Then, we have a value of finite-time averagedpu

2 for
each block represented byI p , and these values are plotted
a function ofI p for four different values ofw. For cases of
soft chaos,w50.5 @Fig. 5~b!# andw50.9 @Fig. 5~c!#, when
blocks are in the regular region of PSS, points behave re
larly, and when blocks are in the chaotic region, points
have irregularly. For an integrable case,w51.0 @Fig. 5~d!#,
the angular momentum is conserved, and the points are r
larly placed. For a case of hard chaos,w51.5 @Fig. 5~e!#, the
position of the block does not matter since the system
ergodic.

The above results again show different behaviors betw
soft and hard chaos. For cases of soft chaos, time averag
pu

2 can have some distinct regular and irregular ranges.
the other hand, for cases of hard chaos, the square roo
time averages ofpu

2 approachA2mER/A3.0.577A2mER

e-
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1610 PRE 60SUHAN REE AND L. E. REICHL
regardless of the initial condition as the number of collisio
used to calculate the average increases.~The factor 1/A3
comes from the root mean square of a variable uniform
distributed between21 and 1.!

III. THE QUANTUM BILLIARD

In this section, we study the quantizedMw billiard using
the quantum-web analysis with about 100 lowest-ene
eigenstates, and we also look at some individual ene
eigenstates using Husimi plots.

A. Numerical method

The Schro¨dinger equation for this 2DMw billiard is the
Helmholtz equation,

~¹21k2!C~r !50, ~8!

with the Dirichlet boundary condition,C50, on the bound-
ary, Bw[]Mw , of Mw , where k252mE/\2 and ¹2

5]2/]r 21(1/r )(]/]r )1(1/r 2)(]2/]u2) using polar coordi-
nates.

For the classically integrable cases, this equation can
solved analytically. The HamiltonianĤw (w51 or 2! and
the angular momentump̂u ( p̂u

2 for the half circle! commute.
They are generators of continuous symmetry transfor
tions, the time translation, and the rotation. For a full circ
M2, we can find energy eigenstates which are simultane
eigenstates ofĤ2 and p̂u ,

^r u l ,k& ( f )}Jl S a lkr

R Deil u, ~9!
s

y

y
y

be

a-

us

wherek is a positive integer,l is an integer, anda lk is thekth
zero of the Bessel functionJl(x). And energy levels are
given by Elk

( f )5\2a lk
2 /(2mR2). There exist twofold degen

eracies whenlÞ0 since the system also has the parity sy
metry and@ p̂u ,P̂#Þ0 (P̂ is the parity operator!. Then we
can find another set of energy eigenstates, simultane
eigenstates ofĤ2 , p̂u

2 , and P̂,

^r u l ,k,1& ( f );}Jl S a lkr

R D cos~ lu! ~ l>0!,

~10!

^r u l ,k,2& ( f )}Jl S a lkr

R D sin~ lu! ~ l>1!,

where2p,u,p. The latter will be used in the calculatio
of the quantum web.

For a half circleM1, energy levels are the same as tho
of the full circle without levels withl 50, and the energy
eigenfunctions are

^r u l ,k,1& (h)}Jl S a lkr

R D cos~ lu! ~ l 51,3,5, . . . !,

~11!

^r u l ,k,2& (h)}Jl S a lkr

R D sin~ lu! ~ l 52,4,6, . . . !,

where2p/2,u,p/2. Here there is no degeneracy.
For classically nonintegrable cases,p̂u

2 no longer com-

mutes withĤw ~but still @ P̂,Ĥw#50 for anyw). Here Eq.~8!
must be solved numerically. We use the boundary elem
method~BEM! @2,21–23# to solve this nonseparable 2D pa
tial differential equation. It is an efficient way to solv
boundary-value problems, because in the BEM a 2D eq
ce
FIG. 4. Poincare´ surface of section ofMw billiard varyingw, wherew5W/R. We observe ergodic motions when 1,w,2 and generic
chaotic behaviors when 0,w,1. ~a! Ergodic whenw51.01 with one orbit.~b! Integrable whenw51. ~c! w50.99. ~d! w50.9. ~e! w
50.7. ~f! w50.5. Closed orbits residing in (u50) axis and (pu50) axis have neutral stabilities. One orbit is filling almost all of the spa
except for two axes.~g! w50.3. ~h! w50.1.
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PRE 60 1611CLASSICAL AND QUANTUM CHAOS IN A CIRCULAR . . .
tion with boundary condition becomes an integral equat
in one variable along the boundary. The method we us
briefly outlined below.

We use a Green’s function,G(r ,r 8)52( i /4)H0
(1)(kur

2r 8u), which satisfies

~¹21k2!G~r ,r 8!5d~r2r 8!, ~12!

whereHi
(1)(x) is the Hankel function of the first kind. We

multiply Eq. ~8! by G(r ,r 8), and multiply Eq. ~12! by
C(r 8). After subtracting one from the other, integrating ov
the area ofMw with respect tor 8, and using Green’s theo
rem, we finally get

2 R
Bw

ds8G~r ,r 8!u~s8!5H C~r !, r inside Bw ,

1
2 C~r !, r on Bw ,

0, r outside Bw ,
~13!

wheres8 is the arc length alongBw5]Mw , u(s8) is defined
by n8•“8C„r (s8)…, andn8 is the outward normal unit vecto

FIG. 5. Finding finite-time averages ofpu
2 . ~a! The upper half of

the Poincare´ surface of section, which is divided intoN2/2 blocks,
and each block is numbered byI p . For each block, the root mea
square ofpu at the circular boundary for a finite time can be calc
lated.~b! w50.5. ~c! w50.9. ~d! w51.0. ~e! w51.5.
n
is

r

to Bw at r 8. With r lying on Bw , by taking the normal de-
rivative n•“ on both sides of Eq.~13!, we obtain

u~s!522 R
Bw

ds8 u~s8!~n•“ !G~r ,r 8!. ~14!

One way to solve this equation is discretizingBw by dividing
it into N segments. Then Eq.~14! becomes a matrix equatio
A•x5x, whereA5A(k) is an (N3N) matrix andx is an
N-component vector representing$u(si)u1< i<N%. For
given w, energy levels of the system,En5\2kn

2/2m (n>1),
can be found by solving the equation, detuA(k)2I u50. For
each energy levelEn , we can obtain$un(si)% by finding an
eigenvector ofA(kn)2I with a near-zero eigenvalue. Sinc
the numerically obtained energy levels in this way alwa
have some uncertainty, ‘‘degeneracy’’~which is actually
near-degeneracy! can occur when the difference between tw
adjacent exact energy levels is less than the uncertainty
these cases, we can find two sets of$u(si)% with two near-
zero eigenvalues ofA. Therefore, looking at eigenvalues o
A(kn) can be an easy way to check numerically for ne
degeneracies of an energy level,En .

For givenw, we found energy levels$Enun>1% and nor-
mal derivatives, on the boundary, of corresponding ene
eigenfunctions $Cn(r )[^r un&%, where un& ’s are energy
eigenstates. Then from Eq.~13! we can calculate the energ
eigenfunction inside,

Cn~r !5
i

4 R
Bw

ds8H0
(1)~knur2r 8u!un~s8!. ~15!

Using Eq.~15!, we can also calculatêr u p̂u
2un&, which will be

used in calculations of quantum webs in the next subsect

^r u p̂u
2un&52\2

]2

]u2 Cn~r !

5
i

4 R
Bw

ds8F ]2

]u2 H0
(1)~knur2r 8u!Gun~s8!,

~16!

where

]2

]u2 H0
(1)~kur2r 8u!5kF ]2

]u2 Ur2r 8UGH0
(1)8~kur2r 8u!

1k2F ]

]u Ur2r 8UG2

H0
(1)9~kur2r 8u!,

~17!

and we use

ur2r 8u5A~r cosu2x8!21~r sinu2y8!2, ~18!

and

H0
(1)8~x!52H1

(1)~x!,
~19!

H0
(1)9~x!52H0

(1)~x!1H1
(1)~x!/x.
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FIG. 6. Quantum web ofMw billiard varying w. Even and odd parity eigenstates are shown together.~a! w50.3. ~b! w50.5. ~c! w
50.7. ~d! w50.9. The conditions for primary resonances in classical mechanics are also shown.~e! w51.0. Classically integrable case.~f!
w51.01.~g! w51.1. ~h! w51.3. ~i! w51.5. ~j! w51.7. ~k! w51.9. ~l! w52.0. Classically integrable case. There are twofold degenera
when puÞ0. @The arrows in~b!, ~d!, and ~i! indicate states that will be studied using Husimi plots in Fig. 7. Outside dashed line
classically forbidden regions.#
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In calculations ofCn and (]2/]u2)Cn , care must be taken
when r is close to the boundary becauseHi

(1)(ur2r 8u) di-
verges asur2r 8u goes to zero.

B. The quantum web

The quantum-web analysis can be used to observe
manifestation of classical chaos in quantum mechanics. U
now the quantum web has been used primarily in spin s
tems@15,16#. We will construct quantum webs for three di
ferent cases: classically integrable cases (w51,2), noninte-
grable cases showing soft chaos (0,w,1), and
nonintegrable cases with hard chaos (1,w,2).

For classically integrable cases (w51,2), we have seen in
Sec. II that there are two constants of motion,E andupuu, and
that we can find two action variables (Jr ,Ju). @There exists a
nonlinear map from (Jr ,Ju) space to (E,upuu) space.# In Fig.
3, a classical orbit appears as a point in (E,upuu) space. In
quantum mechanics, there exist simultaneous eigenstat
two operatorsĤw(w51 or 2! and p̂u

2 @see Eqs.~10! and
~11!#. We can construct a 2D space, in which a pair of
genvalues (Elk ,u l\u) of each eigenstate is plotted as a poi
he
til
s-

of

-
.

In Figs. 6~e! and 6~l!, we observe the structure of a deforme
lattice. This can be understood as a mapping from an alm
perfect 2D square lattice in (Jr ,Ju) space to the deformed
lattice in (E,upuu) space. This almost perfect lattice structu
can be explained from Einstein-Brillouin-Keller~EBK!
semiclassical quantization,

Jr.~nr2
1
4 !\ ~nr :positive integer!,

~20!

Ju5pu5 l\ ~ l : integer!,

whereJr is a very good approximation andJu is exact. This
is the quantum analog of Fig. 3 in which each point rep
sents a 2-torus. Thus, we can find a 2-torus in classical ph
space corresponding to a quantum eigenstate, and then
eigenstate here corresponds to a set of orbits that are on
2-torus.

For classically nonintegrable cases,@ p̂u
2 ,Ĥw#Þ0 when

wÞ1 or 2. We can still calculate an expectation value ofp̂u
2

for an energy eigenstateun&, ^nu p̂u
2un&, numerically using

Eqs.~15! and ~16!,
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^nu p̂u
2un&5E

Mw

d2r ^nur &^r u p̂u
2un&

52\2E
Mw

d2r Cn* ~r !
]2Cn~r !

]u2
. ~21!

These values can be interpreted as time averages ofp̂u
2 @14#.

When there is an accidental degeneracy~or near-
degeneracy!, we find expectation values from eigenvalues
the matrix representation ofp̂u

2 in the degenerate subspac

In this way, we obtain a pair of values (En ,A^nu p̂u
2un&) for

each energy eigenstate. These points can also be plotted
2D space as a quantum web. We expect lattice structures
exist for integrable cases will be broken because EBK qu
tization does not apply to nonintegrable cases.

In Figs. 6~a!–6~d!, quantum webs are shown for cases
soft chaos. Whenw50.99 @Fig. 6~d!#, we observe breaking
of the web near conditions of primary resonances in class
mechanics. We see patterns of crossing near (1,4)8 and
(1,3)8 resonances. Although ‘‘regular’’ parts still exist, som
layers seem to start to shift near resonance conditions.
can roughly estimate the energy value at which the ef
starts to be seen for each resonance condition by meas
the width of island chains,Dpu , in Fig. 4~d!. For example,
(1,2)8 resonance has the biggest width, the next (1,4)8 reso-
nance, and so on. Becausepu is scaled by (RA2mE)21 in
Fig. 4, Dpu is proportional toAE. When Dpu(5DJu)>\,
the resonance can be clearly seen in the quantum system
we can roughly obtain an estimate of the minimum energ
which each resonance is in effect. The smaller the width
an island chain and the lower the energy, the less likely
find the web broken near the curve of the particular re
nance. Whenw50.7 @Fig. 6~c!#, we see similar patterns as i
Fig. 6~d!. Whenw50.5 @Fig. 6~b!#, the classical system ha
a large chaotic region in the PSS, and has periodic or
with neutral stability, which reside on two axes,u50 and
pu50. The quantum web, however, is quite regular althou
the structure looks different from those of integrable case
looks more like a structure of layers. Whenw50.3 @Fig.
6~a!#, the web is similar to that of Fig. 6~b!.

In Figs. 6~f!–6~k!, we show quantum webs for cases
hard chaos. Whenw51.01 @Fig. 6~f!#, the lattice structure is
still intact except a little kink, although this is the fully cha
otic case classically@see Fig. 4~a!#. For these low energies
the quantum system does not see the broken symmetry
because the wavelengths of the eigenstates are longer
the deviations of the width from the half-circle. We obser
that the lattice structure quickly collapses as we increasew.
When w51.5 @Fig. 6~i!#, the structure is very irregular ex
cept for four regularly placed points near the top-right c
ner. ~Some of the eigenstates noted by arrows here will
examined in the next subsection using Husimi plots.! The
case ofw51.7 @Fig. 6~j!# is the most irregular quantum we
among cases shown. Whenw51.9 @Fig. 6~k!#, we observe
splitting of degeneracies and also quick collapse of lat
structure from an integrable casew52 @Fig. 6~l!#. As we
have seen so far, the lattice structure tends to colla
quickly in cases of hard chaos, but there also exist sm
remnants of regularity in some cases.
f
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We can relate the finite-time averages of classicalpu
2

shown in Fig. 5 to quantum webs in Fig. 6. Energy w
scaled away in classical mechanics unlike in the quan
web, where energy plays an important role. But class
results can still help us to understand quantum webs be
For cases of hard chaos, we can explain why the point
quantum webs@Figs. 6~f!–6~l!# are squeezed into a sma
range, because classically^pu

2& approaches one value regar
less of initial conditions as we saw in Fig. 5~e!. For cases of
soft chaos, quantum webs@Figs. 6~a!–6~d!# can have distinct
regular and irregular regions as in Figs. 5~b! and 5~c!. These
qualitative features are expected to remain even in hig
energies.

C. Quantum Poincaré section

The Husimi plot provides a method of extracting a qua
tum Poincare´ surface of section~QPS! from a quantum state
@17#. The QPS is a quantum analog of PSS, which we h
obtained in Sec. II. The Husimi function of a 1D syste
corresponding to a stateuC& is defined as

F~x0 ,p0!5 z^x0 ,p0uC& z2, ~22!

where ux0 ,p0& is a coherent state with a representation
configuration space,

^xux0 ,p0&5S 1

ps2D 1/4

expF2
~x2x0!2

2s2 1
i

\
p0~x2x0!G .

~23!

In 2D billiards, Eq.~22! can be modified to create a Husim
function using the coordinate along the boundary@18#. For
example, for Mw billiard along the circular part of the
boundary, the Husimi function is defined as

Fn~u0 ,pu0!5u E
2umax

umax
du8^u0 ,pu0uu8&un~u8!u2, ~24!

where 2umax,u0,umax and 2RA2mE,pu0,RA2mE.
Here ^u8uu0 ,pu0& has the same form as in Eq.~23! with s
given by the value@umax\/(RA2mE)#1/2, and un(u) is the
normal derivative of the energy eigenfunction on the circu
part of the boundary, (]/]r )Cn(r )ur 5R .

In Fig. 7, we show Husimi plots for selected eigensta
for three cases (w50.5,0.9,1.5). And, in Fig. 8, we show
probability densities of wave functions,uCn(r )u2, for some
of the eigenstates chosen from Fig. 7.@Most eigenstates cho
sen in Fig. 7 can be found in Figs. 6~b!, 6~d!, and 6~i! with
arrows pointed to them.#

Figures 7~a!–7~d! show Husimi plots of energy eigen
states whenw50.5. The pattern of PSS shown in Fig. 4~f!
can be seen in these plots. We can get some information
chosen eigenstates from the quantum web@Fig. 6~b!#. The
eigenstate for Fig. 7~a! is on the outer part, and the eigensta
for Fig. 7~b! is on the inner part of the quantum web. Figu
7~a! shows the chaotic region of PSS, and Fig. 7~b! seems to
correspond with a two-bounce orbit with neutral stabilit
which we can observe in the wave function@Fig. 8~a!#. The
eigenstate for Fig. 6~c! is in the middle of the quantum web
and its Husimi plot and wave function@Fig. 7~b!# lie between
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FIG. 7. Husimi plots for given eigenstates@e[E/(\2/mR2)#. ~a! w50.5 ande5143.28.~b! w50.5 ande5740.79.~c! w50.5 ande
51156.07.~d! w50.5 ande59992.23.~e! w50.9 ande562.513.~f! w50.9 ande5365.64.~g! w50.9 ande5371.99.~h! w50.9 and
e5617.98.~i! w51.5 ande5258.03.~j! w51.5 ande5284.94.~k! w51.5 ande5268.80.~l! w51.5 ande5842.69.@A square at the top
right corner of each plot represents the size ofh ~Planck constant!. All eigenstates except~d! and~l! are pointed in quantum webs in Fig.
by arrows.#
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two extreme cases above. The eigenstate for Fig. 6~d! has a
relatively high energy, but the structure is similar to F
6~c!.

Figures 7~e!–7~h! show Husimi plots of energy eigen
states whenw50.9, and each eigenstate is picking up a cl
sical primary resonance shown as an island chain in P
@Fig. 4~d!#. The eigenstate for Fig. 7~e!, located near the
(1,2)8 resonance in the quantum web@Fig. 6~d!#, shows the
pattern of the island chain of the (1,2)8 resonance, although
it is only the ninth highest energy eigenstate. The eigenst
of Figs. 7~f! and 7~g!, located at the crossing of two laye
near the (1,4)8 resonance, show the pattern of the isla
chain of the (1,4)8 resonance. Wave functions@Figs. 8~c!
and 8~d!# of these states show the trace of unstable and st
.

-
S

es

le

periodic orbits@see Fig. 2~b!#, respectively. The eigenstat
for Fig. 7~h!, which is on the (1,3)8 resonance, also show
the pattern of the island chain of the (1,3)8 resonance. As
expected earlier, the (1,2)8 resonance is observed in the H
simi plot at lower-energy eigenstates than the (1,4)8 reso-
nance.

Figures 7~i!–7~l! show Husimi plots of energy eigenstate
when w51.5. The eigenstate for Fig. 7~i!, located in the
inner part of the quantum web@Fig. 6~i!#, seems to be pick-
ing up the periodic orbit with neutral stability, which can b
clearly seen in the wave function@Fig. 8~e!#. The eigenstate
of Fig. 7~k!, which is one of four regularly placed points i
the quantum web, shows awhispering gallerystate @Fig.
8~f!#. All four of these regularly placed eigenstates sho
FIG. 8. Probability density of some energy eigenstates@e[E/(\2/mR2)#. ~a! w50.5 ande5740.79.@See Fig. 7~b!.# ~b! w50.5 and
e51156.07.@See Fig. 7~c!.# ~c! w50.9 ande5365.64. @See Fig. 7~f!.# ~d! w50.9 ande5371.99. @See Fig. 7~g!.# ~e! w51.5 ande
5258.03.@See Fig. 7~i!.# ~f! w51.5 ande5268.80.@See Fig. 7~k!.#
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similar Husimi plots. A relatively high energy eigenstate f
Fig. 7~l! shows a more uniformly distributed Husimi plot lik
the corresponding PSS in classical mechanics.

IV. CONCLUSIONS

We studied classical and quantum chaos of a circular
liard with a straight cut. First, we studied the classical s
tem. Since we are only interested in trajectories~orbits!, the
energy of the particle is unimportant. Periodic orbits of in
grable cases were found, and PSS’s were plotted for sev
w’s. Nonintegrable cases showed both hard chaos (1,w
,2) and soft chaos (0,w,1). In the quantum system, th
energy plays an important role. At higher energies, we
more likely to see the quantum manifestations of class
chaos, because the higher the energy, the smaller the si
h ~Planck constant! in the scaled quantum Poincare´ section.
We calculated quantum webs numerically. Although ab
100 states were used here~the cost of calculating the quan
tum web increases rapidly with energy!, they were enough to
show different behaviors of hard and soft chaos. In the
gime of soft chaos (0,w,1), we observed that the lattice
like structure obtained for an integrable case (w51) starts to
break, asw decreases, near the primary-resonance condit
obtained from classical mechanics. However, there rema
interesting patterns such as layers. The higher the energy
the larger the width of an island chain in PSS, the greater
effect of resonances. For the special case (w50.5), layer
A

cs

et
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-

-
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e
al

of

t

-

ns
ed
nd
e

structure clearly remained in the low-energy regime we
served. In the hard-chaos regime (1,w,2), the regular
quantum web collapses more quickly asw changes from in-
tegrable cases (w51,2). There was no distinct layer struc
ture when the system was far from integrable except fo
few small regularities as seen in Fig. 6~i!. @Corresponding
states in this particular regularity seem to be related
‘‘scars.’’ As we observe Fig. 7~k! and Fig. 8~f!, those states
correspond to an unstable periodic orbit that looks similar
(1,6)8 in Fig. 2~b!.# Even though soft and hard chaos do n
manifest themselves as clearly as in classical mechanics
were able to observe qualitative differences for both cas

The authors believe that the quantum web, which h
been studied primarily in spin systems so far, is a use
technique to understand the quantum chaos in 2D billia
since we can observe not only the energy eigenvalues
also the eigenfunctions through expectation values of ano
operator. It also shows distinct patterns for three differ
cases~integrable, soft chaos, and hard chaos!.
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