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We present results of a detailed quantum-mechanical study of a ddsafinteracting electrons confined
to a circular boundary and subject to homogeneous dc plus ac magnetic[ BetdBy.+ B, f(t), with f(t
+2m/wp) =f(t)]. We earlier found a one-particidassicalphase diagram of thescaled Larmor frequency
we=wlwy Vs €=B,4. /By that separates regular from chaotic regimes. We also showed that the quantum
spectrum statistics changed from Poisson to Gaussian orthogonal ensembles in the transition from classically
integrable to chaotic dynamics. Here we find that, as a functioN ahd (e, ».), there are clear quantum
signatures in the magnetic response, when going from the single-particle classically regular to chaotic regimes.
In the quasi-integrable regime the magnetization nonmonotonically oscillates between diamagnetic and para-
magnetic as a function d. We quantitatively understand this behavior from a perturbation theory analysis. In
the chaotic regime, however, we find that the magnetization oscillates as a functdrbwf it is always
diamagnetic. Equivalent results are also presented for the orbital currents. We also find that the time-averaged
energy grows abl? in the quasi-integrable regime but changes to a lilkdependence in the chaotic regime.
In contrast, the results with Bose statistics are akin to the single-particle case and thus different from the
fermionic case. We also give an estimate of possible experimental parameters where our results may be seen
in semiconductor quantum dot billiard$$1063-651X%99)05208-3

PACS numbd(s): 05.45~a, 03.65-w, 72.20.Ht

I. INTRODUCTION spondence, Husimi quasienergy eigenfunction distribution

There is a long history of studies of the magnetic responséinctions.
of an electron gas, confined to a finite boundary. Starting In this paper we present a detailed quantum-mechanical
with Bohr and van Leeuweft], to Landau’s finite diamag- study of the zero temperature magnetic response of a nonin-

netism in the quantum regini@,3]. The problem is still of tera_cting electron gas confined to a circular boundary an_d
current theoretical an experimental interg&}, in particular ~ SUPIECt t0 the same combination of a dc plus ac magnetic
fields. Here we are interested in considering the magnetic

QUe to the realization that for most geometrles O.f the Comfm'response of this model for axi electron system that satisfies
ing boundary one can find classically chaotic behavio

. ) : he Pauli exclusion principle. Another basic question, first
[5-18]. Most previous studies of this problem have assume ddressed in this paper, is how does the transition from regu-

that the external magnetic field is static and they have conp 14 chaotic behavior in the classical case, where the par-
centrated on calculating the static magnetic susceptibilitysicjes are indistinguishable, affect their fermionic quantum

except for the dynamic magnetic field experimental work ofpatyre. Most previous studies of the quantum manifestations
Reuletet al. [19].

In an earlier papef20] (referred to as | hereaftgerwe 10
investigated the classical dynamics and the quantum signa-
tures of classical chaos, fone electrorconfined to a circu- 8
lar quantum dot structure. The dot was subjected to uniform
dc (Bqd plus ac (Badf(t)), with periodic f(t)=f(t 6 Chaotic

+27lwg) perpendicular magnetic fields. There, we estab-
lished an approximate phase boundary in the parameter

space spanned bye€B,./Byc, w.=w./wy) that separates
the classically regular from the chaotic regimes, whegés
the Larmor frequency of the dc field. The phase diagram 2
shown in Fig. 1, which we shall often use in our analysis
here, separates the quasi-integrable from chaotic regimes. In
| we established clear correspondences between the transi-
tions in the classical behavior and their corresponding quan- o
tum signatures. From identifying the statistical properties of

the quasienergy spectrum of the one-period evolution opera- FIG. 1. Classical phase diagram separating the regular from cha-
tor, going from Poissofiintegrable to Gaussian orthogonal otic regions used in the analysis of this paper. See the text for the
ensemble(chaotig, to the semiclassical phase space corre-definition of the dimensionless variables in the axes.
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of classical chaos have centered on one-particle problemsiere Ry is the radius of the disk quantum dot assumed to
Here we only address the important particle-statistics manyhave rigid walls.T, is the drive period of the ac fieldy.
particle problem, and leave for a future study the relevant=e*B,./(m*c) is the static Larmor frequency, in terms of
effects of electronic interactions. As we show below, therethe effective electron mass* (~0.067M,), the screened
are indeed clear manifestations of the particle statisticselectronic chargee* (~0.3e) [21], and the dynamic fre-
which are different if we are in the classically integrable quencyw,.=e*B,/(m*c).

regime from those where the system is chaotic. The exact eigenfunctions of the static Hamiltonkg, are

The orgar_lization of .the rest of thg paper is as foIIow;. '”given in terms of the Whittake¥ functions|[3]
Sec. Il we briefly recapitulate the main elements of the single

particle model studied in I, together with expressions for the 3 2 1
matrix elements of the operators needed in our analysis. Next Yo A1)= N
we outline our method to calculate the matrix elements of

multi-electron operators in a basis of propegntjsymme- with n the principal quantum number, the angular momen-

trized eigenfunctions. In Sec. Il we present our main result%um cigenvalue. antl-. a normalization constant. The frus
for the magnetization, orbital currents, and energy. We cal- 9 ’ n/ :

culated both the time evolution of such operators and theifation parametef that measures the number of flux quanta

i . ~ in the disk is defined by
time averages as a functidhand the parameters (w.). We
also include a perturbative calculation, fully described in the

f
Efz), (6)

N TV o2

Appendix, that quantitatively explains our numerical results f=—=—= 9 _C_
for the magnetization in the quasi-integrable weak-field re- Py (hc/2e*) &
gime. Finally, in Sec. IV we present a summary of our con-

clusions, with an estimate of a few experimental parametersith /5= (%c/eBy)Y?> the magnetic length and®,
that may give an idea of the regimes in frequency and fields= hc/2e* the quantum of flux. The eigenenergies

where the transition between integrable and chaotic regimes

® BymRS o, (RO)Z @

discussed in this paper could be tested. E. =2(xn +7) (8
Il. THE MODEL are determined by the requirement that the wave function
vanishes at the boundary, i.e., by the zeros of the Whittaker
A. One-electron wave function function M, |/|/2(f/2):0-
n/

We start by recalling the main features of the single par- \ye calculated the energy eigenvaILTé,$/ for the static
ticle formalism, as explained in paper I, and next its extenproplem in a basis of Whittaker functions as a function of
sion to theN noninteracting electron probl_em. The quel WeRB,., and checked our numbers by fully reproducing the re-
consider here is that of electrons confined to a disk, andyits of Ref[5]. The Whittaker functions have the advantage
subject to a steadyB(;)) and a time-periodicR,) magnetic  of heing valid over the entire range of parameters, however,
field. After scaling to appropriate dimensionless units, th&ney are numerically difficult to evaluate for the full time-

model Hamiltonian considered here is dependent problem. For convenience when calculating the
~ o~ = time-dependent problem, we decided also to expand the total
H=Hgct+Ha(7), (1) (single particle¢ wave function in a Fourier-sine basis. In this
case
which in polar coordinates reads
o o s
%2 d? 1d /Z?LZ 1 Z)c z 2 /..ﬁz}c <r|Hdc|¢n/(¢)>:En/ lﬂn/(r)\/ﬁy (9)
Hdc__7 ﬁ'ﬁ‘ra +?+§7 re+/ 7,
@) _ R
. . . (r[T(e)y=2 2 (1) =, (10
and with the time-dependent kick component n=1/=—o 2
1 - ~ 1’
F'l(T):E ” r2 E S(7—n). (3) ¢n/(r=1)=0, fo lﬂn/(r)rdr:]., (11)
n=-—ow
The dimensionless units are defined as and (r[7n,)= \[Fsin(nrrr). (12
I’=i o=r=<1 TZ—Eﬁt (4) his basi i | h lized d ;
Ro’ , Ty 27" This basis set is properly orthonormalized, and automati-

cally satisfies the boundary conditions. To calculate the spec-
~ 2 trum of the static problem, we used, nonetheless, the exact
~ e %_L :%:w_ac and 77=(Ewc) ) eigenvalues ofHy,, given by the zeros of the Whittaker
Biac wc’ 2 functions. Doing this allowed us also to check the reliability
(5) of our sine-basis numerical method.
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We then computed the required matrix elements of the

operators we are interested in, within the sine-basis method. > (m=n),
For example, for the magnetization operator <m|‘](dia)|n>:£’%
¢ 27| (—)™"-1  4mn ()
m#n),
e* (£ e* XA( )) (13) 77.2 (m2_n2)2
= —-——r r |,
" 2m*c c (19

where L is the angular momentum operator afa¢r) is the  whereyz=0.57721 566649.., isEuler's gamma number,
electromagnetic vector potential in normalized coordinatesand Ci) is the cosine mtegral.

In the present case, we take the magnetic field perpendicular Finally, the expression for the one-period time-evolution
to the plane, then the component of the magnetization op- operator U (7,7o), for the single particle Hamiltonian,
erator is which satisfies the dynamical equation

- M, , f. ~ -
Mz(r)=g=—%—§r2, (14) |ﬁ(9—7_U/(T,To)=[Hdc+H1(T)]U/(T,To), (20

with L, the z component of the angular momentumg is
=|e*|#/2m* ¢ the Bohr magneton, anhil, the magnetiza-
tion operator along the axis. The matrix elements &fl, in

the Fourier sine basis are given by i1 i
U/(l,O):eX% _%E )ex;{ —%Hdc (21)

~ 1 1
+ = . , . .
(M) = [/ (3 2nm 2) ] Om The total(single particle wave function at any integer mul-
tiple N1 of the period(hereafter taken to be)lis given by
repeated applications &f , to the initial wave function

B i (_)m+n 8mn
2 ’7T2 (mZ_nZ)

2} (1_5mn)-

(15
W (1, Np)=UT[W (1, ,0)). (22
Similarly, starting from the definition of the current density

operator .
P B. Many-electron wave functions

. One can directly generalize the above single-electron for-
1 e - ;
J= ( —ihV——A) +ce. (16) malism to the many-electron case. Take the inlalectron
2m* C wave function to be

(where c.c. stands for complex conjugatee have the fol- [D(rarz - ) =[P(L2. N)), @3

lowing expression for the azimuthal current densitidg:

d . . . .
=3P+ 351 where which is antisymmetric under exchange of an odd number of
particles(the Pauli exclusion princip)e

inl o
(para)_ _ = 7 " (dla)_ . . . .
3 519 TeC AAITV=T 0 AD a1, N = =D N,
(24)

are the paramagnetic and diamagnetic current densities, re-
spectively. In the Fourier-sine basis, the matrix elements of et theith single-particle eigenstate satisfy the equation
the current densitieén units of%) are given by

<m|Jf¢f’ara)|n) F'“)l‘l’ni/i(i)>=E(nii)/il‘lfni/i(i)>. (25)

We know that the Slater antisymmetrization procedure for

_ 7 —Ci[2n7]+ ye+In(2n7) (m=n), (19  the noninteracting\-electron state can be written as the fol-
| =Ci[(m+n)7w]+Ci[(m—n)m7] (m#n), lowing tensor producf22]:



PRE 60 PAULI PRINCIPLE AND CHAOS IN A MAGNETIZED DISK 1593

|\I’ Ny (1)> ®|lpn2/2(1)> ®|\I,”N/N(l)>
A|(I) N))= 1 |\1/ N/ (2)) ®|‘Pn2/2(2)> s ®|\I,nN/N(2)>
\/— : :
|q,nl/l(N)> ®|q,n2/2(N)> c ®|\I’nN/N(N)>
1
= N ; el |V pin, 1 (1))@ Ve, ,1(2)) - ®| Ve (N)], (26)
|
where_A is the antisymmetrization operator aRds the per- TH{O}(t=Np)=(Py, . n(t=Np)[O]®y t=Nr))
mutation operator LN
_ - F\NT
P{1,2,...N'={P1P2,... PN}, (27) N .12:1< v (1A= 0)(UD"
+1 (even P)' 6 T|\Irn/(] t= 0)) (33)
%=| 1 (odd P). 8

In particular, for the average quantum time-dependent mag-

netizationper electron we have

The summation runs over all possible permutations. Further-
N

more, the trace of any sum oN-body operatorsO (I\~/IZ>(NT) . N
=3N ., can be written as N :_NJF@iZl (W (DICUH™
- A f
Tr{O}=(®(1,... N)|O[|D(1,... N)) x| =5 ]2) UMW, (), (34)

1 .
TN E: n/i(1)|oi|‘1'ni/i(l)>- (29 whereL= =N /. Similarly, we can write the correspond-
ing expressmns for the time-dependent orbital currents, and
the total time-dependent Hamiltonian average, which we
"term the averaged energy. For example, tihee-averaged
ymagnetizatior((MZ» is defined by

Now consider the time evolution of such a system. For,
simplicity, we take as the initial state the lowest energ
(ground state of theunperturbedsystem(i.e., without the ac
field) allowed by the Pauli principle:

1
((Mp))= lim = 2 (M) (n). (35
|®; N(t=0)) NT_,OC
=A{|W,  (1))e|¥, ,(2))--- 0¥, , (N)}. lll. RESULTS
(30) We now come to the discussion of the main results of this

paper, that are concerned with the dynamic and time-
The one-period time-evolution operator for the N-electronaveraged properties of different relevant operators. The most

system is given by the tensor product, striking features are observed in the magnetization of the
system, which we shall discuss first as a function of the
U=U(1,0®U5(1,0)- - - ®Uy(1,0). (31 numberN of electrons ande(,Z)C). We also give results for

the orbital current as well as interesting results for the time-
Since the antisymmetrization and time-evolution operatorgveraged energy as a function ifin different (e, w.) pa-

commute, the state afté; periods is simply given by rameter regimes.

|y N(NpY=UNT|D,  (t=0)) A. Magnetization, orbital currents, and energy

.....

— ANt o Nt We start with the time-dependent dynamics of the mag-
AU, |\P”1/1(1)> @Uy |\Ian/N(N)>}, netization and its corresponding power spectra for a single

(32 electron. The power spectrus{v) is the square of the Fou-
rier transform of the expectation value of the magnetization

where we have used the notatiod;(1,0=U;, for i  operator (M) (t). [For notational simplicity, we write
=1,... N. We can now generalize E(R9) for the trace of (M,)(t) by (M)(t).] We keepw, fixed, and sweep through
an operator at any integer multiphé of the period as values ofe, from small to large. As can be seen from the
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FIG. 2. (a) S|ng|e e|ectron time_dependent magnetization FIG. 4. (a‘)NMagnetiZatiE)n as a fUnCtiOn Of t|me for the param-
(M)(t) for e=0.1, w,=0.1, and =0.1 in the quasiregular regime €terse=2.0, w.=2.0, anda=0.1, deep in the chaotic regintsee
(see Fig. 1 (b) Power spectruns(v), of (M) corresponding to the ~ Fig- 1. (b) Here the classical chaos is clearly revealed in the noisy
parameter values aB). The scale ofv frequencies is arbitrary. In  structure ok M) and the broadband spectrum $(v).
all figures the axes are given in terms of dimensionless units.
tization in the regular regime iparamagnetic whereas for

) ) ) o~ ) three electrons becomes diamagnetic again. We note that the
phase diagram in Fig. 1, for fixed., as e increases the gigmagnetic to paramagnetic changes are nonmonoatonic as a
underlying classical dynamics changes from quasi-integrablg,tion of N. For example, foN=4 it switches back to

to chaotic. o o paramagnetic, but remains diamagnetic for bhtk5 and
In Fig. 2(@) we see tha{M) is diamagnetic in the regular \—_g A similar situation occurs with the orbital current as

regime and oscillates periodically with time, reflected in theghg\wn in Fig. Bb). We mention that the specific value of the
very strong peak in its power spectrum shown in Fig)2

As we increase the values ef (i.e., as we approach the frus_tratiqn paramet_erféz)cl'ﬁ) determines if t_he magnet-
chaos border in the phase diagpathe intermediate dynam- zation flips from d|amagnet|c to paramagnetic as we keep
ics gets more complex, as shown in Figiand 3b). We adding electrons. Basically, this phenomenon occurs when
see in Fig. 8), that there are two peaks B(v), which are f~0(1), i.e., when we add one flux quantum to the do_t. In
due to the quasibeats seen in Figa)3In the chaotic region, all other cases, the magnetization remains diamagnetic and

(M)(t) shows essentially irregular behavior, Figay while monotonically increasing in magnitude as the number of
S(v) has a broad background, shown in Figb)4 Note that

the average value ¢M)(t) increases in magnitude, becom- o4 * 1 1™
ing steadily more diamagnetic in the chaotic regime. 0.3 i ' a 10.0
The one-electron behavior changes significantly with the o2} || ' 1" N
addition of more electrons. The pattern of change from regu: % oal fi i 101 &
lar to chaotic is similar as in the one-electron case as we ¥ = | | o “.‘ i ] *g
sweep through the same values as above. The spectral ~ ®0r | /| [ [} 10z
function develops more resonances in the regular region .01} ¢ l | ’ “\ ]
whereas in the chaotic regime it has a broadband spectrun | | Uy v TR ] 03
As we continue to increase the number of electrons there ar 2.6 ey 25.0
more “beats” in the time dependence of the magnetization c | [ 105
and more peaks in the spectral function. 2.8 ’\ ! 1E 1
It is then more convenient to consider the time-averagec , AR 3 j200
properties of the magnetization, the orbital current, or the %.3.0 ANl ”» } - 1175 é
total energy, as a function of the number of electrons. Itisin v 3 1150 ¥
this type of function that we can see important qualitative = -3.2 A 2 1
differences that represent the changes from the classic: N \‘ 3 7125
regular to chaotic behavior in the quantum dynamics. In Fig.  -34L— . .. b0 4100
5(a) we see that for two electrons the time-averaged magne 02 4681012140 2 4N 6 8 10
-0.54 80
056 b FIG. 5. (a) Time-averaged magnetizatia(tﬁM)) (per electrom
-08] \ “ M‘”“H 60 in the quasi-integrable regime far=0.1, w.=0.1, A=0.1, as a
€ o0f' ” i) \I‘U'” | H‘ S¢) function of electron numbeN. We see tha{(M)) oscillates non-
3 0l ‘ ‘\““\\\r“}ml HJ ! 40 monotonically withN. See the text for a theoretical perturbative
0gaf ! “l“”\\“‘”}\. L 2 explanation of these oscillationgh) Total time-averaged orbital
.0.66 i ! H ‘ | magnetizatior(per electromas a function oN for the same param-
R T R i 0 eter valu_es as ifa). Her_e we see, as expected, _a direct correspon-
¢ - v dence with the magnetization ). (c) Same as ina) for param-

eters in the chaotic regime=2.0, w.=2.0, and%=0.1. In this
FIG. 3. (8 Same as in Fig. @) for e=1.0, »,=1.0,%=0.1, case((M)) oscillates but its behavior ipurely diamagnetic.(d)
which is in the regime that is approaching the chaotic region inOrbital current for the chaotic parameter values®f with a clear
parameter spacesee Fig. L (b) Same as in Fig. ®) for the pa-  correspondence to the purely diamagnetic nature of the magnetic
rameters ofa). response of the system in the chaotic regime.
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0.00 ey o 06 N behavior is actually directly related to the Pauli exclusion
E 1t ] principle. We note that in the zero magnetic field case, each
N 001 of theN electrons in the circular dot of radil, occupies an
2 onf exclusion principle space of ord&,/N*?, while the static
v . free particle kinetic energy changesl‘eﬂ?g. We expect that
-0.03 - this situation does not change much when we are in the
: quasi-integrable regime, for finite fields and low frequencies.
0.04 - In the classically chaotic regime, in the presence of stronger
000 magnetic fields or higher frequencies, the magnetic field will
c tend, on the average, to localize more the electrons to Lar-
002 [ mor orbits inside the dot and in the boundaries. When the
A b field is larger, so that the Larmor radius aRg are compa-
s -0.04 - rable, the Landau levels have to be taken into account. In this
v ; case the electrons will not necessarily feel the presence of the
-0.06 [ . ; . . L =
E boundary and they will remain localized in their “chaotic
008 [ ] Landau orbits due to the time-dependent kicks. In this limit
NI TR I S T P T the contribution from the kinetic energy is much less rel-
0 02 04 06 08 10 2 4 6 evant, and the Larmor orbit radius will be less dependent of
Oe N N andRy.

FIG. 6. (a) Time-averaged magnetization for one electron as a
function of w, for e=0.1, and%=0.1, with increment in diamag-
netism asToc increases(b) Time-averaged energy as a function of
electron number with a clear quadratic dependence for the same In this subsection we present a perturbative analysis that
parameters as ife). (c) ((M)) in the chaotic regime for one elec- provides an explanation for the magnetization oscillations as
tron, withe=10,7%=0.1, as a function ok, . Here we also note an a function of N in the quasi-integrable regime. Let us first
increase of diamagnetism ag grows. (d) ((E)) for the same pa- consider the time-independent part of the one-electron
rameters as irfb) in the chaotic regime with a clear linear depen- HamiltonianH , and write it as
dence onN. See the text for a further discussion of these results.

B. Perturbative evaluation of the magnetization
in the quasiregular regime

Hge=Hot+V, (36)

electrons increases. We provide a theoretical perturbationh
theory explanation of these diamagnetic to paramagneti@l ere
transitions results in the next subsection. 2042 1 d 752 7

As we increase the value @f we enter the chaotic re- ﬁoz_ _(_+ = ) i S h== (37)
gime. There we find that foall electron numbers the mag- 2 \drz rdr r? 2
netization isalways diamagneticat least up to the maximum
number of electrons we considered 25). In Fig. 5c) we and
show the time-averaged magnetization in the chaotic regime, ~\2
which also oscillates as a function of, but it is always V:E(&) r2 (38)
negative and of larger magnitude than in the quasiregular 2\ 2

regime. A similar situation occurs for the orbital curr¢as ] ) o ]

shown in Fig. &d), although it has less sharp changes as &Ve Will consider the limiting case of very small;. field,

function of N than doeg(M))]. i.e., w;<1. As was first shown by Dingle, one can write the
In Fig. 6(&) we consider the time-averaged magnetizationeigenvalues to first order i@, by considering the zero field

for a fixed value oN=1, e=0.1 andh = 0.1 as a function of basis functions of the disk Bessel eigenfunctions

w.. In this quasi-integrable regime we see thaM)) is ~

diamagnetic and decays quadratically as a functiom of Hol g =E ), (39)

The situation changes in the chaotic regime, shown in Fig. i )

6(c), where there is also decay with, but now the behavior Where the normalized eigenvalues §8¢

is not as smooth as in the quasi-integrable regime. We show 2 -
in Fig. 6b) the behavior of the time averaged energy as a E(l)=ﬂ+/+ i 1+ 2(7°-1) +O(Z)2) (40)
function of the numbeN of electrons. Here we see a clear no2f T 12 aﬁ/ ¢

guadratic growth as a function &f The situation is remark-

ably different when the single-particle classical dynamics isHere «,,, is the nth zero of the Bessel functiod, (x), and
chaotic. In this case, shown in Fig(d, the time-averaged the unperturbedbasis functions are given bigve consider
energy grows clearlyinearly with N. This implies that the only the radial part, the angular part is clear

classically chaotic solutions do have a significant quantum
signature in the averaged energy, that changes the quadratic (O _ V2
guasi-integrable regime behavior to a linéadependence in <r|‘/’n/>_3/+1(an/) I (anT).
the chaotic regime. We now present a simple heuristic argu- ’

ment as to why the change over between quadratic and linedihe matrix elements of the perturbation are then given by

(41)
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1l 2(/2-1) 038
= ———|, m=ni
~ 2 3 2 1
~ 1 [OF &ny .
( (0)|V|¢(0)>5an:§(7) 0.6
B8am, an,
— 5 5 M#n.
(am —ap,) 04
(42 <<M>>
The perturbed nondegenerate eigenfunctions are obtained ‘ 0.2
from standard perturbation analysis,
v 00 |
)=l + 2 D)+ 0(V2,)
E(O) E(O) 02
0 2 4 6 8 10 12
~ 1)+ 2102 S L"n/wm N
Oém/ an/)3 FIG. 7. Comparison between exadfl] and perturbative {)
+o( _8) 43) calculations for the time-averaged magnetization as a function of
42 1

electron number. The parameters here are0.01, %=0.1, and

where we have used the unperturbed energy IeEé,i’é .=0.01. Note the almost exact agreement between the two calcu-
(0)_4(am/ an/) Using Eq.(43), and the definition of lations, with the magnitude of the diamagnetic response much

the magnetization operator, E(L4), the leading first order SMaller than that of the paramagnetic response.
matrix element contribution t(S‘/IZ is given by

S P A8 +0(@? 49
<1>|Mz|w‘”>E<Mz>mn=—/—2f<¢<n‘,’)|r2|¢<n‘,’)>+0<o(a§)) (Phnn =3\ 1+ 2 AL
44 i’
2f 2(/2-1) Clearly, the last term in Eq48) is of O(w?), so it can be

~2
+O0(wp). ignored within the current approximation, which means that
to lowest order, the time dependence plays no significant role

2
A,

(45) in determining the average magnetization.
Once again, if we take as the initial state the lowest energy To test the approximation fc(|1\~/l 2IN, Eq.(47), we show
state allowed by the Pauli principle in Fig. 7 a comparison of results from the perturbative and
. numerically exact calculations. The perturbative results agree
(W1 NO)=A{lh (1) ®] 4, (2)) - remarkably well with the numerical calculations. We can
now understand why the averaged magnetization oscillates in
®|¢“N/N(N)>}' (46) sign in the regular regime and it is becayidt,)/N depends

most strongly onE ~,7. Whenever this sum of angular
momentum quantum numbers flips sign, so does the magne-
tization. For example, for the parameters shown in Fig. 7, the
values ofF(N) =EiN: ,/i for successive values & are

we can generalize Ed44) to the N-electron case. We find
that the averaged magnetizatiper electron to first order
approximation, is

M ~
( NZ> =— %f - % > [ /i+ Lg “ = )] +0(w3). F(N=12,...,12=0,-1,0-2,0,0-3,0-1,0,-4,0,
i=1
i/ (50
(47)
Next, we perform a linear-response theory analysis of the gorresponding to
full time-dependent problem, assuming tk&stl. We show
in the Appendix that within the perturbative approximation /i=(0-11-220-33-11-44, (52)
for a single electron, the average magnetization at tipés
given by i.e., the/ values of the twelve-electrdininperturbesiground
state. This is a selection rule associated with the symmetries
5 f f[ew\’ present in the system.
(M) (Np)=—=1 /450 [ + o= | 5 What is interesting is that in the chaotic region, there is no
2h such flipping of the sign. This difference may constitute an
experimentally accessible signature of chaos in the quantum
X 2 2 (r? ﬁn_ sifflw, (Nt—p)}, system. Clearly, such behavior is exclusively a consequence
p=1n#n; o 2 of the Pauli principle, for we would not observe any change

(48) in the response per electron without it, since ignoring it in
the multielectron case would lead to a trivial rescaling of the
where single electron results.
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IV. CONCLUSIONS Here we have considered a circular disk in the presence of

To summarize, we have studied a model of a noninteract® time dependent magnetic field. It is only when we have the

ing N-electron system, confined to a circular structure with2 component of the field added to the dc one that chaos
9 y ' appears. In contrast, if the field is static but the geometry is

rigid boundaries, and subjected to perpendicular constant ari anged one can have chaotic classical solutions. The rel-

time-periodic magnetic fields. We studied the magnet|zat|onevance of the Pauli principle as seen in the zero temperature

a.md orbital currents ag a.fu11ct|on of time, as well as themagnetization has been studied, for example, by FEfAt
time-averaged magnetizatidiM)), and energy as a func- present we do not know what happens when the geometry is
tion of electron numbeN. We can make a strong connection not circular and we have a gas of Pauli electrons in the pres-
between the dynamic response @¥,)(t) (or it's power ence of a d¢-ac magnetic field. We expect to consider the
spectrum, and the underlying classical dynamics—as thetwo problems mentioned above in the future.

classical system makes a transition to chaos as we vary the To conclude, we briefly give some estimates in terms of
applied magnetic fields, the dynamics changes from beinghysical units of the field strengths and frequencies required
harmonic to essentially noisy. There are three central signifito observe the effects predicted by our model calculations. In
cant conclusions: first, the Pauli principle affects the behava GaAs-AlGaAs semiconductor the radiRg of a quantum

ior of this noninteracting system significantly, e.g., in termsdot device[10—18 can be between 0.1 and }m, a sheet

of oscillations of((M,)) as a function oN. This behavior is ~ electron  density n~10" cm™?, a mobilty u
directly related to the Pauli principle that allows the electrons~265000 cr/V's, and a characteristic level spacidg

to optimally reduce their averageédM)) at specific values ~0.05 meV or~0.5 K. In the ballistic electronic motion

of the total angular momentum. Second, while these oscillaregime the elastic mean free path~10 um, with phase
tions in the quasi-integrable regime cause the system to flipoherence length varying between 15 andua@. Typically
back and forth between diamagnetic and paramagnetic béhe power injected is smaller than 1 nW, which is necessary
havior, the system remains diamagnetic at all times in théo avoid electron heating. For a dot radiusRgf~1 um, the
chaotic regime. We also found a very interesting change ikick frequency wy can be obtained from Eq$5) as wq

the timg-qveraged energy as a fun_ction Nof going from = (#/m*R3) (1/)=2/f GHz. Then the requireBy, andB,.
qu_adratlc in the qyasrmtegrable regime to linear in the Ch.af’nagnetic fields have the valueBy.=(wom*cle*) e
otic one. We provided a simple heuristic explanation of this ~ -~ ~

behavior related to Pauli's exclusion principle. =20(wc/h) G, andByc= eByc=20(ewc /%) G. The ac Lar-

In this paper we have not considered the effects of Coumor frequency isw,= ew.~20 (ew./A) MHz. With these
lomb interactions that can significantly complicate the analyvalues, in the quasi-integrable regime, with parameters
ses. There are static studies that have considered the changesw.) 9= (0.1,0.1), we getw{®¥=20 GHz andB{®?
in the classical dynamics due to interactions. What has bees20 G. In the chaotic regime we take the parameters
found in some examples is t_hat if the system o_f noninteracti ¢ , y(chaosi— (2 0,2.0), which leads tm,gv‘haoslz 20 GHz
ing particles was nonchaotic, as the interaction paramete{;nngcchaos):SOO G. These results for the regular and chaotic
Increases the dynamics can t_)ecome Ch@@. In the quan- regimes are within experimental reach.
tum regime the random matrix theory statistics can exhibit a
tran5|t|on from P_0|sson to orthogonal ensemb_le as thg inter- ACKNOWLEDGMENTS
action strength increasd®4]. What happens in the time-
dependent case considered in this paper that deals with This work has been supported in part by CONACYT
guasienergy statistics is not known at present. 3047P and by NSF Grant No. DMR-9521845.

APPENDIX

In this Appendix we provide the derivation of E@8). For any operatoA, the expectation value of the linear response
under the action of a constant Hamiltoniblg and a time-dependent perturbatig(t) is given by

- A 1t A -
A0 =(Apo+ 7 [ atTAt—0 V() Do, (A1)
0

where( - - - )o=Tr{po}, andpy is the density matrix associated with the unperturbed HamiltoHigrThus,

([A(t;—1),V(t) 1)o=Tr{po[ A(t;—1),V(ty) I} = Tr{poe' Mot~ 0/ A~ THolt= /AN (1) — p V(1) eHolti U/ Ag = Holta ~ /iy
(A2)

For a single particle pure staf@, ), po=|¥n ){(#n|. Thus, from above,
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(- ->o=§ <¢n|¢ni><¢ni|e‘”oGrtWiAe“Ho“rt”hvm)|m—; (| ) |V (£1) €020 ATt 0/
_ eiEni(tl—t)/h< %i |Ae—iH0(t1—t)/ﬁ\7(tl)| ¢ni> _ e—iEni(tl—t)/ﬁ< ¢ni|\”/(t1)e—iHo(t1—t)/ﬁA| ¢“i>

= eiEni(tl_t)/hz e_iEni(tl_t)/h< ¢HI|A| ¢n>< lﬁnl\’\/(tl)| ¢ni> - e_iEni(tl_t)/ﬁE eiEni(tl_t)/ﬁ< ‘ﬂni |\7(t1)| ¢n>< ¢H|A| ¢ni>'

(A3)
In our case,
. L, f.
_ __ _Z_ 72
A=M,= ] 2r ,
Nt
V(tl>=vr)§0 8(t1—p). (A4)
Since the{|¢,,)} are real andA andV are Hermitian,
<' . '>0: E Ani ,nVn,ni(tl)(eiw"' 'n(tlit)_eiiw”' ’"(tlit))r (AS)
n
where
2 f 2 f 2
Ani n— _/iéni ,n_5<¢ni|r |¢n>E _/i5ni n_ §<r >ni no (AB)
1 ew 2
Vn,ni=§< 20) <r2>n,ni§p: 5(t1—p), (A7)
Eni_En
Wn, n™ % . (A8)
Finally, we have
cw.)” f Nt
< B ->0: _i( 20) ; <r2>n,ni</i 5ni ,n+ §<r2>n,ni pgo Sin{wni ,n(tl_t)}a(tl_p) (A9)
and
- - f 5
<A>0:<’/’ni|Mz|¢ni>:_/i_§<r >ni,ni- (A10)

Substituting Eqs(A9) and (A10) into Eq. (A1), we get Eq.(48). This completes our derivation of the linear response result.
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