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Pauli principle and chaos in a magnetized disk
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We present results of a detailed quantum-mechanical study of a gas ofN noninteracting electrons confined
to a circular boundary and subject to homogeneous dc plus ac magnetic fields@B5Bdc1Bacf (t), with f (t
12p/v0)5 f (t)]. We earlier found a one-particleclassicalphase diagram of the~scaled! Larmor frequency

ṽc5vc /v0 vs e5Bac /Bdc that separates regular from chaotic regimes. We also showed that the quantum
spectrum statistics changed from Poisson to Gaussian orthogonal ensembles in the transition from classically

integrable to chaotic dynamics. Here we find that, as a function ofN and (e,ṽc), there are clear quantum
signatures in the magnetic response, when going from the single-particle classically regular to chaotic regimes.
In the quasi-integrable regime the magnetization nonmonotonically oscillates between diamagnetic and para-
magnetic as a function ofN. We quantitatively understand this behavior from a perturbation theory analysis. In
the chaotic regime, however, we find that the magnetization oscillates as a function ofN but it is always
diamagnetic. Equivalent results are also presented for the orbital currents. We also find that the time-averaged
energy grows asN2 in the quasi-integrable regime but changes to a linearN dependence in the chaotic regime.
In contrast, the results with Bose statistics are akin to the single-particle case and thus different from the
fermionic case. We also give an estimate of possible experimental parameters where our results may be seen
in semiconductor quantum dot billiards.@S1063-651X~99!05208-3#

PACS number~s!: 05.45.2a, 03.65.2w, 72.20.Ht
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I. INTRODUCTION

There is a long history of studies of the magnetic respo
of an electron gas, confined to a finite boundary. Start
with Bohr and van Leeuwen@1#, to Landau’s finite diamag-
netism in the quantum regime@2,3#. The problem is still of
current theoretical an experimental interest@4#, in particular
due to the realization that for most geometries of the con
ing boundary one can find classically chaotic behav
@5–18#. Most previous studies of this problem have assum
that the external magnetic field is static and they have c
centrated on calculating the static magnetic susceptibi
except for the dynamic magnetic field experimental work
Reuletet al. @19#.

In an earlier paper@20# ~referred to as I hereafter!, we
investigated the classical dynamics and the quantum si
tures of classical chaos, forone electronconfined to a circu-
lar quantum dot structure. The dot was subjected to unifo
dc (Bdc) plus ac „Bacf (t)…, with periodic f (t)5 f (t
12p/v0) perpendicular magnetic fields. There, we est
lished an approximate phase boundary in the param
space spanned by (e5Bac /Bdc,ṽc5vc /v0) that separates
the classically regular from the chaotic regimes, wherevc is
the Larmor frequency of the dc field. The phase diagr
shown in Fig. 1, which we shall often use in our analy
here, separates the quasi-integrable from chaotic regime
I we established clear correspondences between the tr
tions in the classical behavior and their corresponding qu
tum signatures. From identifying the statistical properties
the quasienergy spectrum of the one-period evolution op
tor, going from Poisson~integrable! to Gaussian orthogona
ensemble~chaotic!, to the semiclassical phase space cor
PRE 601063-651X/99/60~2!/1590~10!/$15.00
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In this paper we present a detailed quantum-mechan
study of the zero temperature magnetic response of a no
teracting electron gas confined to a circular boundary
subject to the same combination of a dc plus ac magn
fields. Here we are interested in considering the magn
response of this model for anN electron system that satisfie
the Pauli exclusion principle. Another basic question, fi
addressed in this paper, is how does the transition from re
lar to chaotic behavior in the classical case, where the p
ticles are indistinguishable, affect their fermionic quantu
nature. Most previous studies of the quantum manifestati

FIG. 1. Classical phase diagram separating the regular from
otic regions used in the analysis of this paper. See the text for
definition of the dimensionless variables in the axes.
1590 © 1999 The American Physical Society
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PRE 60 1591PAULI PRINCIPLE AND CHAOS IN A MAGNETIZED DISK
of classical chaos have centered on one-particle proble
Here we only address the important particle-statistics ma
particle problem, and leave for a future study the relev
effects of electronic interactions. As we show below, th
are indeed clear manifestations of the particle statist
which are different if we are in the classically integrab
regime from those where the system is chaotic.

The organization of the rest of the paper is as follows.
Sec. II we briefly recapitulate the main elements of the sin
particle model studied in I, together with expressions for
matrix elements of the operators needed in our analysis. N
we outline our method to calculate the matrix elements
multi-electron operators in a basis of properly~anti!symme-
trized eigenfunctions. In Sec. III we present our main res
for the magnetization, orbital currents, and energy. We c
culated both the time evolution of such operators and th
time averages as a functionN and the parameters (e,ṽc). We
also include a perturbative calculation, fully described in
Appendix, that quantitatively explains our numerical resu
for the magnetization in the quasi-integrable weak-field
gime. Finally, in Sec. IV we present a summary of our co
clusions, with an estimate of a few experimental parame
that may give an idea of the regimes in frequency and fie
where the transition between integrable and chaotic regi
discussed in this paper could be tested.

II. THE MODEL

A. One-electron wave function

We start by recalling the main features of the single p
ticle formalism, as explained in paper I, and next its ext
sion to theN noninteracting electron problem. The model w
consider here is that of electrons confined to a disk,
subject to a steady (Bdc) and a time-periodic (Bac) magnetic
field. After scaling to appropriate dimensionless units,
model Hamiltonian considered here is

H̃5H̃dc1H̃1~t!, ~1!

which in polar coordinates reads

H̃dc52
\̃2

2 S d2

dr2
1

1

r

d

dr D 1
l 2\̃2

2r 2
1

1

2
S ṽc

2
D 2

r 21l \̃
ṽc

2
,

~2!

and with the time-dependent kick component

H̃1~t!5
1

2
h r 2 (

n52`

`

d~t2n!. ~3!

The dimensionless units are defined as

r 5
r

R0
, 0<r<1, t5

t

T0
[

v0

2p
t, ~4!

ṽc5
vc

v0
, \̃5

\

m* v0R0
2

, e5
Bac

Bdc
5

vac

vc
, and h5S e ṽc

2
D 2

.

~5!
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Here R0 is the radius of the disk quantum dot assumed
have rigid walls.T0 is the drive period of the ac field,vc
5e* Bdc/(m* c) is the static Larmor frequency, in terms o
the effective electron massm* (;0.067me), the screened
electronic chargee* (;0.3e) @21#, and the dynamic fre-
quencyvac5e* Bac/(m* c).

The exact eigenfunctions of the static HamiltonianH̃dc are
given in terms of the WhittakerM functions@3#

c̃nl ~r !5A 2

Nnl

1

r
Mxnl ,ul u/2S f

2
r 2D , ~6!

with n the principal quantum number,l the angular momen-
tum eigenvalue, andNnl a normalization constant. The frus
tration parameterf that measures the number of flux quan
in the disk is defined by

f 5
F

F0
[

BdcpR0
2

~hc/2e* !
[

ṽc

\̃
5S R0

l B
D 2

, ~7!

with l B5(\c/eBdc)
1/2 the magnetic length andF0

5hc/2e* the quantum of flux. The eigenenergies

Ẽnl 52~xnl 1l ! ~8!

are determined by the requirement that the wave func
vanishes at the boundary, i.e., by the zeros of the Whitta
function Mxnl ,ul u/2( f /2)50.

We calculated the energy eigenvaluesẼnl for the static
problem in a basis of Whittaker functions as a function
Bdc, and checked our numbers by fully reproducing the
sults of Ref.@5#. The Whittaker functions have the advanta
of being valid over the entire range of parameters, howe
they are numerically difficult to evaluate for the full time
dependent problem. For convenience when calculating
time-dependent problem, we decided also to expand the
~single particle! wave function in a Fourier-sine basis. In th
case

^r uH̃dc uc̃nl ~f!&5Ẽnl c̃nl ~r !
ei l f

A2p
, ~9!

^r uC̃~f!&5 (
n51

`

(
l 52`

`

c̃nl ~r !
ei l f

A2p
, ~10!

c̃nl ~r 51!50, E
0

1

c̃nl
2 ~r !r dr 51, ~11!

and ^r uc̃nl &5A2

r
sin~npr !. ~12!

This basis set is properly orthonormalized, and autom
cally satisfies the boundary conditions. To calculate the sp
trum of the static problem, we used, nonetheless, the e
eigenvalues ofH̃dc, given by the zeros of the Whittake
functions. Doing this allowed us also to check the reliabil
of our sine-basis numerical method.
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We then computed the required matrix elements of
operators we are interested in, within the sine-basis met
For example, for the magnetization operator

m5
e*

2m* c
SL2

e*

c
r3A~r ! D , ~13!

whereL is the angular momentum operator andA(r ) is the
electromagnetic vector potential in normalized coordina
In the present case, we take the magnetic field perpendic
to the plane, then thez component of the magnetization op
erator is

M̃ z~r !5
M̂ z

mB
52

L̂z

\̃
2

f

2
r̂ 2, ~14!

with Lz the z component of the angular momentum,mB

5ue* u\/2m* c the Bohr magneton, andM̂ z the magnetiza-
tion operator along thez axis. The matrix elements ofM̃ z in
the Fourier sine basis are given by

^muM̃ zun&52H l 1
f

2 S 1

3
2

1

2n2p2D J dmn

2H f

2

~2 !m1n

p2

8mn

~m22n2!2J ~12dmn!.

~15!

Similarly, starting from the definition of the current densi
operator

J5
1

2m*
S 2 i\“2

e*

c
AD1c.c., ~16!

~where c.c. stands for complex conjugate!, we have the fol-
lowing expression for the azimuthal current densities:Jf

5Jf
(para)1Jf

(dia) , where

Jf
(para)52

i \̃

2

1

r

]

]f
1c.c. and Jf

(dia)5
ṽc

2
r , ~17!

are the paramagnetic and diamagnetic current densities
spectively. In the Fourier-sine basis, the matrix elements
the current densities~in units of \̃) are given by

^muJf
(para)un&

5l \̃H 2Ci@2np#1gE1 ln~2np! ~m5n!,

2Ci@~m1n!p#1Ci@~m2n!p# ~mÞn!,
~18!
e
d.

s.
lar

re-
f

^muJf
(dia)un&5

f

2
\̃5

1

2
~m5n!,

~2 !m1n21

p2

4mn

~m22n2!2
~mÞn!,

~19!

wheregE50.57721 566649, . . . , isEuler’s gamma number
and Ci(x) is the cosine integral.

Finally, the expression for the one-period time-evoluti
operator U l (t,t0), for the single particle Hamiltonian
which satisfies the dynamical equation

i \̃
]

]t
U l ~t,t0!5@H̃dc1H̃1~t!#U l ~t,t0!, ~20!

is

U l ~1,0!5expS 2
i

\̃

1

2
h r 2D expS 2

i

\̃
H̃dcD . ~21!

The total~single particle! wave function at any integer mul
tiple NT of the period~hereafter taken to be 1!, is given by
repeated applications ofU l to the initial wave function

uC l ~r ,f,NT!&5U
l

NT uC l ~r ,f,0!&. ~22!

B. Many-electron wave functions

One can directly generalize the above single-electron
malism to the many-electron case. Take the initialN-electron
wave function to be

uF~r1 ,r2, . . . ,rN!&[uF~1,2 . . . ,N!&, ~23!

which is antisymmetric under exchange of an odd numbe
particles~the Pauli exclusion principle!:

uF~1, . . . ,i , . . . ,j , . . . ,N!&52uF~1, . . . ,j , . . . ,i , . . . ,N!&.

~24!

Let the i th single-particle eigenstate satisfy the equation

H̃ ( i )uCni l i
~ i !&5Eni l i

( i ) uCni l i
~ i !&. ~25!

We know that the Slater antisymmetrization procedure
the noninteractingN-electron state can be written as the fo
lowing tensor product@22#:
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ÂuF~1,2, . . . ,N!&5
1

AN!UuCn1l 1
~1!& ^ uCn2l 2

~1!& ••• ^ uCnNl N
~1!&

uCn1l 1
~2!& ^ uCn2l 2

~2!& ••• ^ uCnNl N
~2!&

A A � A

uCn1l 1
~N!& ^ uCn2l 2

~N!& ••• ^ uCnNl N
~N!&

U
5

1

AN!
(
P

dP@ uCP$n1l 1%~1!& ^ uCP$n2l 2%~2!&•••^ uCP$nNl N%~N!&], ~26!
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whereÂ is the antisymmetrization operator andP is the per-
mutation operator

P$1,2, . . . ,N%5$P1,P2, . . . ,PN%, ~27!

dP5H 11 ~even P!,

21 ~odd P!.
~28!

The summation runs over all possible permutations. Furth
more, the trace of any sum ofN-body operatorsÔ

5( i 51
N Ôi can be written as

Tr$Ô%5^F~1, . . . ,N!uÔuF~1, . . . ,N!&

5
1

N (
i , j 51

N

^Cni l i
~ j !uÔj uCni l i

~ j !&. ~29!

Now consider the time evolution of such a system. F
simplicity, we take as the initial state the lowest ener
~ground! state of theunperturbedsystem~i.e., without the ac
field! allowed by the Pauli principle:

uF1, . . . ,N~ t50!&

5Â$uCn1l 1
~1!& ^ uCn2l 2

~2!&•••^ uCnNl N
~N!&%.

~30!

The one-period time-evolution operator for the N-electr
system is given by the tensor product,

U5U1~1,0! ^ U2~1,0!•••^ UN~1,0!. ~31!

Since the antisymmetrization and time-evolution operat
commute, the state afterNT periods is simply given by

uF1, . . . ,N~NT!&5UNTuF1, . . . ,N~ t50!&

5Â$U1
NTuCn1l 1

~1!&•••^ UN
NTuCnNl N

~N!&%,

~32!

where we have used the notationUi(1,0)[Ui , for i
51, . . . ,N. We can now generalize Eq.~29! for the trace of
an operator at any integer multipleNT of the period as
r-

r
y

s

Tr$Ô%~ t5NT!5^F1, . . . ,N~ t5NT!uÔuF1, . . . ,N~ t5NT!&

5
1

N (
i , j 51

N

^Cni l i
~ j ,t50!u~U j

†!NT

3ÔjU j
NTuCni l i

~ j ,t50!&. ~33!

In particular, for the average quantum time-dependent m
netizationper electron, we have

^M̃ z&~NT!

N
52

L

N
1

1

N2 (
i , j 51

N

^Cni l i
~ j !u~U j

†!NT

3S 2
f

2
r j

2DU j
NTuCni l i

~ j !&, ~34!

whereL5( i 51
N l i . Similarly, we can write the correspond

ing expressions for the time-dependent orbital currents,
the total time-dependent Hamiltonian average, which
term the averaged energy. For example, thetime-averaged
magnetization̂ ^Mz&& is defined by

^^Mz&&5 lim
NT˜`

1

NT
(
n51

NT

^Mz&~n!. ~35!

III. RESULTS

We now come to the discussion of the main results of t
paper, that are concerned with the dynamic and tim
averaged properties of different relevant operators. The m
striking features are observed in the magnetization of
system, which we shall discuss first as a function of
numberN of electrons and (e,ṽc). We also give results for
the orbital current as well as interesting results for the tim
averaged energy as a function ofN in different (e,ṽc) pa-
rameter regimes.

A. Magnetization, orbital currents, and energy

We start with the time-dependent dynamics of the m
netization and its corresponding power spectra for a sin
electron. The power spectrumS(n) is the square of the Fou
rier transform of the expectation value of the magnetizat
operator ^M̃ z&(t). @For notational simplicity, we write

^M̃ z&(t) by ^M &(t).# We keepṽc fixed, and sweep through
values ofe, from small to large. As can be seen from th
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phase diagram in Fig. 1, for fixedṽc , as e increases the
underlying classical dynamics changes from quasi-integra
to chaotic.

In Fig. 2~a! we see that̂M & is diamagnetic in the regula
regime and oscillates periodically with time, reflected in t
very strong peak in its power spectrum shown in Fig. 2~b!.
As we increase the values ofe ~i.e., as we approach th
chaos border in the phase diagram!, the intermediate dynam
ics gets more complex, as shown in Figs. 3~a! and 3~b!. We
see in Fig. 3~b!, that there are two peaks inS(n), which are
due to the quasibeats seen in Fig. 3~a!. In the chaotic region,
^M &(t) shows essentially irregular behavior, Fig. 4~a!, while
S(n) has a broad background, shown in Fig. 4~b!. Note that
the average value of^M &(t) increases in magnitude, becom
ing steadily more diamagnetic in the chaotic regime.

The one-electron behavior changes significantly with
addition of more electrons. The pattern of change from re
lar to chaotic is similar as in the one-electron case as
sweep through the samee values as above. The spectr
function develops more resonances in the regular reg
whereas in the chaotic regime it has a broadband spect
As we continue to increase the number of electrons there
more ‘‘beats’’ in the time dependence of the magnetizat
and more peaks in the spectral function.

It is then more convenient to consider the time-avera
properties of the magnetization, the orbital current, or
total energy, as a function of the number of electrons. It is
this type of function that we can see important qualitat
differences that represent the changes from the clas
regular to chaotic behavior in the quantum dynamics. In F
5~a! we see that for two electrons the time-averaged mag

FIG. 3. ~a! Same as in Fig. 2~a! for e51.0, ṽc51.0, \̃50.1,
which is in the regime that is approaching the chaotic region
parameter space~see Fig. 1!. ~b! Same as in Fig. 2~b! for the pa-
rameters of~a!.

FIG. 2. ~a! Single electron time-dependent magnetizati

^M &(t) for e50.1, ṽc50.1, and\̃50.1 in the quasiregular regim
~see Fig. 1!. ~b! Power spectrum,S(n), of ^M & corresponding to the
parameter values of~a!. The scale ofn frequencies is arbitrary. In
all figures the axes are given in terms of dimensionless units.
le

e
-
e

n,
m.
re
n

d
e
n

al
.
e-

tization in the regular regime isparamagnetic, whereas for
three electrons becomes diamagnetic again. We note tha
diamagnetic to paramagnetic changes are nonmonotonic
function of N. For example, forN54 it switches back to
paramagnetic, but remains diamagnetic for bothN55 and
N56. A similar situation occurs with the orbital current a
shown in Fig. 5~b!. We mention that the specific value of th
frustration parameter (f 5ṽc /\̃) determines if the magneti
zation flips from diamagnetic to paramagnetic as we ke
adding electrons. Basically, this phenomenon occurs w
f ;O(1), i.e., when we add one flux quantum to the dot.
all other cases, the magnetization remains diamagnetic
monotonically increasing in magnitude as the number

n

FIG. 4. ~a! Magnetization as a function of time for the param

eterse52.0, ṽc52.0, and\̃50.1, deep in the chaotic regime~see
Fig. 1!. ~b! Here the classical chaos is clearly revealed in the no
structure of̂ M & and the broadband spectrum ofS(n).

FIG. 5. ~a! Time-averaged magnetization^^M && ~per electron!

in the quasi-integrable regime fore50.1, ṽc50.1, \̃50.1, as a
function of electron numberN. We see that̂ ^M && oscillates non-
monotonically withN. See the text for a theoretical perturbativ
explanation of these oscillations.~b! Total time-averaged orbita
magnetization~per electron! as a function ofN for the same param-
eter values as in~a!. Here we see, as expected, a direct corresp
dence with the magnetization of~a!. ~c! Same as in~a! for param-

eters in the chaotic regime,e52.0, ṽc52.0, and\̃50.1. In this
case^^M && oscillates but its behavior ispurely diamagnetic.~d!
Orbital current for the chaotic parameter values of~c!, with a clear
correspondence to the purely diamagnetic nature of the magn
response of the system in the chaotic regime.
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electrons increases. We provide a theoretical perturba
theory explanation of these diamagnetic to paramagn
transitions results in the next subsection.

As we increase the value ofe, we enter the chaotic re
gime. There we find that forall electron numbers the mag
netization isalways diamagnetic, at least up to the maximum
number of electrons we considered (;25). In Fig. 5~c! we
show the time-averaged magnetization in the chaotic regi
which also oscillates as a function ofN, but it is always
negative and of larger magnitude than in the quasireg
regime. A similar situation occurs for the orbital current@as
shown in Fig. 5~d!, although it has less sharp changes a
function of N than doeŝ ^M &&].

In Fig. 6~a! we consider the time-averaged magnetizat
for a fixed value ofN51, e50.1 and\̃50.1 as a function of
vc . In this quasi-integrable regime we see that^^M && is
diamagnetic and decays quadratically as a function ofvc .
The situation changes in the chaotic regime, shown in F
6~c!, where there is also decay withvc but now the behavior
is not as smooth as in the quasi-integrable regime. We s
in Fig. 6~b! the behavior of the time averaged energy a
function of the numberN of electrons. Here we see a cle
quadratic growth as a function ofN. The situation is remark-
ably different when the single-particle classical dynamics
chaotic. In this case, shown in Fig. 6~d!, the time-averaged
energy grows clearlylinearly with N. This implies that the
classically chaotic solutions do have a significant quant
signature in the averaged energy, that changes the quad
quasi-integrable regime behavior to a linearN dependence in
the chaotic regime. We now present a simple heuristic ar
ment as to why the change over between quadratic and li

FIG. 6. ~a! Time-averaged magnetization for one electron a

function of ṽc for e50.1, and\̃50.1, with increment in diamag

netism asṽc increases.~b! Time-averaged energy as a function
electron number with a clear quadratic dependence for the s
parameters as in~a!. ~c! ^^M && in the chaotic regime for one elec

tron, withe510, \̃50.1, as a function ofṽc . Here we also note an

increase of diamagnetism asṽc grows.~d! ^^E&& for the same pa-
rameters as in~b! in the chaotic regime with a clear linear depe
dence onN. See the text for a further discussion of these result
n
ic

e,

ar

a

n

.

w
a

s

tic

u-
ar

N behavior is actually directly related to the Pauli exclusi
principle. We note that in the zero magnetic field case, e
of theN electrons in the circular dot of radiusR0 occupies an
exclusion principle space of orderR0 /N1/2, while the static
free particle kinetic energy changes asN/R0

2. We expect that
this situation does not change much when we are in
quasi-integrable regime, for finite fields and low frequenci
In the classically chaotic regime, in the presence of stron
magnetic fields or higher frequencies, the magnetic field w
tend, on the average, to localize more the electrons to L
mor orbits inside the dot and in the boundaries. When
field is larger, so that the Larmor radius andR0 are compa-
rable, the Landau levels have to be taken into account. In
case the electrons will not necessarily feel the presence o
boundary and they will remain localized in their ‘‘chaotic
Landau orbits due to the time-dependent kicks. In this lim
the contribution from the kinetic energy is much less r
evant, and the Larmor orbit radius will be less dependen
N andR0.

B. Perturbative evaluation of the magnetization
in the quasiregular regime

In this subsection we present a perturbative analysis
provides an explanation for the magnetization oscillations
a function ofN in the quasi-integrable regime. Let us fir
consider the time-independent part of the one-elect
HamiltonianH̃ , and write it as

H̃dc5H̃01Ṽ, ~36!

where

H̃052
\̃2

2 S d2

dr2
1

1

r

d

dr D 1
l 2\̃2

2r 2
1l \̃

ṽc

2
~37!

and

Ṽ5
1

2
S ṽc

2
D 2

r 2. ~38!

We will consider the limiting case of very smallBdc field,
i.e., ṽc!1. As was first shown by Dingle, one can write th
eigenvalues to first order inṽc , by considering the zero field
basis functions of the disk Bessel eigenfunctions

H̃0ucnl
(1)&.Enl

(1)ucnl
(1)&, ~39!

where the normalized eigenvalues are@3#

Enl
(1)5

anl
2

2 f
1l 1

f

12H 11
2~ l 221!

anl
2 J 1O~ṽc

2!. ~40!

Here anl is the nth zero of the Bessel functionJl (x), and
the unperturbedbasis functions are given by~we consider
only the radial part, the angular part is clear!

^r ucnl
(0)&5

A2

Jl 11~anl !
Jl ~anl r !. ~41!

The matrix elements of the perturbation are then given b

a

e
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^cml
(0) uṼucnl

(0)&[Ṽmn5
1

2
S ṽc

2
D 25

1

3 F11
2~ l 221!

anl
2 G , m5ni

8aml anl

~aml
2 2anl

2 !2
, mÞn.

~42!

The perturbed nondegenerate eigenfunctions are obta
from standard perturbation analysis,

ucnl
(1)&5ucnl

(0)&1 (
mÞn

Ṽmn

Eml
(0)2Enl

(0)
ucml

(0)&1O~Ṽmn
2 !

5ucnl
(0)&12 f ṽc

2 (
mÞn

aml anl

~aml
2 2anl

2 !3
ucml

(0)&

1O~a28!, ~43!

where we have used the unperturbed energy levelsEml
(0)

2Enl
(0)5 1

4 (aml
2 2anl

2 ). Using Eq.~43!, and the definition of
the magnetization operator, Eq.~14!, the leading first order
matrix element contribution toM̃ z is given by

^cnl
(1)uM̃ zucnl

(1)&[^M̃ z&mn52l 22 f ^cnl
(0)ur 2ucnl

(0)&1O~ṽc
2!

~44!

52l 2
2 f

3 F11
2~ l 221!

anl
2 G1O~ṽc

2!.

~45!

Once again, if we take as the initial state the lowest ene
state allowed by the Pauli principle

uC1, . . . ,N~0!&5Â$ucn1l 1
~1!& ^ ucn2l 2

~2!&•••

^ ucnNl N
~N!&%, ~46!

we can generalize Eq.~44! to the N-electron case. We find
that the averaged magnetizationper electron, to first order
approximation, is

^M̃ z&
N

52
2 f

3
2

1

N (
i 51

N H l i1
4 f

3

~ l i
221!

ani l i

2 J 1O~ṽc
2!.

~47!

Next, we perform a linear-response theory analysis of
full time-dependent problem, assuming thate!1. We show
in the Appendix that within the perturbative approximati
for a single electron, the average magnetization at timeNT is
given by

^M̃ z&~NT!.2H l i1
f

2
^r 2&ni ,niJ 1

f

2\̃
S eṽc

2
D 2

3 (
p51

NT

(
nÞni

^r 2&n,ni

2 sin$vni ,n~NT2p!%,

~48!

where
ed

y

e

^r 2&n,ni
5

1

3 F11
2~ l i

221!

ani l i

2 G1O~ṽc
2!. ~49!

Clearly, the last term in Eq.~48! is of O(ṽc
3), so it can be

ignored within the current approximation, which means th
to lowest order, the time dependence plays no significant
in determining the average magnetization.

To test the approximation for̂M̃ z&/N, Eq. ~47!, we show
in Fig. 7 a comparison of results from the perturbative a
numerically exact calculations. The perturbative results ag
remarkably well with the numerical calculations. We c
now understand why the averaged magnetization oscillate
sign in the regular regime, and it is because^M̃ z&/N depends
most strongly on( i 51

N l i . Whenever this sum of angula
momentum quantum numbers flips sign, so does the ma
tization. For example, for the parameters shown in Fig. 7,
values ofF(N)5( i 51

N l i for successive values ofN are

F~N51,2, . . . ,12!50,21,0,22,0,0,23,0,21,0,24,0,
~50!

corresponding to

l i5~0,21,1,22,2,0,23,3,21,1,24,4!, ~51!

i.e., thel values of the twelve-electron~unperturbed! ground
state. This is a selection rule associated with the symme
present in the system.

What is interesting is that in the chaotic region, there is
such flipping of the sign. This difference may constitute
experimentally accessible signature of chaos in the quan
system. Clearly, such behavior is exclusively a conseque
of the Pauli principle, for we would not observe any chan
in the response per electron without it, since ignoring it
the multielectron case would lead to a trivial rescaling of t
single electron results.

FIG. 7. Comparison between exact (h) and perturbative (1)
calculations for the time-averaged magnetization as a function

electron number. The parameters here aree50.01, \̃50.1, and

ṽc50.01. Note the almost exact agreement between the two ca
lations, with the magnitude of the diamagnetic response m
smaller than that of the paramagnetic response.
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IV. CONCLUSIONS

To summarize, we have studied a model of a noninter
ing N-electron system, confined to a circular structure w
rigid boundaries, and subjected to perpendicular constant
time-periodic magnetic fields. We studied the magnetizat
and orbital currents as a function of time, as well as
time-averaged magnetization^^M̃ z&&, and energy as a func
tion of electron numberN. We can make a strong connectio
between the dynamic response of^M̃ z&(t) ~or it’s power
spectrum!, and the underlying classical dynamics—as t
classical system makes a transition to chaos as we vary
applied magnetic fields, the dynamics changes from be
harmonic to essentially noisy. There are three central sig
cant conclusions: first, the Pauli principle affects the beh
ior of this noninteracting system significantly, e.g., in term
of oscillations of̂ ^M̃ z&& as a function ofN. This behavior is
directly related to the Pauli principle that allows the electro
to optimally reduce their averaged^^M && at specific values
of the total angular momentum. Second, while these osc
tions in the quasi-integrable regime cause the system to
back and forth between diamagnetic and paramagnetic
havior, the system remains diamagnetic at all times in
chaotic regime. We also found a very interesting change
the time-averaged energy as a function ofN, going from
quadratic in the quasi-integrable regime to linear in the c
otic one. We provided a simple heuristic explanation of t
behavior related to Pauli’s exclusion principle.

In this paper we have not considered the effects of C
lomb interactions that can significantly complicate the ana
ses. There are static studies that have considered the cha
in the classical dynamics due to interactions. What has b
found in some examples is that if the system of nonintera
ing particles was nonchaotic, as the interaction param
increases the dynamics can become chaotic@23#. In the quan-
tum regime the random matrix theory statistics can exhib
transition from Poisson to orthogonal ensemble as the in
action strength increases@24#. What happens in the time
dependent case considered in this paper that deals
quasienergy statistics is not known at present.
t-

nd
n
e

e
he
g

fi-
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Here we have considered a circular disk in the presenc
a time dependent magnetic field. It is only when we have
ac component of the field added to the dc one that ch
appears. In contrast, if the field is static but the geometr
changed one can have chaotic classical solutions. The
evance of the Pauli principle as seen in the zero tempera
magnetization has been studied, for example, by Ref.@5#. At
present we do not know what happens when the geomet
not circular and we have a gas of Pauli electrons in the p
ence of a dc1ac magnetic field. We expect to consider t
two problems mentioned above in the future.

To conclude, we briefly give some estimates in terms
physical units of the field strengths and frequencies requ
to observe the effects predicted by our model calculations
a GaAs-AlGaAs semiconductor the radiusR0 of a quantum
dot device@10–18# can be between 0.1 and 10mm, a sheet
electron density n;1011 cm22, a mobility m
;265 000 cm2/V s, and a characteristic level spacingDe
;0.05 meV or;0.5 K. In the ballistic electronic motion
regime the elastic mean free pathł f;10 mm, with phase
coherence length varying between 15 and 50mm. Typically
the power injected is smaller than 1 nW, which is necess
to avoid electron heating. For a dot radius ofR0;1 mm, the
kick frequencyv0 can be obtained from Eqs.~5! as v0

5(\/m* R0
2) (1/\̃).2/\̃ GHz. Then the requiredBdc andBac

magnetic fields have the valuesBdc5(v0m* c/e* ) ṽc

.20(ṽc /\̃) G, andBac5eBdc.20(eṽc /\̃) G. The ac Lar-
mor frequency isvac5eṽc.20 (eṽc /\̃) MHz. With these
values, in the quasi-integrable regime, with paramet
(e,ṽc)

(reg)5(0.1,0.1), we getv0
(reg).20 GHz and Bac

(reg)

.20 G. In the chaotic regime we take the paramet
(e,ṽc)

(chaos)5(2.0,2.0), which leads tov0
(chaos).20 GHz

andBac
(chaos).800 G. These results for the regular and chao

regimes are within experimental reach.
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APPENDIX

In this Appendix we provide the derivation of Eq.~48!. For any operatorÂ, the expectation value of the linear respon
under the action of a constant HamiltonianH0 and a time-dependent perturbationV(t) is given by

^Â&~ t !5^Â&01
1

i\E0

t

dt1^@Â~ t12t !,V̂~ t1!#&0 , ~A1!

where^ ••• &05Tr$r0%, andr0 is the density matrix associated with the unperturbed HamiltonianH0. Thus,

^@Â~ t12t !,V̂~ t1!#&05Tr$r0@Â~ t12t !,V̂~ t1!#%5Tr$r0eiH 0(t12t)/\Âe2 iH 0(t12t)/\V̂~ t1!2r0V̂~ t1!eiH 0(t12t)/\Âe2 iH 0(t12t)/\%.
~A2!

For a single particle pure stateucni
&, r05ucni

&^cni
u. Thus, from above,



ult.
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^•••&05(
n

^cnucni
&^cni

ueiH 0(t12t)/\Âe2 iH 0(t12t)/\V~ t1!ucn&2(
n

^cnucni
&^cni

uV̂~ t1!eiH 0(t12t)/\Âe2 iH 0(t12t)/\ucn&

5eiEni
(t12t)/\^cni

uÂe2 iH 0(t12t)/\V̂~ t1!ucni
&2e2 iEni

(t12t)/\^cni
uV̂~ t1!e2 iH 0(t12t)/\Âucni

&

5eiEni
(t12t)/\(

n
e2 iEni

(t12t)/\^cni
uÂucn&^cnuV̂~ t1!ucni

&2e2 iEni
(t12t)/\(

n
eiEni

(t12t)/\^cni
uV̂~ t1!ucn&^cnuÂucni

&.

~A3!

In our case,

Â5M̃ z52
L̂z

\̃
2

f

2
r̂ 2,

V̂~ t1!5Ṽ(
p50

NT

d~ t12p!. ~A4!

Since the$ucn&% are real andÂ and V̂ are Hermitian,

^•••&05(
n

Ani ,nVn,ni
~ t1!~eivni ,n(t12t)2e2 ivni ,n(t12t)!, ~A5!

where

Ani ,n52l idni ,n2
f

2
^cni

ur 2ucn&[2l idni ,n2
f

2
^r 2&ni ,n , ~A6!

Vn,ni
5

1

2
S eṽc

2
D 2

^r 2&n,ni(p
d~ t12p!, ~A7!

vni ,n5
Eni

2En

\̃
. ~A8!

Finally, we have

^ . . . &052 i S eṽc

2
D 2

(
n

^r 2&n,niS l idni ,n1
f

2
^r 2&n,ni D (p50

NT

sin$vni ,n~ t12t !%d~ t12p! ~A9!

and

^A&05^cni
uM̃ zucni

&52l i2
f

2
^r 2&ni ,ni

. ~A10!

Substituting Eqs.~A9! and~A10! into Eq. ~A1!, we get Eq.~48!. This completes our derivation of the linear response res
en
.
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