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Signatures of chaos in the entanglement of two coupled quantum kicked tops
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We investigate the rate at which two initially decoupled quantum kicked tops become entangled upon the
introduction of an interaction between them. We find that the entanglement eventually increases linearly in
time. Moreover, we find that the rate of this linear increase is itself a linear function of the sum of the positive
Lyapunov exponents when averaged over initial points drawn from the classical distributions corresponding to
the initial quantum product state. The entanglement measure that is used allows us to identify entanglement
with sensitive dependence on initial conditiofS1063-651X%99)07005-1

PACS numbe(s): 05.45.Mt

I. INTRODUCTION Hamiltonian, and then tracing over the degrees of freedom
which are of no interest to us. The resultirefluceddensity
Some previous approaches to the subject of quanturmatrix is then used to calculate the von Neumann entropy.
chaos[1-4] have been concerned with the behavior of clas-An increase of the entropy implies that the two coupled sys-
sically unstable and classically chaotic quantum systems atems have becomentangledby the time at which the en-
ter they are coupled to heat bafffs-11]. These heat baths tropy is calculated, i.e., quantum correlations have devel-
have typically been modeled by an infinite collection of har-oped. It will be essential to define measures of entanglement
monic oscillators with definite spectral densities. The infinitewhich can then be compared to entropy increase.
number of extra degrees of freedom introduced and subse- We shall therefore consider the increase in entanglement
quently traced over are intended to model the influence oWvith time of two coupled quantum systems, in particular two
the rest of the Universgl2,13 on the system; energy lost coupled quantum kicked tops. Recently ajuelitativelevel
will never return[14]. The hope is that the decohering effect Furuyaet al. [16] have recently taken a similar approach
of the environment will restore the classical-quantum correWith a different choice of system. One of the reasons for our
spondence which was under threat from classical ch@ps choice is that the single kicked top is a much studied and
The price exacted for the restoration of this corresponWell known [4,17-23 model of classical and quantum
dence is an increase in the system entropy or, equivalentighaos. Its quantum dynamics is that of a spiparticle pre-
loss of knowledge about the state of a system. This leads t6€ssing about a fixed axis but which is also perturbed or
an increase in entanglement in a very precise way. One pa‘r‘kicked” periodically in time. Moreover, the finite dimen-
ticular model, that of an inverted harmonic oscillator, hassionality of its Hilbert space, viz.,j2+1, makes it a conve-
been shown to be useful as a guide to physical intuition irhient system to study since it eliminates the need for a trun-
this context. It has been show®,15] that for weak coupling ~ cation of the Hilbert space.
to a heat bath, the von Neumann entropy of the reduced This paper is organized as follows. In Sec. Il we will
dynamics will eventually increase at a rate which is approxi-discuss the measure of entanglement we have used here and
mately equal to the classical quantity analagous to &he reasons for choosing it. We then proceed to define both
Lyapunov exponent. However, in an analysis of the operhe quantum and the classical dynamics of the coupled
quantum behavior of thgenuinelychaotic kicked rotof11] kicked tops in Sec. Ill. In Sec. IV we define the initial direct
it was found that the von Neumann entropy of the reducedProduct states used in the quantum analysis and their classi-
dynamics increases at a rate which iénaar functionof the ~ cally analagous distributions. The results of our numerical
Lyapunov exponent averaged over the points which cominvestigations are presented in Sec. V and we conclude in
prise the classical state analagous to an initial quantum co>€c. VI.
herent state in phase space. Thus, the intuition gleaned from
the study of the inverted oscillator is valid despite its mani- Il. ENTANGLEMENT MEASURES
fold deficiencies as a model of true classical chds. We will di f . |
A natural question to ask at this stage, therefore, is the , . € Wil NOW dISCUSS a way o quantifying entanglement
following: how ubiquitous a phenomenon is the linearity of which will be cruc'|a| to the develqpmen‘t‘. Qne m?asure of
entropy increase in time, with a rate determined by a meat-he entanglement in a state E.(‘T)’ is the “distance _from
sure of the underlying classical chaos? In particular, is 41 State to the seD, of all disentangled states defined by
thermal bath with an infinite number of degrees of freedom edralet al.in Refs.[23-2];
essential or could a finite chaotic system act in the same E(o):=minD(o]p), (1)
way? To address this question we must first remind ourselves peD
of the reasons for entropy increase in quantum systems. En-
tropy increase, or an increasing lack of knowledge about thehereD (o] p) is any measure of the distan¢aot necessar-
state of the system, results from the coupling of the system tdy a metric) between the states and p such that some
another system, evolving the two together using a jointreasonable conditions are satisfied Byo). There are a
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number of advantages to this definitif23]. First, it is con-  choose the simultaneous eigenvectors of the set of four mu-
structed especially in order to distinguish between quantuntually commuting operators]z,.]z,.]zl, and J,, to be our

and classical correlations, being only nonzero for the formergngice of basis. We note that Planck’s constant has been set

Second, it is independent of the number of systems being, ynity in the treatment that follows. The Hamiltonian of the
considered. Finally, it is independent of the dimensionalitycoypled kicked tops can be now be written:

of these systems. It is, therefore, a very general and useful
definition of a measure of entanglement. - k T

A natural question to ask, of course, is what, if any, dis- H(t)=H;+Ha+H =5, + 7351 > S(t—n)+5Jy,
tance measurB® (o|p) will enable the quantitye(o) of Eq. I n==e

oo

(1) to satisfy the given criteria and thereby render it a K 0 ke o

“good” measure of entanglement. Just such a suitable func- + ?Jﬁ > o(t=n)+-—3,J3,, > s(t—n).

tion was also proposed by Vedt al.[23—25; namely, the ] n==e J n=—c

guantum relative entropglefined by (6)
D(allp)=S(a|p):=Trla(Inoc—Inp)]. 2 The J, terms describe the precession of each top around the

y axis, each with an angular frequencym®. The remaining
terms are due to a periodigfunction “kick.” The first two
such terms describe, respectively, impulsive nonlinear rota-
E(o):=minTr{o(Ino—Inp)]. (3)  tions or “twists” about eachz axis, with each constant of
peD proportionality being given by the dimensionless fadii] .
The third and final such term describes the coupling between

This also provides us with awperationalinterpretation of  the tops using a spin-spin interaction term with a strength
entanglemen{23-29: the greater the entanglement of a characterized by a dimensionless coupling consiarf.
stateo, the fewer measurements on a separable ptéteill  Thus, the interaction is introduced as a consequence of the
take to prevent confusion witbr. kick.

One more particularly important reason for restricting our  If we set the coupling constant, equal to 0 in Eq(6),
attention toE(o) defined in Eq(3) is the considerable sim- then we will have a completely separable Hamiltonian de-
plification that arises in the case of pure statesFor pure  scribing the evolution of two noninteracting kicked tops. Let
entangled states the relative entropy of entanglement reduces examine the first of these tops. Its Hamiltonian is
to the von Neumann entropy efther oneof the subsystems
of the entangled pair23]. Thus, when To>=Tro=1, we ar K ”
have Hi()=5Jdy,+ 2—ng1 nE o(t=n), Y

=—0

This definition, together with Eq1), defines a measure of
entanglement known as thelative entropy of entanglement

E(o)=—Troalnoal=—Troglnos], @ and the commutation relations can be used to show
where [J5.H1(t)]=0, also[J7,J,,]=0, and similarly forJ, and

Jz,.- The basis vectors are then chosen as the eigenvectors of
oa=Trglo],  og=Tralo]. ®) J andJ, [26] are denoted byj,m;) and obey

We will only consider pure states in this paper. This fact

means that we need only calculate tneduced von Neu- Jlim)=ji(j+1)j,my), 8
mann entropy in order to determine the level of entanglement
at any time. This amounts simply to a diagonalization of le|j,m1>=m1|j,m1>. (9

either one of the reduced density matrices. But the reduction

of the measure of entanglement to the von Neumann entropxs j will be fixed in the following, we henceforth writen, )

of either subsystem is also propitious in another way: we cafor |j,m,). Both the classical and quantum features of the
now directly compare linear rates of entanglement increasgicked top have been studied in some depth by various au-
— if, of course, they arise — with underlying measures ofthors[4,19,20.

chaos in the hope that the rEIationShip found will prOVide We will restrict our discussion to th@(2]+1)><(2]
further evidence for the conjecture that classical instability+ 1)]-dimensional product space spanned by the eigenvec-

begets quantum instability. tors of the operators},J5,J, , andJ, . The basis kets can
then be writter{j,my,j,m,) and are simply the tensor prod-
IIl. COUPLED KICKED TOPS uct of two single top basis kets, i.e.,

A. Quantum dynamics ) . . .
. . . . . . |J,m1,J,m2>:|J,m1>®|],m2>- (10)
Each kicked top is simply a spipparticle with an angu-

lar momentum vectod, =(Jy ,Jy ,J,), r=1,2, the compo- |n a similar shorthand to that used above, we henceforth
nents of which obey the standard commutation relations. Fowrite |m,,m,) for |j,m;,j,m,). They obey the eigenvalue
example,[Jy ,Jy ]=1J, and[J},J,]=0,r=1,2, etc. How- equations
ever, the angular momentum operators of different tops also 5 o
commute, e.g.[J,,Jy,]=0, etc., and we can therefore Jilmy,my)=j(j+1)|my,my), (1)
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JImy,my)=j(j+1)|my,my),
J,lmy,mz) =my|mg,my),

J,mMy,mg) =my|my,my).
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(12) 4 1 , ik 1
Utops]xlutopszz(le'l' IJyl)EX ]_ _Jx1+ 5
(13 ke | 1
® ex —j—Jy2 +§(le_l‘]yl)
(14)

ike
® ex J.—Jy2 .

(21)

The unitary time evolution operator corresponding to the
Hamiltionian of Eq.(6) is

Similar equations hold for the other five angular momentum

Ugps= UPUT U2=U UE U2 UT UZ (19 gperators
. ' _ _ The introduction of a new set of rescaled angular momen-
in which the various terms are given by tum operators will facilitate the determination of the classical
limit of our system. We define
U":=U, U§, (16) 1
, _ S X=X, Yy, Zo) === (3¢ dy ;) (22)
i.e., the evolution operator of a single kicked top, J
for r=1,2. We can now write the full Heisenberg equations
I of motion for these rescaled angular momenta. For example
r._ _ 12 f
Ui ex;{ 2] er)' 17 Eqg. (21) becomes
X3 1(Z+‘Y) p{k( x+l p(—ikeYy)
i == iYy)expik| — | |® exp(—ike
ngex"(‘ 2 Jyr)* gy 2 b2 i
+1Z 'Y);{'k(XJrl ikeYs,)
=(Z1—1Y)exg —ik| — = |® expi ,
and 2( 1 1 1 2] plikeYs
(23
12 ike o ) ) )
U %=exp — j—leJzz (190 and similar equations are obtained for the other five angular

momentum operators.
_ ) ~ To determine the classical equations of motion corre-
y axis followed by the introduction of the kick which gives (23) apove, we must take the limjts. To see this, con-
each top a twisand couples them instantaneously. Note thatsjger the angular momentum commutation relations once
the free evolution is assumed to have a negligible effect durmore. In their rescaled form they become, for example,
ing the kick. The convenient separation of terms in 8  [x,Y,]=iz,/j for r=1,2. So, in the limit ofj—c we can
is a result of both the-function kick and the fact that op- easily see that the rescaled angular momentum variable op-
erators corresponding to different tops commute. erators will commute and beconsenumber variables. Their

In the Schrdinger picture the powers,,s describe the  stroboscopic time evolution in this situation will therefore be

evolution of an initial state of the system up to any one of thegiven by the Heisenberg picture equations in the Igrge-
discrete sets of times=1,2,....Thus limit. If we first define

|4(M)=Uipd 9(0)), (20) Fr=kXoteYy), 24
i Ea=k(XateYy), (25
where the initial staté(0)) may already be an entangled
state of the two tops. This is the method we will use to iteratghen we find
our system in the numerical work that is discussed below.
X1=Z,cogE,)+ Y sin(E,), (26)
B. Classical dynamics Yi=—2Z;siN(E;)+ Y, cod =), 27)
We use the Heisenberg picture to determine the classical
analog of our coupled top system. Now, of course, the op- Zi=—Xq, (28)
erators change in time according toA(n+1) _ _
= U A(N) U ps. We wish to determine the explicit form of X5=2Z5C08(E )+ Y, sin(Ey), (29)
the Heisenberg equations of motion for each of the six an- , o _
gular momentum operators of the system. Y= —2Z;sin(2;) +Y;c09E,), (30
As an explicit example we will consider the time evolu- )
tion of J, . Using Eq.(15) we find Z;= =Xy, (31
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as our classical map. We therefore see that not only do the  3.142 T e : —
rescaled angular momentum variables becocagumber e e
variables ag—oe, but in this limit eachX,,r=1,2, is also
forced to lie on the unit sphere, i.&?=1,r=1,2.

In the limit of negligible coupling between the tops, i.e., @
as e—0, we can see thaE,—kX,,r=1,2. The classical
equations of motion for our system then decouple into the
equations of motion for two single, unperturbed t¢p§ as

required. The classical equations of motion for one such un-  p.og Lo i : ——
-3.142  -2.09 -1.047 0.000 1.047 2.094 3.142

2.094

1.047

coupled top can be writtefdropping subscripis
X"=Z cogkX)+Y sin(kX), FIG. 1. Phase space plot for a single kicked top with3. The
filled square and triangle mark areas of generically regular and cha-
Y'=—2Zsin(kX)+Y cogkX), (32 otic behavior, respectively.
Z'=-X. Of course, while phase space plots are useful for giving

some indication of the qualitative features of the dynamics,
These classical equations have been studied in depth hitey clearly do not give any quantitative information. In or-
Haake in[4] and D’Arianoet al.in [19]. The variable,Y, der to connect rates of quantum entanglement to measures of
and Z lie on the unit spherex?+Y?+Z?=1, and this re- classical chaos, it is this information which is of interest.
striction renders the classical map two dimensional. This facThis is where the Lyapunov exponents become important
provides us with the opportunity to reparametrize it usingand in the following we will show how to calculate the
only the two usual polar and azimuthal anglésand ¢, Lyapunov exponents of our coupled top system. First,
respectively, according to though, we must describe the initial states used in both the

quantum and classical numerical work that follows.

X=sin6 cosg,
Y=sinésing¢, (33 IV. INITIAL STATE
A. Quantum states
Z=Cco0sé6.

We wish to compare the classical and quantum evolutions
of our system. For this purpose we require initial quantum
states which best approximate an initial classical state on the
sphere given by, for exampled{, ¢o). If we recall that co-

Moreover, the coordinated= cosé and ¢ = arctan{(/X) are,
in fact, canonical coordinates on the sphigtg and the clas-

sical map of Eq(32) is a canonical transformatiowith a herent states are the “most classical” states of the harmonic
unit Jacobian. The map of E¢R2) is therefore area preserv- ; - :
oscillator[26], then it will come as no surprise that coherent,

ing, with the infinitesimal area element on the unit sphere .~ ) .

being d S= sin édede. minimum uncertainty states are suitable here too.
The classical trajectories generated by @) depend for

their character on the twist parameter\Whenk=0 the map

describes a perfecﬂy regu|ar rotation around Yhaxis. In- The coherent states we will choose to work with are the

creasingk, however, sees the familiar KAM scenaf@y4,19  directed angular momentum statg4,19-21, denoted by

with an increase in the area of the sphere covered by chaotléo, ¢o). For a single top these states align the vector

trajectories until, at approximately=6, no visible stable along the direction from the origin to the point on the sphere

islands exist and most trajectories are chaotic. In this studparametrized by o, ¢o), i.e.,

we will be interested in a regime residing between these two

extremes of regular and c_haotic behavior. That is to say, we n60¢0.3r| 00, %0)=]| 00, b0), (34)

will choosek= 3 and consider the effect of an unequivocally

mixed phase space on the quantum dynamics. ) ) o o .

In F|g 1 we give the classical phase space p|0t of therengo(% IS a unit vector pomtlng in the direction given
kicked top whenk=3. The parametrization by and 6 is by 6, and ¢,. These states can be conveniently generated
particularly convenient as a means to represent the surface asing the eigenstatg,j) (|j) in our notation using a unitary
the unit sphere on a two-dimensional surface. There areotation operator; in general,
prominent islands of stability in a chaotic sea, giving us a
truly mixed phase space. Two areas will, however, be of _ ; ; _ -
particular interest to us in the following and are marked by a [0, bo) = xRl g(Jy, Sin b= Jy, cosgol}].i). (39
filled square and triangle. The first clearly resides in a stable
island on the sphere. This islafdl] surrounds a fixed point The sense in which the directed angular momentum states
of the classical map given above and has coordinatesuch a|6y,¢o) “best’” approximate the classical initial
(6, ,¢,)=(2.25,0.63). The second, marked by the filled tri- states @, ¢,) on the sphere can be seen from the following.
angle, is, by contrast, in the chaotic sea and nowhere nearFirst, the variance of the vectdr in such a state is given by
regular island. Its coordinates aré.( ¢.) =(0.89,0.63). [20]

1. Directed angular momentum states
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+j

1 1
j_2{<001¢0|‘3r2|001¢0>_<607¢0|‘]r|601¢0>2}: T (36) |l//(0)>:m mZ_ ]_ (Mg, my|4(0))|my,my)
1.1M2=
and obviously goes to 0 as we take the classical limif of _ 1,1 5 2
—o. This is the minimum allowed by the angular momen- _ml,%:—i (M6, $o)(Mal 6, bo) My, my),

tum commutation relations. Second, it is shown by Schack

et al. in Ref. [21] using the Husimi representation of the (42)
coherent stat¢f, ¢o) that it is very small outside a region
with a radius of about 2fj radians around the center point
(6y,¢0) on the sphere. Explicitly, itv is the angle between
the direction of the two pointség, ¢o) and (65, ¢g) on the B. Classical states

sphere, then the square of the modulus of the overlap be- For the purpose of comparing the classical evolution of a
tween the associated directed angular momentum stat@gngletop to its quantum evolution, we must now construct

where, for example, each ¢, |65, #g), r=1,2, can be de-
termined from Eq(39).

|00, #0) and|6g,¢q) is given by[21] initial classicaldistributionson the unit sphere analagous to
_ NN I the directed angular momentum states defined above. For
Q(a)=[b, ¢l b5, Po)I*~exp —ja®/2) (37 example, in order to construct a classical state analagous to

- . - the stat€ 6y, ¢o), we add to each of the angleé and ¢,
for sufficiently large j. Clearly then, =2/ . (07 o

—e2Q(0), a )éignifigantj decreasg Howevgr(c\(/ve cg) alsowhlch define its center thdeviationangles 56, and 8¢,
look upon’ the _function Q(a) a's giving ’an as-yet: respectively. These deviations are drawn from the normal-
unnormalized Gaussian probability distribution for a devia—'zed probability distribution defined in E¢38) above.

tion from the center in the directiord, ¢). When normal Furthermore, classical distributions analagous to the ini-
o). - ; .
ized (denoted by the superscripl) this takes the form tial tensor product state of E40) above will be comprised

of points of the form @i+ 563, pa+Spd, 603+ 562, p2
+ 8¢3) calculated in a similar manner.

\ 1 1({a\?
QY (a)= exn -5l | (39
oN2m 7 V. NUMERICAL RESULTS
whereq is the standard deviation and is given by 1/\/]. A. Iteration scheme

N — V\—a 20N
Clearly we haveQ"(a=2/\j)=e"?Q"(0) here too. We can determine the matrix representation of an arbi-

In the following we will choosej =80, which gives an trary stat n)) at timen from Ea. (15). We find
effective radius for our initial states o£0.22 radians. We y d¢(m) a. (19

have shown that this is sufficiently small to enable the quan- +
tum system to discern classical phase space structures such(s;,s,|#(n))= >, (81,8,|UHry,ry)
as those shown in Fig. 1. R
However, we will require an explicit representation of the X(ry,r5]UTU2 [ g(n—1))
coherent states for calculations. As we will be working in the '
|m,) basis for single top calculations and a tensor product of i “
these for the coupled tops, we would like to exprigks ¢o) =ex;{ - J-—ksslsz) > {(sgUtmy)
as a superposition of these basis elememts=—j, ..., M M2==
+]. Itis found([4] X(slU2Imp)(my,my|y(n—=1))},  (43)
o 2j
Gt g0 = (199 Iy [ 2| e et
1 ik 2 1
where y:=exp(¢o)tan(d,/2). (s1/U*my)=ex _551 (s1|Uflmy)
2. Initial tensor product state F{ ik 2)(—1)Slml
For every initial state of theoupledtop system, we will & 2j o1 2]
choose a direct product of two coherent states of the type 1 1
described above. Explicitly, X(_ZJ ) ( 2] )
J=81) \J+my
|4(0)) =65, 5)®165,45), (40
. _ _ . o xE(—l)k(J Sl)( j+s; ) (a4
with the evolution up to thédiscretg time n being given by n k k+s;—my/°
|(n)) =Ugopd #(0)), (41)  The reduceddensity matrixp,(n) is determined from the

entire, pure density matrig(n) usin
where U, has been defined in Eq15). Because of the P y K(n) g

separable nature of E@¢40), we may use Eq(39) to write p1(N):=Tro[p(n)], (45)
our initial state in the/m;,m,) representation discussed
above. Explicitly, and its matrix elements are
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+j 1.0 . . .

(Mulpa(ming= 2, (My,nzly(m)g(mng.ny).

(46) e =° ler’(Pr>|er’(Pr>
0.8 - R lec’q)c>|er’q)r>
This enables us to calculate the level of entanglement be- == 10,,9.>0,,¢>

tween the coupled tops at tinmeon using the definition
E(n):=—Tri[ps(n)Inpy(n)], (47)

where the set of eigenvaluésni, i=—j,...,+j} is deter-

mined by first diagonalizing the (2 1)-dimensional re-
duced density matrix at each tinme We then use

0.6

E(t)

+j

0.2
E(n)=— 2> Ay In X, (48)
i==]
In the following we have chosen to use a valug 30 at 0.0, i
all times. The reasons for this choice are threefold. First, as ' ' T

stated in the preceding section, we have foyrd0 to be

perfectly sufficient to enable our chosen quantum initial FIG. 2. An illustration of how entanglement rates differ as a
states of Eq(39) to distinguish between regular and chaotic result of the choice of the initial statef(0)), marked on the
areas on the classical unit sphere. Second, this valie offigure. Here we have chosen-10"*/3 as our coupling strength.
gave rise to reasonable running times, taking into consider-

ation the fact that many runs were required to gather the datghat are initially chaotic is of special interest and we shall
Finally, such a relatively low value g¢f(see, for instance, the pursue this point henceforth. In fact, we will examine the
much larger values used in Refg4,17,20,2]) certainly  consequences of interpolating smoothly between the two ex-
means that we are far from the semiclassical regime. Anyreme situations. To do so classically we must first note that
manifestations of chaos seen, therefore, are certainly esxhe initially regular and chaotic states marked in Fig. 3 differ

amples ofguantumchaos. only in their polar anglef. To go smoothly from regularity
to chaos, therefore, involves nothing more than changing the
B. Linear increases in entanglement initial polar angle from 2.25 to 0.89. Quantum mechanically,

W Il that in Fig. 1 f inale t distinauish OIthe interpolation from the entanglement behavior when the
€ recall that in g. 1 Tor a single top we dISUNgUISNed;nisia) state is| 6., dc)| 0, ,¢,) to that when the initial state is

two initial points on the unit sphere. These peirt- a ge- 0c,bc)| 0, dc) is achieved in a similar manner; we keep the
nerically regular one marked by a square on that figure and itial state of the first top chaotic, i.6.6, ,é.), and begin

generically chaotic one marked by a triangle — we define ith the initial state of the second top being regular, i.e.,

as (0, ¢;)=(2.25,0.63) and d;,¢c)=(0.89,0.63), respec- |6, ,#,). We then calculate the rate of entanglement for ini-
tively. Keeping these states in mind, we now wish to inves-,

. . o . ial states which differ only in the polar angle of the second
tigate the rate at which three initial states of our quantlze& y P 9

system become entangled. Thus, we choose three initial
states where eithéa) both states are initially regulai) one
is chaotic and the other regular, @ both are chaotic. Using
the notation of initial products of directed angular momen-
tum states, see Eq40), we therefore choose eithdn)
|‘9r 1¢r>|0r 1¢r>7 (b) |0C7¢C>|0r 1¢I‘>’ or (C) |0C1¢C>|0C1¢C>'
Using the iteration procedure described above, we now g2 |
setk=3, fix our coupling constant, and calculate the en-
tanglement,E(t), for each of the three initial states. The
results can be seen in Fig. 2: Initial product states where eachks
subsystem is located in a classically chaotic area of that sub-
system’s phase space become entangled more quickly that
those which have initially regularly located subsystems. In
addition, the intermediate case of one subsystem being cha
otic and the other regular gives rise to an entanglement rate
which is also intermediate between these two extreme cases
The transition from situatiofa) to situation(b) is shown in
more detail in Fig. 3 and we find little change in the rates of ¢ & ‘ s s
entanglement. We shall elaborate upon these findings in the 0.0 200 40.0 60.0 80.0 100.0
conclusions to follow. !
The existence of this intermediate regime between the ex- FIG. 3. Magnification of the regular-regular to chaotic-regular
tremes of coupling two initially regular tops and two tops transition of Fig. 2.

0.030

0.010 -
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2.355 0.008
0.006 |- 1
8
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=]
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=
g
3 0.002 f ,
s . : . 0.000 * ‘ . w
ot . : . 1.80 1.90 2.00 210 2.20
1.570
0.000 0.785 1.570 0,

9,
FIG. 6. Linear entanglement rate versdg, the initial polar

FIG. 4. A magnified section of Fig. 1, concentrating on the areaangle of the second kicked top. The tiny errors are a testament to
around the stable island with the filled black square at its center ifhe excellent linearity found.
that figure. The open circle, cross, and triangle in this figure mark
the center of three initial directed angular momentum states of th%an now be used to compare the quantum entanglement rates
second top. The corresponding linear entanglement rates are shov,E/cr)l measures of classical chaos determined from analagous
initial classical distributions.
) ) Our reason for choosing=30 is that in each of the three
top, 6, with the range being from¥,=2.25=6, t0 6,  cases studied here it is larger than the steady-state[8ine
=0.89=6.. ] . Tss, at which the entropy of each state begins to increase

We can now confirm the linear nature of the entanglemenjinearly. In addition, it can be seen from Figs. 3 and 5 that
increase with time by choosing three initial product state§he more chaotic the initial state of the second top is, the

which differ only in their polar anglef,. The centers of |qwer is 7. This is consistent with the definition et in
these initial states are plotted in Fig. 4 using the same symgef [6].

bols with which the associated increase of entanglement with
time is marked in Fig. 5. To determine the linearity or oth-
erwise, we have used linear regression to generate fits to the
data, fromt=30 onwards, which we have also plotted in Fig. We are now in a position to compare quantum with clas-
5. The agreement is Striking and the S|0pes (e} determine‘aCaL First we determine the linear rates of entanglement
increase for initial values of, on the unit sphere along the
0.40 ‘ ‘ ‘ geodesic fromd,=2.21 to §,=1.83. Very little change is
o 0,=2.10 - data § noted for lower values since then the initial state will be

8. =2.10 — fit £ contained entirely in the chaotic sésee Fig. 6. We plot the

2

in Fig. 5.

C. Classical-qguantum correspondence

x 8,=2.06— data results in Fig. 7. Both the smoothness and the nature of the

----- 9,=12.06 — fit transition — the errors being actually smaller than the square

0.30 1 8 9,= 1.91—dataf . symbols used to plot the data points — provide yet more
——— 0,=191—fit
£

confirmation of the interpolation mentioned above.

A note of caution is necessary concerning the measures of
classical chaos with which we will compare these quantum
data. The phase space plots of Figs. 6 and 7 are useful and
serve as guides to aid one in placing thitial state This is
so especially when the coupling is weak. However, they are,
of course, plots of trajectories generated by the map associ-
ated with asingle kicked top, EQq.(32). The quantum en-
tanglement is generated by coupling the two tops and we
must, therefore, consider the full classical equations of mo-
tion of our system, given by Eq$26)—(31), when compar-

‘ ‘ ‘ ing classical measures of chaos with quantum rates of en-
200 40.0 60.0 80.0 100.0 tanglement. However, now a complication arises: the system
t of coupled kicked tops is confined to a four-dimensional sub-

FIG. 5. Entanglement rates corresponding to the initial states ospace of six-dimensional Euclidean space, 88x %, and
the second top which are marked by the same symbols in Fig. 4his means that there will now bivo positive Lyapunov
Also shown are linear fits to the data fram 30 onwards. exponentgand, of course, two negative expongnassoci-

2

E(t)

0.20 -

0.10 |

0.00 ¢
0.



PRE 60 SIGNATURES OF CHAOS IN THE ENTANGLEMENT 6. .. 1549

D. Interpretation
0.008 -

How are we to interpret the result given by E¢9)? It
=——a Data 4 says that after an initial timeg, after which a steady state
Linear fit / will have been established, a state of the coupled kicked top

7 . will become entangled at a rate which is constant in time. If
the variables of the system are fixed, we have found that this
rate is largely determined by the sum of the positive
Lyapunov exponents when averaged over the classical distri-
bution analagous to the initial quantum product state. Also,
there is evidence to suggest that the rate depends linearly on
this classical quantity.

If this interpretation is to be believed, then it leads one to
propose an operational definition of chaos in the quantum
regime. This is because a great advantage of choosing the
quantum relative entropy as the measure of entanglement,

‘ s s ‘ Eq. (3), is the statistical interpretation afforded by 23]. In
0.40 0.45 0.50 0.55 0.60 . . . : i
AHA> this context we now interpret E@49) in the followmg way:

We consider the state of the system at any fixed time

FIG. 7. Linear entanglement rate plotted against the averaged 7sc and make a fixed number of measurements on it. If
sum of the positive Lyapunov exponents for analagous initial clasall system variables such asj, andk are held fixed, the
sical distributions. Also plotted is a linear fit to the data away from probability, P, of confusing the state with a separable state
the first three points. decreases exponentially at a rate determined by the measure

of classical chaos{\,;+\,) defined above. Explicitly, we
ated with each initial conditionX;,Y1,Z1,X5,Y>,Z,). The  write
determination of both the positive Lyapunov exponents,
and\, (\;=\,=0), is decidedly more tricky than the de- Pc=@&XP(—NE(t))=exp(—nbgt)exp(—nag(X1+A)t).
termination of the largest positive exponent only. We have (51
used a method first proposed by Benetiral. in Ref. [27]
(and well eXplainEd in Chap5 of R{QB]) to do so. ' VI. CONCLUSIONS

Corresponding to each initial direct product state in the
quantum analysis, the linear entanglement rates of which are There is no classical behavior analagous to entanglement;
plotted in Fig. 6, are two initial classical distributions of the it is unique to quantum mechanics. In this paper we have
type described in Sec. IV B. Sampling a point,(Y;,Z,) shown that this intrinsically quantum property exhibits a
from the distribution corresponding to the first thpways manifestation of classical chaos. In addition, the classical
centered at 4., ¢.) herd and a point K,,Y,,Z,) from the limit has not been taken in order to achieve this correspon-
secondcentered atf,, ¢.) with 6, varying| gives rise to an  dence; the spin quantum number of each top has been kept to
initial classical state X;,Y1,Z1,X5,Y5,Z,) for which we  a relatively low value of =80 throughout.
can then determine the sum of the two positive Lyapunov In the Introduction to this paper, one of our stated aims
exponents)\;+\,. We have carried out this procedure for was to determine whether the phenomenon of a linear in-
900 initial points in the distributions corresponding to eachcrease of entropy with time with a rate determined by mea-
quantum initial state of Fig. 2. sures of the underlying classical chaos, for an environment

In Fig. 7 we have plotted the linear entanglement rates oWvith a small number of degrees of freedom, was indeed a
initial quantum product states versus the averagkhoted general one. We addressed this question by considering the
by angular brackejsLyapunov exponents of the associated €ntanglement rate of coupled kicked tops which, as we have
initial classical distributions centerd at the same polar angleSeen, can be quantified by considering the von Neumann
6,. If we restrict our attention to those points with consider-entropy of the reduced dynamics of a single top. By doing
able overlaps with the chaotic sésee Fig. 4, i.e., points SO, we have at least shown that coupling to a heat bath is not
with 6,~2.13 and smaller, we find that a linear fit to the datathe only way of producing a linear entropy increase at a
is quite a good one. Thus, our data lead us to propose tﬁéassically determined rate. However, as Flg 7 shows, a cer-

0.006 -

0.004 -

Linear entanglement rate

0.002 -

functional relationship tain threshold of chaos in each part of the coupled system
must be crossed before E@9) becomes valid. Just as tem-
E(t)~(ag{\1+N\o)+bp)t, t>7g, (490 perature needs to be high enough in the Zurek and Paz ap-

proach for Eq.(49) to hold, so we require a certain level of

where . is the time at which the entanglement begins tochaos in the system for the entanglement to increase linearly
increase linearly in time,.<30 here, and whera@ andb.  With the (locally averagegiKolmogorov-Sinai entropy.
are functions ofs andj. Here, we noteag~0.044 andbg This, then, provides yet more broad support for the origi-

~ —0.019. By differentiating both sides of EG9) we find nal conjecture of Zurek and Paz made in Re8s7], as gen-
y g ®9) eralized in Ref[11], and the environmental decoherence ap-

proach to quantum chaos in general. In addition, because of
(50) the statistical interpretation of the measure of entanglement

dE
— =~ )+ > 7. :
(Mt ) The, 17 used here, we have been able to state the expected experi-

dt
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mental consequences of the entropic result of &§). In basis as one or more of the initial subsystems is moved from
short, the more chaotic the system, the less likely one is ta stable island into the chaotic sea. The subsequent introduc-
confuse it with a separable state, and this is the case to toon of the kick and interaction terms will then couple a
greater degree as time passes. greater number of eigenstates and a faster entanglgioest

At a qualitative level we believe that these results are of subsystem coherencenight reasonably be expected to
related to some quantum features of the kicked top modebccur.
noted by Haaket al. in Ref.[20]. The authors there consid- However, our crucial finding is the simple functional form
ered the minimum numbeN,,;, of eigenvectors of the uni- of Eq. (49). An intrinsically quantum-mechanical quantity
tary single top evolution operator needed to exhaust the nohas been shown to have a functional dependence upon a
malization of an arbitrary directed angular momentum stateneasure of the chaos exhibited by the classical analog of the
to within 1%. This, they have found, correlates very wellinitial guantum state, even when the reservoir is a finite cha-
with the largest Lyapunov exponent calculated for the poinibtic system.
at the center of the coherent state. IndeedkfeB (see Fig.
[6c] in Ref.[20]), Nuin~10 at the center of a st_able islanq, ACKNOWLEDGMENT
whereaiN, ;=120 elsewhere, i.e., in the chaotic sea. Initial
direct products of such states would therefore require an in- Paul A. Miller would like to thank the King’s College
creasing number of these eigenstates in an expansion in thimndon AssociatiofKCLA) for financial support.
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