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Chaotic jam and phase transition in traffic flow with passing

Takashi Nagatani
Division of Thermal Science, College of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 19 October 1998!

The lattice hydrodynamic model is presented to take into account the passing effect in one-dimensional
traffic flow. When the passing constantg is small, the conventional jamming transition occurs between the
uniform traffic and kink density wave flows. When passing constantg is larger than the critical value, the
jamming transitions occur from the uniform traffic flow, through the chaotic density wave flow, to the kink
density wave flow, with an increasing delay time. The chaotic region increases with passing constantg. The
neutral stability line is derived from the linear stability analysis. The neutral stability line coincides with the
transition line between the uniform traffic and density wave flows. The modified Korteweg–de Vries equation
describing the kink jam is derived for small values ofg by use of a nonlinear analysis.
@S1063-651X~99!15308-X#

PACS number~s!: 05.70.Fh, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted considerable
tention@1–6#. The jamming transitions between freely mo
ing traffic and jammed traffic have been found in the traf
models. In the freely moving traffic, the car density is lo
and distributed uniformly on a highway. In the jammed tra
fic, the density wave of high density propagates backw
into the low-density flow. The transitions are very similar
the conventional phase transitions and critical phenom
@7–15#.

The jamming transition has been described in terms of
thermodynamic terminology of phase transitions and criti
phenomena@16,17#. The freely moving traffic and jamme
traffic correspond, respectively, to the gas and liquid pha
in the conventional gas-liquid phase transition: the car d
sity or headway corresponds to the density or volume~the
order parameter! and the sensitivity parameter~the inverse of
the delay time! corresponds to temperature. The coexist
curve, spinodal line, and critical point are obtained from
derivatives of the thermodynamic potential that is deriv
from the traffic models@16,17#.

The density wave in the coexisting phase appears with
kink-antikink form in the car following models that are n
stochastic but deterministic@3,14,15#. Once the density wave
is formed, it is robust and regular. The kink density wa
neither breaks up nor coalesces with others in the ste
state, except for the early stage. To our knowledge, the
pearance of a chaotic traffic jam has not yet been repor
The chaotic traffic jam means that the density waves~traffic
jams! become unstable, break up, and coalesce irregular
the deterministic models. There is an important question
to whether or not the chaotic jam occurs in the determini
traffic models. Does the density wave break up and coale
with others in the chaotic traffic flow? Does the passing h
an important effect on the traffic flow?

In this paper, we extend the single-lane traffic model~de-
scribed by the lattice hydrodynamic equations! to take into
account the passing effect. We investigate the effect of p
ing on the traffic flow. We would like to address whether
not the traffic flow exhibits the chaotic behavior by introdu
PRE 601063-651X/99/60~2!/1535~7!/$15.00
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ing the passing effect into the deterministic model. We sh
that the chaotic jam indeed appears in the deterministic t
fic model. Taking the passing into account makes the ph
diagram much richer. Besides the known jammed and n
jammed phases, a new phase~chaotic jam! is identified. We
apply the linear analysis to the traffic model. We show th
the neutral stability line coincides with the phase bound
line between the uniform traffic flow without jams and th
density wave phase. Furthermore, we prove that the den
wave can be described by the modified Korteweg–de V
~KdV! equation for small passing constant.

II. LATTICE MODEL

For later convenience, we present the lattice version of
continuum model on a single-lane highway without pass
@17#. The lattice hydrodynamic model is described by t
following difference-difference equation with time lagt:

r j~ t1t!2r j~ t !1tr0@r j~ t !v j~ t !2r j 21~ t !v j 21~ t !#50,
~1!

r j~ t1t!v j~ t1t!5r0V„r j 11~ t !…, ~2!

where the subscriptj indicates sitej on the one-dimensiona
lattice. r j (t) and v j (t) represent, respectively, the densi
and velocity on sitej at time t. r0 is the average density
Equation~1! is the lattice version of the continuity equatio
that relates local densityr j (t) to local average speedv j (t).
Space variablej is a dimensionless variable divided by ave
age headway 1/r0 . The lattice spacing is taken to be avera
headway 1/r0 . Equation ~2! is the evolution equation in
place of the Navier-Stokes equation. The functionV„r j (t)…
is called as the optimal velocity. It is given by

V„r j~ t !…5tanhS 2

r0
2

r j~ t !

r0
2 2

1

rc
D 1tanhS 1

rc
D . ~3!

This function has the turning point~inflection point! at
r j (t)5rc whenr05rc , wherer0 is the average density an
rc is the inverse of the safety distance@3,16,17#. We intro-
duce the parameterr0 to be 2r0

2V(r0)851 whenr05rc .
1535 © 1999 The American Physical Society
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1536 PRE 60TAKASHI NAGATANI
Generally, it is necessary that the optimal velocity functi
have the following properties: being a monotonically d
creasing function, having an upper bound~maximal veloc-
ity!, and having a turning point at the safety distance@17#. It
is important that the optimal velocity function have a turni
point. Otherwise, one cannot obtain a kink-antikink dens
wave representing the stable traffic jam.

The delay timet allows for the time lag that it takes th
traffic current to reach the optimal currentr0V„r j 11(t)…
when the traffic flow is varying. The idea is that traffic cu
rent r j (t)v j (t) on site j at time t is adjusted by the optima
currentr0V„r j 11(t2t)… on site j 11 at time t2t. This is
similar to the idea of the car-following model analyzed
Newell @18# and Whitham@19#. We have performed the com
puter simulation for the above model and confirmed that
kink density wave of the jam occurs when the density
larger than the critical value. We have also analyzed
above model and derived the modified KdV equation, a
time-dependent Ginzburg-Landau~TDGL! equation@17#.

We extend the above model to take into account the p
ing. The continuity equation~1! does not change by the pas
ing but the evolution equation~2! changes. When the traffi
current on sitej is larger than that on sitej 11, a passing
occurs. We assume that the traffic quantity of the passing
site j is proportional to the difference between the optim
traffic currents on sitesj and j 11. Then, the evolution equa
tion taking account of the passing is given by

r j~ t1t!v j~ t1t!5r0V„r j 11~ t !…1g@r0V„r j 11~ t !…

2r0V„r j 12~ t !…#, ~4!

whereg is the passing constant.r0V„r j 11(t)… is the optimal
traffic current on sitej 11 at timet andr0V„r j 12(t)… is the
optimal current on sitej 12 at timet. The traffic flow with
the passing is described by Eqs.~1! and ~4! with Eq. ~3!.

By eliminating the velocity in Eqs.~1! and ~4!, one ob-
tains the density equation

r j~ t12t!2r j~ t1t!1tr0
2@V„r j 11~ t !…2V„r j~ t !…#

2gtr0
2@V„r j 12~ t !…22V„r j 11~ t !…1V„r j~ t !…#50. ~5!

The last term on the left-hand side of Eq.~5! represents the
density variation caused by the passing. Wheng50., Eq.~5!
reproduces the density equation without the passing. It
be expected that the traffic behavior changes with increa
passing constantg.

III. SIMULATION

We carry out a computer simulation for the traffic-flo
model described by Eq.~5!. We discretize timet by time
interval t. Now, the symbolt represents the time step num
ber. Then, from Eq.~5!, one obtains

r j~ t12!2r j~ t11!1tr0
2@V„r j 11~ t !…2V„r j~ t !…#

2gtr0
2@V„r j 12~ t !…22V„r j 11~ t !…1V„r j~ t !…#50. ~6!

Sincet, r0 , andV have dimensions of@time#, @ length#21,
and @length#/@time#, respectively, the second and third term
have the dimension of density. This is consistent with
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dimension of the first term. Parametert is the time interval
in the difference equation~6! and is important in the traffic
model.

We consider the nonrandom initial condition in order
study the chaotic behavior in the deterministic model. I
tially, the density is assumed to be a step function such

r j~0!5H r02A for 0< j ,
L

2
,

r01A for
L

2
< j ,L,

~7!

r j~1!5H r02A for 0< j ,
L

2
2m, L2m< jL ,

r01A for
L

2
2m< j ,L2m,

whereA is a constant,m is a positive integer, andL is the
system size. The boundary is periodic. We performed
simulation for various values of average densityr0 and delay
time t for 0<g<0.4, whererc50.2 and 100<L<400. As a
result, the four types of traffic flow are distinguished:~i! a
uniform traffic flow with low density,~ii ! a traffic flow with
kink density waves,~iii ! a traffic flow with chaotic density
waves, and~iv! a uniform traffic flow with high density.
Besides the known traffic flows~i!, ~ii !, and~iv!, a new traf-
fic flow ~iii ! is identified. In what follows, we will justify the
term ‘‘chaotic’’ for the new traffic flow~iii ! by computing
Fourier spectra, Lyapunov exponents, and phase-space p
Taking passing into account makes the new phase. Typ
patterns of two traffic flows~ii ! and~iii ! with density waves
are shown in Fig. 1. Part~a! shows the space-time evolutio
of density forg50.3, a(51/t)53.5, andr050.2 whereL
5100 andt520 000– 20 200. It is a typical traffic pattern o
type ~ii !. It exhibits a kink-antikink density wave. The kin
density wave is stable and robust, except for the early st
The kink density wave is similar to that observed in t
traffic flow with no passing. Part~b! shows the space-time
evolution of density forg50.3, a(51/t)55.0, and r0
50.2 whereL5100 andt520 000– 20 200. It is a typica
traffic pattern of type~iii !. It exhibits irregular density waves
The density waves coalesce with one another~seen ina
˜b! and break up~seen inc˜d!. The chaotic traffic flow is
induced by introducing the passing effect into the origin
single-lane traffic model@17#. Both density waves in Figs
1~a! and 1~b! propagate backward and represent the tra
jams.

In order to justify the term ‘‘chaotic,’’ we compute th
Fourier spectra, the phase-space plots, and the Lyapuno
ponents. Figure 2 shows the Fourier spectra of time serie
density wheret530 000– 40 000. The Fourier spectra corr
spond to the traffic patterns~a! and ~b! in Fig. 1, respec-
tively. The kink density wave~a! exhibits the typical struc-
ture of a periodic function. The chaotic density waves exh
the typical structure of a nonperiodic function. The traf
flows ~i!, ~ii !, and~iv! are the typical traffic patterns appea
ing for traffic with no passing. The chaotic density wav
~iii ! appear for traffic with passing.

We study the phase diagram for the traffic flow with pa
ing. Figure 3 shows the phase diagram in parameter sp
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PRE 60 1537CHAOTIC JAM AND PHASE TRANSITION IN TRAFFIC . . .
(g,a) wherer050.2. Regions I, II, and III indicate, respec
tively, the uniform flow with no jam, the jammed flow of th
kink density wave, and the jammed flow of the chaotic de
sity wave. Curveac53/(122g) represents the critical line
predicted by the linear stability analysis~see Sec. IV!. The
boundary line between the uniform flow and the dens
wave flow obtained from the simulation coincides with t
critical line. When the passing constantg is larger than 0.1,
the chaotic density waves appear. For values ofg smaller
than 0.1, the chaotic density waves do not appear. Fog
,0.1, the traffic behavior is similar to that of the single-la
traffic without passing, except that the critical pointac

@53/(122g)# increases withg @17#. The boundary line be-
tween the kink and chaotic density waves is the line oa
53.75 for 0.1<g<0.4. With increasingg, region III, cha-
otic jams, expands to that of largea. Region II, kink jams,
remains the same as that ofg50.1.

Figure 4 shows the typical density profiles obtained a
t520 000 forg50.4. The density profiles~a!, ~b!, and ~c!

FIG. 1. Two typical patterns of the space~j!–time ~t! evolution
of densityr j for passing constantg50.3 and average densityr0

50.2 betweent520 000 and 20 200 where system sizeL is 100.~a!
The kink-antikink density wave for the sensitivity~the inverse of
delay time! a53.5. The density wave is robust.~b! The chaotic
density waves fora55.0. They coalesce with one another (a˜b)
and break up (c˜d).
-

y

r

show the uniform traffic flow fora516.0, the chaotic den
sity wave flow fora53.75, and the kink density wave flow
for a53.5, respectively, whereg50.4 and r050.2. The
critical point is given byac515.0 for g50.4. Profiles~a!,
~b!, and~c! represent the typical density profiles of the traf
flows in regions I, III, and II, respectively. The traffic flow

FIG. 2. Fourier spectra of time series of the density. They c
respond to traffic patterns~a! and ~b! in Fig. 1, respectively.

FIG. 3. Phase diagram in parameter space (g,a) where r0

50.2. Regions I, II, and III indicate, respectively, uniform flo
with no jam, jammed flow of the kink density wave, and jamm
flow of the chaotic density wave.
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1538 PRE 60TAKASHI NAGATANI
~a! obtained after a sufficiently long time is almost unifor
spatially but fluctuates a little aroundr050.2. When g
50.0, the fluctuation does not occur. The profile~b! exhibits
the irregular pattern that is characteristic of chaos. T
strength of density profile~b! increases as sensitivitya ~the
inverse of delay timet! departs from critical pointac
515.0. The stronger chaotic jams appear asa deviates from
the critical point. The profile~c! exhibits the typical kink-
antikink density wave. The kink density wave is similar
that observed in single-lane traffic@17#, except for the spikes
in the front and rear of the kink. Wheng50.0, the spikes do
not appear.

Figure 5 shows the plots of density differencer(t)2r(t
21) against densityr(t) for t520 000– 30 000, wherer(t)
is the density at timet at a position of the one-dimension
lattice. Plots~a!, ~b!, and ~c! correspond to the traffic flows
~a!, ~b!, and ~c! in Fig. 4, respectively. When the density
uniform spatially, its uniform traffic is represented by
single point (r0,0) in the phase-space plot, wherer050.2.

FIG. 4. Typical density profiles obtained aftert520 000 forg
50.4. The density profiles~a!, ~b!, and~c! exhibit, respectively, the
uniform traffic flow for a516.0, the chaotic density wave flow fo
a53.75, and the kink density wave flow fora53.5, whereg
50.4 andr050.2.
e

When g50.0, the uniform traffic flow is indeed plotted b
the single point~0.2, 0.0!. Plot ~a! reflects the small and slow
variation of density in Fig. 4~a!. In this case, the traffic stat
is not represented by a single point, but is expressed by
bar in the phase-space plot. Plot~b! of the chaotic jam ex-
hibits the behavior characteristic of the chaos. The cha
traffic flow is represented by the set of dispersed points in
phase-space plot. This is characteristic of chaos. Plot~c! of

FIG. 5. Plots of the density differencer(t)2r(t21) against
densityr(t) for t520 000– 30 000. Plots~a!–~c! correspond to traf-
fic flows ~a!–~c! in Fig. 4, respectively.
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PRE 60 1539CHAOTIC JAM AND PHASE TRANSITION IN TRAFFIC . . .
the kink jam exhibits the limit cycle characteristic of th
periodic pattern. The nodes on the right and left sides in p
~c! represent the traffic states within and out of the ki
~traffic jam!. When g50.0, the kink traffic flow is repre-
sented by an elliptical curve in the phase-space plot. Plo~c!
reflects the kink-antikink jam, with the spikes shown in F
4~c!.

We calculate the Lyapunov exponentl of the time evo-
lution of the density for the two density wave flows shown
Figs. 4 and 5. As a result, the chaotic traffic flow display
positive Lyapunov exponent~a! in Fig. 6. This is character
istic of chaos. In contrast, the kink density wave flow d
plays a negative Lyapunov exponent~b! in Fig. 6. This is
characteristic of regular motion. Thus, it is confirmed that
irregular jams within region III in Fig. 3 are in the chaot
state, by studying the phase-space plot, the Lyapunov e
nent, and the Fourier spectrum. Indeed, the chaotic tra
flow bears a resemblance to dynamical chaos in class
mechanics@20#. Thus, we have justified the term ‘‘chaos’’ b
computing Fourier spectra, phase-space plots, and Lyapu
exponents.

IV. LINEAR STABILITY ANALYSIS

We apply the linear stability method to the traffic mod
described by Eq.~5!. We consider the stability of the uni
form traffic flow. The uniform traffic flow is defined by suc

FIG. 6. Plots of Lyapunov exponentg against timet. ~a! The
Lyapunov exponent corresponding to the chaotic flow in Fig. 4~b!.
~b! The Lyapunov exponent corresponding to the kink density w
in Fig. 4~c!.
t
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a state as traffic flow with constant densityr0 and constant
velocity V(r0). The solution of the uniform steady state
given by

r j~ t !5r0 , v j~ t !5V~r0!. ~8!

Let yj (t) be a small deviation from the uniform steady-sta
flow: r j (t)5r01yj (t). Then, the linear equation is obtaine
from Eq. ~5!,

yj~ t12t!2yj~ t1t!1tr0
2V8@yj 11~ t !2yj~ t !#

2gtr0
2V8@yj 12~ t !22yj 11~ t !1yj~ t !#50, ~9!

whereV85dV(r)/drur5r0
.

By expandingyj (t)}exp(ikj1zt), the following equation
of z is derived:

e2zt2ezt1tr0
2V8~eik21!2gtr0

2V8~e2ik22eik11!50.
~10!

By expanding z5z1( ik)1z2( ik)21¯ , the first- and
second-order terms ofik are obtained

z152r0
2V8, z252

3

2
t~r0

2V8!22
~122g!

2
r0

2V8.

~11!

If z2 is a negative value, the uniform steady-state flow b
comes unstable for long-wavelength modes. Whenz2 is a
positive value, the uniform flow is stable. The neutral stab
ity condition is given as

t52
~122g!

3r0
2V8

. ~12!

For small disturbances of long wavelengths, the uniform tr
fic flow is unstable if

t.2
~122g!

3r0
2V8

. ~13!

The derivativeV8(r0) of the optimal velocity has the mini
mal value at turning pointr05rc . Therefore, ift,tc @tc

52(122g)/3rc
2V85(122g)/3#, the uniform flow is al-

ways stable, irrespective of density. We find that there i
critical point atr5rc and t5tc . When g50, the critical
point and the neutral stability line agree with those in
single-lane traffic flow with no passing@17#. The solid
curves in Fig. 7 show the neutral stability lines forg50.0,
0.1, 0.2, 0.3, and 0.4. The apex of each curve indicates
critical point. The traffic flow above each curve is stable a
the traffic jam does not appear. Below each curve, the tra
flow is unstable and the density wave appears. The crit
points and the neutral stability curves increase with pass
constantg. In the case ofg50.0 without the passing, no
traffic jams occur when sensitivitya is larger than 3. The
traffic jams appear because of the passing effect, eve
sensitivitya is larger than 3. This means that by introducin
passing into the original single-lane traffic flow, the traffi
flow becomes more unstable than that without no pass
The passing induces a more unstable traffic flow than tra
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1540 PRE 60TAKASHI NAGATANI
without the passing. With the increase ofg, the uniform flow
becomes more unstable. Unfortunately, the chaotic tra
flow is not predicted by the linear stability theory.

V. NONLINEAR ANALYSIS

We now consider long-wavelength modes in the tra
flow on coarse-grained scales. The simplest way to desc
the long-wavelength modes is the long-wave expansion.
consider the slowly varying behavior at long waveleng
near the critical pointrc ,tc . We extract slow scales fo
space variablej and time variablet @13,17,21#. For 0,«
!1, we therefore define slow variablesX andT.

X5«~ j 1bt!, T5«3t, ~14!

where b is a constant to be determined later. We set
density as

r j~ t !5rc1«R~X,T!. ~15!

By expanding Eq.~5! to the fifth order of« with the use of
Eqs. ~14! and ~15!, one obtains the following nonlinea
partial-differential equation:

«2~b1rc
2V8!]XR1«3S 3b2t

2
1

~122g!

2
rc

2V8D ]X
2R

1«4F]TR1S 7b3t2

6
1

rc
2V8

6
2grc

2V8D ]X
3R

1
rc

2V-

6
]XR3G1«5F3bt]X]TR1S 5b4t3

8
1

rc
2V8

24

2
7grc

2V8

12 D ]X
4R1

rc
2V-

12
]X

2R32
grc

2V8

2
R2]X

2RG50,

~16!

where V85dV(r)/drur5rc
and V-5d3V(r)/dr3ur5rc

.
Here we used the expansions shown in the Appendix.

By taking b52rc
2V8, the second-order term of« is

eliminated from Eq.~16!. We consider the neighborhood o
the critical pointtc :

FIG. 7. Neutral stability lines obtained by the linear stabil
analysis forg50.0, 0.1, 0.2, 0.3, and 0.4. The apex of each cu
indicates the critical point.
c

be
e

s

e

t

tc
511«2, ~17!

wheretc52(122g)/3rc
2V85(122g)/3. Equation~16! is

rewritten as

«4S ]TR2
~1213g214g2!

27
~2rc

2V8!]X
3R1

rc
2V-

6
]XR3D

1«5S ~122g!

2
~2rc

2V8!]X
2R1

~126g139g2146g3!

54

3~2rc
2V8!]X

4R2
~124g!

12
rc

2V-]X
2R3

2
g

2
rc

2V-R2]X
2RD50. ~18!

In order to derive the regularized equation, we make
following transformation for Eq.~18!:

T85
~1213g214g2!~2rc

2V8!

27
T,

R5S 2
2~1213g214g2!rc

2V8

9rc
2V- D 1/2

R8,

~19!

where we assumed

1213g214g2.0. ~20!

One obtains the regularized equation

]T8R85]X
3R82]XR832«S 27~122g!

2~1213g214g2!
]X

2R8

1
~126g139g2146g3!

2~1213g214g2!
]X

4R8

2
~124g!

2
]X

2R8323gR82]X
2R8D . ~21!

If we ignore theO(«) terms in Eq.~21!, this is just the
modified KdV equation with a kink solution as the desir
solution,

R08~X,T8!5Ac tanhAc

2
~X2cT8!. ~22!

The selected value of propagation velocityc for the kink
solution is determined from theO(«) term. The kink solu-
tion ~22! is obtained only when the condition~20! is satis-
fied. The kink solution exists only for

0<g, 1
14 . ~23!

Thus, we have proven that the modified KdV equation wit
kink solution is derived only for 0<g, 1

14 . For values ofg
larger than1

14, the modified KdV equation cannot be derive
from the above nonlinear analysis. The simulation result
Fig. 3 exhibits the chaotic jam forg.0.1. The nonlinear

e
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PRE 60 1541CHAOTIC JAM AND PHASE TRANSITION IN TRAFFIC . . .
analysis result is not inconsistent with the simulation res
The kink density wave can be described by the modifi
KdV equation, but the chaotic density waves cannot be
plained by the nonlinear analysis. This may be due to
singular point atg5 1

14 . Wheng is larger than1
14, the scaling

assumption~14! breaks down. Therefore, a scaling assum
tion that is different from Eq.~14! will be necessary to derive
the nonlinear wave equation describing the chaotic den
wave.

VI. SUMMARY

We have proposed a lattice hydrodynamic model t
takes into account the passing effect in the traffic flow o
highway. We have investigated the traffic behavior by co
puter simulation, the linear stability analysis, and the non
ear analysis. We have found that the chaotic jams app
when the passing constant is larger than 0.1. The cha
traffic has been investigated by computing the Fourier sp
trum, phase-space plot, and Lyapunov exponent. We h
shown that the transition line between the uniform traffic a
density wave flows coincides with the neutral stability li
based on the linear stability theory. We have proven that
modified KdV equation can be derived for small values
the passing constant by use of the nonlinear analysis.
have found that passing has an important effect on the tra
flow.

To our knowledge, this paper is the first work to show th
chaotic jams occur by taking passing into account in
deterministic traffic model. It is expected, as a next step,
one will derive the nonlinear differential equation describi
the traffic chaos.

APPENDIX

In this appendix, we give the expansions of each term
Eq. ~5! to fifth order of«:
ug

. E

A

ez
t.
d
x-
e

-

ty

t
a
-
-
ar
tic
c-
ve
d

e
f
e

fic

t
e
at

n

r j~ t1t!5rc1«R1«2bt]XR1«3
~bt!2

2
]X

2R

1«4
~bt!3

6
]X

3R1«4t]TR

1«5
~bt!4

24
]X

4R1«5bt2]T]XR, ~A1!

r j~ t12t!5rc1«R1«22bt]XR1«3
~2bt!2

2
]X

2R

1«4
~2bt!3

6
]X

3R1«42t]TR

1«5
~2bt!4

24
]X

4R1«54bt2]T]XR, ~A2!
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r j 12~ t !5rc1«R1«22]XR1
«34

2
]X

2R

1
«48
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«516
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4R. ~A4!

We expand the optimal velocity function at the turning poi

V~r j !5V~rc!1V8~rc!~r j2rc!1
V-~rc!

6
~r j2rc!

3.

~A5!

By inserting~A1!–~A5! into Eq. ~5!, one obtains Eq.~16!.
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