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Inverse Mermin-Wagner theorem for classical spin models on graphs

Raffaella Burioni,* Davide Cassi,† and Alessandro Vezzani‡

Istituto Nazionale di Fisica della Materia, Dipartimento di Fisica, Universita` di Parma,
Parco Area delle Scienze n. 7A, 43100 Parma, Italy

~Received 16 February 1999!

In this paper we present the inversion of the Mermin-Wagner theorem on graphs, by proving the existence
of spontaneous magnetization at finite temperature for classical spin models on transient on the average graphs,
i.e., graphs where a random walker returns to its starting point with an average probabilityF̄,1. This result,
which is here proven for models withO(n) symmetry, includes as a particular casen51, providing a very
general condition for spontaneous symmetry breaking on inhomogeneous structures even for the Ising model.
@S1063-651X~99!12208-6#

PACS number~s!: 64.60.Fr, 64.60.Cn, 75.10.Hk
s
f o
s

i
ng
he

nd
ng
y

n-
x

ru
ic
, t
h
s
de

o
i

on
at
ge
fo

ph

th
o
fir
s

a

e
n-
nt

e

t
r-

or
for
tice

raph

he

ol-

n-
l

Geometry plays a fundamental role in phase transition
statistical models on regular lattices. The existence itsel
an ordered phase at non zero temperature only depend
large scale topology, via the Euclidean dimensiond of the
lattice. Indeed, a discrete symmetry is broken if and only
d.1, while for a continuous symmetry the correspondi
condition isd.2. For the latter case two rigorous results, t
Mermin-Wagner theorem@1,2# and the Fro¨lich-Simon-
Spencer bound@3,4#, provide, respectively, the necessary a
the sufficient condition for spontaneous symmetry breaki

This simple and exhaustive picture allows us to classif
statistical system on a lattice in terms ofgeometrical super-
universality classescharacterized by the Euclidean dime
sion. Unfortunately the classification cannot be directly e
tended to general networks describing noncrystalline st
tures, where one cannot exploit the basic geometr
features of crystal lattices, such as translation invariance
concept of Euclidean dimension, the reciprocal lattice. T
proofs given in Refs.@1–4# strongly rely on these propertie
and more general concepts and tools are needed when
ing with a noncrystalline structure.

A basic improvement in the study of properties of ge
metrically disordered structures has been achieved w
graph theory. A graph, i.e., a general network of sites c
nected pairwise by bonds, provides the most suitable m
ematical tool to describe complex and irregular discrete
ometries. Euclidean lattices, which are the usual model
crystalline structures, are very peculiar example of gra
characterized by complete translation invariance.

The generalization to inhomogeneous structures of
necessary condition for spontaneous breaking of continu
symmetry, the Mermin-Wagner theorem, has been the
step in this direction@5,6#. The existence of spontaneou
magnetization on a graphG is related to the probabilityFi of
returning to the starting sitei for a simple random walk onG.
In particular, it was proven that there is no spontaneous m
netization for recurrent on the average~ROA! graphs, i.e.,
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whenF̄51, whereF̄ is the average ofFi over all the points
i of the graphG @5#. This result naturally includes the lattic
theorem@1#, since Euclidean lattices in one and two dime
sions turn out to be ROA. However, up to now a sufficie
condition has been lacking.

In this paper we study the caseF̄,1, i.e., transient on the
average~TOA! graphs and we give a rigorous proof of th
existence of spontaneous magnetization atT.0 for classical
spin models withO(n) symmetry. This result is the exac
inversion of theorem@5# for the classical case and a gene
alization to graphs of Refs.@3,4#, since lattices withd.2 are
TOA. Now, each graph can be classified either as ROA
TOA and therefore this theorem completes the picture
classical spin models on graphs. Moreover, as in the lat
case@3,4#, the proof also holds forn51, i.e., for the Ising
model.

In the following G is a graph consisting ofNg sites, i
51,2,. . . , Ng , and of links (i j ) joining them; we say that
two sites connected by a bond are nearest neighbors. A g
is connected if, given any two points inG, there exists a path
joining them. Here we will consider connected graphs. T
chemical distance between sitesi andj is the length~number
of links! of the shortest path joining them. The graph top
ogy is algebraically described by its adjacency matrixAi j ,
given byAi j 51 if i and j are nearest neighbors,Ai j 50 oth-
erwise. O(n) models onG with n>1 are defined by the
Hamiltonian

H52
1

2 (
i j

Ji j sW i•sW j2hW •(
i

sW i , ~1!

whereJi j are bounded ferromagnetic interactions onG:

Ji j 5Jji 5H Ji j with 0,e<Ji j <J,` if Ai j 51,

0 if Ai j 50,
~2!

andzi5( j Ji j <z,`. sW j aren-dimensional real unit vectors
sW i[(s1, . . . ,sn) defined on each vertex satisfying the co
straints:usW i u251; i . For n51 H describes the Ising mode
which is invariant under the discrete symmetry groupZ2,
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while for n>2 H represents a model with anO(n) continu-

ous symmetry. FinallyhW [(h,0, . . . ,0),h.0, is an external
magnetic field coupled tosW i .

The average magnetization is the order parameter of
model and it is defined by

M ~h![
1

Ng
(

i
^s i

1&, ~3!

where the averagê•••& is taken with respect to the usu
Boltzmann weight exp(2bH) with b51/KT.

The Mermin-Wagner theorem will be inverted by provin
a lower positive bound for the magnetization at sufficien
low T in the thermodynamic limitNg˜`, on an infinite
graphG. Namely, we will show that ifF̄,1, there exists a
small enough temperatureT for which lim

h˜0
M (h).c(T)

with c(T).0. In order to define the thermodynamic limit le
us introduce the Van Hove spheresSr ,o as the subsets of site
in G whose chemical distance fromo is <r , N is the number
of sites inSr ,o . In our proof to explore the behavior of th
model on the infinite graph, first we will obtain inequalitie
for thermal averages on the finite subgraphsSr ,o given by the
sites of the sphereSr ,o and the bounds (i , j ) of G with i , j ,
PSr ,o . Then we will take the thermodynamic limitNg˜`,
letting r˜`; finally we will take the limith˜0.

Let us first consider graphs for which the average ofFi is
smaller than 1 in every positive measure subsetSof the sites
of G, where the measure of the subsetS is given by uSu
5 lim

Ng˜`
@( ixS( i )#/Ng andxS( i ) is the characteristic func

tion of S: xS( i )51 if i PS and xS( i )50 if i ¹S. We will
call these graphs pure TOA. For these graphs in the ther
dynamic limit Ng˜` @7#:

lim
m˜0

lim
Ng˜`

1

Ng
Tr~L1m!215v,`, ~4!

where Li j is the Laplacian operator given byLi j 5zid i j
2Ji j andm i j 5md i j , m.0.

Our proof will follow the following main steps.~a! We
introduce for the constraintsusW i u251 an integral representa
tion with Lagrange multipliersa i and perform the Gaussia
integration onsW i , ~b! we determine the asymptotic behavi
of the integrals overa i for b˜` by saddle point technique
~c! we establish the lower bound onM (h) exploiting ~b! and
the identity

15
1

Ng
(

i
^usW i u2&. ~5!

Let us start with step~a!. In the expressions~3! and~5! we
introduce the integral representation for the constraintsusW u i

2

51:

d~ usW i u221!5
ee/2

2p E da ie
[ 2 ia i (usW i u

221)/22eusW i u
2/2], ~6!
e

o-

wheree is a real arbitrary constant. We will choosee5hb.
We now perform the Gaussian integration over the variab
sW i , obtaining for Eqs.~3! and ~5!:

M ~h!5
1

ZE )
i PSr ,o

da ie
iSbh(a)

h

Ng
(
k j

~L1H1 ia!k j
21,

~7!

15
1

ZE )
i PSr ,o

da ie
iSbh(a)F n

bNg
Tr~L1H1 ia!21

1
h2

Ng
(
i j

~L1H1 ia! i j
22G , ~8!

where

iSbh~a![2
n

2
Tr@ ln~L1H1 ia!#1

b

2 F i(
i

a i1h2(
i j

~L

1H1 ia! i j
21G ,

Z[E )
i PSr ,o

da ie
iSbh(a),a i j 5a id i j , andHi j 5hd i j .

Notice that the order of the symmetry groupn becomes a
parameter of the integration.

Let us now study the behavior of Eqs.~7! and~8! for large
b, which is point~b! of our plan. By saddle point theorem
the leading asymptotic behavior of Eqs.~7! and ~8! is given
by thea ī , which satisfy the stationary conditions

]

]ā i
F i(

k
āk1h2(

k j
~L1H1 i ā !k j

21G50; i , ~9!

whereā i j 5ā id i j . Equation~9! is satisfied for allh>0 only
if ā i50; i , so that@7#

M ~h!5
1

ZEG
)

i PSr ,o

da iRe@eiSbh(a)#
h

Ng

3ReF(
k j

~L1H1 ia!k j
21G1o~1/b!, ~10!

15
1

ZEG
)

i PSr ,o

da iRe@eiSbh(a)#ReF n

bNg
Tr~L1H1 ia!21

1
h2

Ng
(
i j

~L1H1 ia! i j
22G1o~1/b!, ~11!

whereG is the region around the saddle pointa ī in which
Re$exp@iSbh(a)#%.0. Here we exploited the property tha
exp@iSbh(aī)# is real and positive and that we are evaluati
real quantities.

As for ~c!, we first introduce the following inequalities
which can be proven exploiting the boundedness and
non-negativity of the Laplacian operator@7#:
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1>ReF h

Ng
(
i j

~L1H1 ia! i j
21G

>ReF h2

Ng
(
i j

~L1H1 ia! i j
22G , ~12!

0<
1

Ng
Re@Tr~L1H1 ia!21#<

1

Ng
Tr~L1H !21. ~13!

Using Eq.~12! we compare the expressions~10! and ~11!,
obtaining for the magnetization

M ~h!>12o~1/b!2
1

ZEG
)

i PSr ,o

da iRe@eiSbh(a)#
n

bNg

3Re@Tr~L1H1 ia!21#. ~14!

Now with Eq. ~13! we obtain forM (h) the following in-
equality:

M ~h!>12o~1/b!2
1

Ng
Tr~L1H !21. ~15!

Using property~4! of pure TOA graphs, we finally get in th
thermodynamic limit

lim
h˜0

lim
Ng˜`

M ~h!>12
v
b

2o~1/b! ~16!

and this complete the proof for pure TOA graphs.
Let us consider now the most general case of a grapG

which is not pure TOA. In this caseG must have a positive
measure subset where the average ofFi is 1, i.e., a ROA
subgraph. We call such a graph mixed TOA. A mixed TO
graph can always be decomposed in a pure subgraphS and a
ROA subgraph, connected by a zero measure set of li
This implies that the total free energy per sitef G is given by
f G5uSu f S1uG2Su f G2S and as a consequence

lim
Ng˜`

M ~h!> lim
Ng˜`

1

Ng
(
i PS

^s i
1&. ~17!
y

s.

On S,

lim
h˜0

1

Ng
(
i PS

~L1H ! i i
215v8,` ~18!

and using Eqs.~16!, ~17!, and~18! we get

lim
h˜0

lim
Ng˜`

M ~h!>uSu2
v8

b
2o~1/b!. ~19!

Inequality ~19! proves the existence of a lower positiv
bound at low enough temperature for the magnetization o
O(n) model defined on a TOA graph. In this way we obta
the inversion of Ref.@5# and we generalize the Fro¨lich-
Simon-Spencer result to generic inhomogeneous disc
structures.

A few comments follow from our result. The conditio
F̄,1 turns out to be a condition on the spectral density
low eigenvalues of the Laplacian operatorL on G and pro-
vides the link between the physical properties of theO(n)
model and the topology of the discrete space. In particula
includes the latticegeometrical superuniversality clas
d.2, i.e., the result of Refs.@3,4#. More generally for ROA
and pure TOA graphs, if one can define the spectral dim
sion d̄ @8#, the condition becomesd̄.2. However, we point
out that the present result is far more general, holding a
for graphs without spectral dimension. This is the case of
Bethe lattice, which is a pure TOA graph with finite temper
ture phase transitions.

Our result completes the description of the behavior
continuous classical spin models on generic networks.
the other hand, it also provides a rigorous and very gen
sufficient condition for spontaneous magnetization of
Ising model (n51) on graphs. Obviously this condition i
not necessary. A simple counterexample is the tw
dimensional Ising model, which has spontaneous magne
tion. The study of the Ising model on ROA graphs is the
fore a key step to obtain a complete picture of the behav
of spin models on general discrete structures.
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