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Possible experimental measure theory for theXXX-Heisenberg chain
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Raising and lowering operators for tikeX X-Heisenberg chain are derived explicitly; as a result the dipole
moment operator is established. Based on the dipole transition mechanism in an external time-dependent
magnetic field, we propose a possible experimental measure theory to detect the energy spectrum of the spin
chain.[S1063-651X99)11208-X]

PACS numbegps): 75.10.Jm, 03.65.Fd

I. INTRODUCTION AND MOTIVATION els E,, instead, the frequencigse., the energy intervals
satisfying the Bohr frequency conditigim the unitz=1)

The XX X-Heisenberg chaifHC) defined by
Opm=Eq—Ep. ©)

N
S o 1
HZJE (SJ--SJ-H— Z) (1) It is stressed that the energy spectrumHgf can be deter-
=1 mined from experiments is owing to the existence of the
external interactiorH, . The physical nature of the external

is certainly one of the most important models in Stat'St'Calfactor, which causes the quantum transition of the micropar-

mechanics. The simple form of El) belies the rich physi- ticles is arbitrary. In particular, it may be the interaction of

cal behavior that it displays, and an understanding of th he microparticles with electromagnetic radiation. Typical

fask for heorelcal &nd mathematical physicis over the ladf GTPISS can be seen i a hydrogen atom or a harmonie
pny scillator, where a transition from one stationary state to an-

six decadg4.—10]. Exact solution of its eigenstates and en- . . o .
ergy spectrum is given by the Bethe anddt?]. In the state- other is realized by an electric dipole moment. The dipole

ment of inverse scattering method, the structure of Beth&0ment operatod of any atom is expressible as a sum of
ansatz levels is related to the spinon spectrum which is difraising and lowering operatos§(n,m) between stateg),)
ferent from the spin-wave theof12]. Referencg13] has  and|y,)[14]:

provided an inelastic neutron scattering experiment for the

one-dimensionalS=1/2 Heisenberg antiferromagne{for azz dnmﬁ(n,m). @)
J>0) KCuF;. However, little recent experimental work was n,m

done for the half-odd-integer ferromagnetfor J<<0) spin

chain. Up to now, to our knowledge, there has not been &sually, in a hydrogen atom or a harmonic oscillator, the
mature experimental measure theory that can guide experilipole moment operator is the coordinater the momentum
mental works for the ferromagnetic spin chain. The aim ofp of the particle, and the interactidn, is expressed by the
this paper is to propose a possible experimental measusgalar product of the dipole moment operator and the exter-
theory for the ferromagnetic HC in the framework of quan-nal field. This kind of dipole transition mechanism is ex-
tum mechanics, based on the dipole transition mechanism itended to the HC so that its energy spectrum can be detected
an external time-dependent magnetic field. from experiments.

A standard guantum mechanical transition problem in The paper is organized as follows. In Sec. I, to make this
general has the following format. The first quantity we mustpaper self-contained, we briefly review the general definition
have is a Hamiltoniart, which can be divided as follows: of raising and lowering operators. In Sec. IIl, explicit raising

and lowering operators for the HC are derived, as a result the
H=Ho+H,, (2)  dipole moment operator for the HC can be established. In
) ] Sec. IV, the interactiofd, is written and experiment detect-
where for some region of coordinate space or tihecan be ing the energy spectrum of the ferromagnetic HC is pro-

neglected. Secondly, wheth, is neglected, it is meaningful posed. The discussion is given in the last section.
to speak of the energy levels and corresponding states of the

free HamiltonianH, between which the transitions take
place. These transitions are induced by the interadtipn
Experiments cannot detect directly the stationary energy lev-

Il. GENERAL DEFINITION OF RAISING
AND LOWERING OPERATORS

Operator methods are among basic tools of quantum me-
chanics. For a physical system described by an observable
*FAX: 0086-22-23501532. Electronic address: H, the eigenproblenki |E)=E|E) can be solved exactly due
yongliu@sun.nankai.edu.cn to its raising and lowering operators, without dealing with
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Schalinger equation. In quantum mechanics, the factoriza- Eigenstates withi(r=0,1,2,..,N) down-spins of the HC

tion of H into raising and lowering operators for the discreteare given by11]

spectrum is a property of Hilbert space and is not restricted

to any particular representatiph5]. If H has a discrete spec- _

trum, then it can be written as |4 C'ml<m22<...<mr (Mg, Mg, ....Mp) (Mg, My, ... M),
(11)

H:; Enltn)(Wl, ®) where C,=[N!/r!(N—r)!] 2 is the normalized constant,
$(my,m,,...,.m,) represents a spin state withdown-spins
where|,)’s are the complete and orthonormal basis statesn them;-th (j=1,2,..,r) sites, the coefficients

of H. Thus one way factorization ‘
r!

r
) 1
Z+2:_:H_EO a(mllmZI"'lmf):PEl eXF{'(le 0P1m1+§2 ¢Pj,Pn):|u

7 (12

is provided by operators which have the following spectral

decompositions: are some exponential functions and defined only for the or-

deringm;<m,<...<m,, andP is any permutation of the
L= (Ens1—Eo) Y4 1), numbers 1,2,.,r, P; the number replacefl under this per-
n mutation, andej,=— ¢y;. In Eq. (11) for the case withr
=0, |o)=|11...1) is the vacuum state with all spins up.
L= 2 (Ens1— E) YA ) ¥nial. (6) |4,) is the simultaneous eigenfunction f and thez com-
n ponent of the total spin with the eigenvalues:

These mutually adjoint operators perform the raising and r

- N
lowering operators: Er=JE (co¥;—1), Szzg—r, (13
L* )= (Ens1~E0) 1),
[0 n+1~ o) o) where 6,’s are related to wave vectors and satisfy the Bethe
I —(E.—EY2 4 ). 7 ansatz equations.
[0} = (BEn=Eo) 1) @ Firstly, let us consider the raising operator that satisfies
From Eq.(5) and Eq.(6), one can have N
R R Qr,r—l|¢r—l>:|¢r>v (14
[H,L5]=L7F~, 8 . _
namely, the raising operat@rfr,l transforms the adjacent
where eigenstates specified lby-1 andr. In general, theQr*’r,l's
are not always the same for different sétsr—1}, but
Fr— 1 9 merely have the similar forms. Therefore, when we refer to
En: (Ent = En) o) (9l ® an operatoiQ;",_,, it always acts orj¢; ;). An arbitrary

state|,) can be obtained by repeated applicatiorQq;*’T,_1

is an adjacent energy interval operator, SinE€|,) to the given statéy,) as follows:

=(En+1—Epn)| ). [Here we have placé~ to the right of
L* in Eq. (8) to allow it to operate directly on eigenfunction ) =Q/ 1Q, 1, 2...Q24Q1 d o)- (15)
|4), this will simplify the calculationd.In particular, when

F*=+%w, Eq.(8) corresponds to the usual one in a har-Taking Eq.(14) and H|¢,)=E,|,) into account, one can
monic oscillator. WhenF* is a function ofH, i.e., F=  verify that

=f*(H), Eq.(8) becomes
([HerJr,r—l]:wr,rlerJr,rfl)|¢rfl>1 (16)

where w, ,_, satisfies Eq.(3). Qrf,_l will be determined
which is the case shown in Refl6]. Equation(8) or Eq.  based on Eq(16) in the following.
(10) is the general definition of raising and lowering opera-  gided by the observation thafl(S ><Sk)‘—S s

[H,L5]=L"f"(H), (10)

tors expressing by a commutation relation. Note that the ex-_ S¢S and

plicit form of the raising and lowering operato& for a

specific Hamiltonian system need not be mutually adjoint ik 1 gk ik
[16]. —i(S,-><Sk)’|TT>=E(ILT>—|TL>),

Il. RAISING AND LOWERING OPERATORS ik 1 ik
FOR THE HC —i(S,-XSk)’IlT>=§|ll>, a7
Although the HC has been studied for such a long time,

its raising and lowering operators are not clear yet. The purwe should expect to obtain that, after introducing the follow-
pose of this section is to derive them explicitly. ing unified raising operator:
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N tum mechanics can be seen[it7] and references thergin
Q1= |Ek WS S)™, Wi=—W{, (18) Q. is yielded by combmmglv“) with the local Yangian
i<

operator and summation, hencltgr , has the most natural
Eq. (14) might be satisfied. By the way, it is worth mention- form and is a generalization of the Yangian operator. Of

_ s N e N - course, other forms of raising operators such @5,
ing that the operatal=—12;, §;X S+ 2j-, 7S Is a Yan- =3)L 1a(’)S can also be introduced, we will return to the
gian operator, and the local Yangian operator(S;x Sy) problem later.

make a transition between singlet and triplet state§ o8, To find the explict form ofQ,", ;, we need to determine
(to the definition of a Yangian and its realizations |n guan-the unknown coefﬂmenw“). The direct calculation shows

N

[H.Qf1]==3 2 WL [(§-1X§) XS 4]
jk=j+1
1 — —_ = = = —
+§(Sj _Sj+1)_[sj><(sj+1xsj+2)]
—ij;”vw{[(s X)X S —[(§X 1) XS~
+[S X (Se-1XS)1 —[SX(SX S )17} (19

In the following, only| ) is presumed known, and now we consider the cases,2,... successively.
(@) r=1. After acting Eq.(19) on |#), one obtains

N wib +W
n _ jtlj+2 lj_ (1) S S -
[H,Q1 ol ¥0) IJj,k:zj+1 {( 2W1(’1j)+1 1)WJ,J+1(SJ><SJ+1) bl/fo)

2 [OW o8 ot WS (§% S 1)l o)

N e
U H '““21\;4\1’; e 1—1)w<1>(sxsk> }lw

j,k=j+2

N
HI X WSS X8 - S (§% S 0)*
— S (S-1XS)*+ S (SX S 1) o) (20
Since §;XS)¥0)=0, then Eq.(20) becomes

. o [ Wi at Wi D o &
[H.Qigllvo)=-132 Wi W% S0 1o (21)
J

Comparing Eq(21) with Eq. (16), Q1+,o is a raising operator unless the factor

1)
\N(+1k+1+W( 1k—1
2w

is a real number and does not dependj andk. If set

W= 2 o) —ack j)=expij o (22)
ik =g, ntat)—alol, alj)=expij o),
Eqg. (21) yields

[H, Q1 oll o) = (016Q1 0)| o), (23
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with

W Wi
_ j+1k+1 j—1k—-1 _

is the energy interval betwedsy, andE,. Under periodic boundary conditica(m+ N)=a(m), it is well-known that

P 277_ 1+
—”an, n==1,...,=

N 1
2

N

+ —

1—2-

andEmzla(m)=0. SinceEy=0, Eq.(24) leads toE;=J(coss—1). After actinng’O on| ), the next wave functiotw, ) is
obtained.
(b) r=2. We set

[y =2, a(j,k)o(j.K) (25

<k

with unknown expansion coefficieai(j,k). The direct calculation shows

N

[H.Qsallpn)y=3 >
j,k=j+1

N

a(j—1j+1)+a(j,j+2)

2a(j,j+1) 2

a(j,jtDe(,j+1)

a(j—1k+a(j+1k)+a(j,k—1)+a(j,k+1) . :
+J - —2la(j,k K
S 2a(].K) (J.K) &(j.k)
N 1 N
—Ex(Qa )~ 192 | > (sysm— Z) (§xS)"WiR > a(m)¢<m)}. (26)
i<k j=1 m#j,k
To makeQ{l a raising operator ofl, we must require
Qi n)=d2)= 2, ali K& k), (27)
N
WD >, a(m)¢(m)=0, (28)
m#j,k
and
_a(j-1k+a(j+ik)+a(j,k—1)+a(j,k+1) o a(j—1j+1)+a(j,j+2) -
2= 2a(j,k) - 2a(j,j+1) 29
Sincea(m) =exp(md) is an exponential function, then one can find that
L9 A =6 j=12,...N 30
r@gﬁ;aU)_'jma(nU (nhl_ ) v'!)! ( )
wherem=Xx,, is understood as the coordinate of the spin located omithesite of the lattice.
Due to Eq.(30), to make Eq(28) be valid, one find&V{?) can be the following solution:
Wiz — 22 1a(' k) t a1 i (j<k) (31)
k=e, 102 a) am=)) " ak) am=k)| U=

with a still unknown coefficienta(j,k). a(j,k) will be determined by requiring that the two factors of the right-hand side of
Eqg. (29) are real numbers and do not dependjandk. Obviously, if we choosea(]j,k) to be the usual result of the Bethe
ansatz, i.e.,

a(j,k)=Cél%ekf%2+Crelif2et  (j k=1,2,..N), (32

it yields
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)ta(j,k+1)

=C0S6+C0SH,.

1490
a(j—1k)+a(j+1k)+a(j,k—1
2a(j,k)
From Eq.(29) we must require
a(j—lj+1)+a(j,j+2)

2a(.j+1) =cosf,+cosh,, (33
thus

C  1-2e%+elht?)

= (34)

C T 1-2dr e
On the other hand, from the periodic conditi@qj,k)
=a(k,j+N), we obtain

iNOT — _— —

~iN6,
C’ '

€ e (35

Equations(34) and(35) lead to the usual Bethe ansatz equa-
tions

N01:27T|_®(61,02)1 N02:27T|’_®(02,91),
(36)
with
-0
sin—
0(0,0")=2 arcta 070 — 0
cos— cos—,
=2 t ! ta tal 3
= arcaicoz co? (37
is an odd function, i.e.,0(6,0')=—0(60',0), | and
I” (I’"#1) belong to the set{*3,*3,...,=(N—1)/2}.

Thus the energ¥, is recovered for the case with=2 of
Eqg. (13) naturally. Sincea(j,k) is defined in the ordering
<k, to makeW{?'=—WZ), we rewriteW’ as

WS o1 4
ik =g, 7a™R\ 35 aam=1) ~ atk) am=k)|
(39)
with
- ‘i a(j,k) if j<Kk,
One can note that{) is a number,W(}) is a partial

differential operator acting on the coefficieratém)’s. From
Eq. (30), one can obtain

1
i6

19X
|¢1>——9—mE: a(m) ¢(m) =a(m) ¢(m),
(40)

hence, the action of the partial differential operaton ¢}/
X (aldm) is clear, when it acts ohy,), the terma(m) ¢(m)
is picked up amongy,). Owing to these, direct calculation
shows that Eq(27) is valid naturally.

(c) For general, making use of the similar analysis, one
can obtainQ,’, _; with the general solution

C, 21 1 1
W) = .
jk Cr 1r |01|02 |0r71
N
x{ > AGKI, )
I, 00, T —p#] .k
y 1 d
AG o, o) 3]
1 Jd|l d d J
AK Iy o, di_p) okl aly al,  al,_,|"

(41)

and the coefficientA(j,k,l,15,...,l,_5) has the similar
meaning asA(j,k) shown in Eq.(39). Simultaneously, the

action of the partial differential operator (&4)
X (16 65) - -- (16 6,) (a9l dmy) (9l Imy) - -- (9l dm,) is picking
up the terma(my,m,,...,m;) ¢(my,m,,...,m;) among| i, ).

Now we return to the question whether the raising opera-
tor Q,",_; can take other forms. Careful calculations show
that

—IE WS XS) ™[t —1)= 2 oS (1) =),
(42)
where
aj(r)_ 27 WJ(L)’ 43

|e when acts on¢, ), Qrr , can be simplified to
Fo1=2]L,a7s, whose form is more simple. However,
(") is more compllcate thaw{y) , hence is more difficult to
determme tharW(y) . It is the reason why we introduce
Q/,_, in the beglnnlng, but notQ,’, ;. Equation (42
means thatQ,’, _, has the same effect 3,",_,, they are
both the raisihg operators. '

Next, we consider the lowering operatQy_,, . Guided
by the observation(S;x S)* =S/ S;—S; S} and
& S 1 + + s I
|(ijsk)++§(sj +SOH(ILD=111),
. ko1 ik
XSTUD =511, (44
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we set Co, 2 1[1 4
W"k(l):_ — " "
N N ! CiN(N=1)ig|a(j) a(m=j)
Q=i Wj'k(r)(ijsk)++z Bs’, 1 P .
a(k) a(m=k) ]
W= = Wi, 49 i) for r=2,

which is different from the raising operator by a translation C, 1 a(j)—ak) 1 1 9 ¢
N (r) + W,k(z):_ N T T T
term =, 81S)". ] C,N=1 A(j,k) 6,10, 9] ok
Similarly, from the definition

B ) > C 1 1 13 ajtam o 9
([H'Qr—l,r]:wr—l,rQr—l,r) |l/fr>, (46) ’BJ _C_meﬁmsﬁj Wﬁ_ma’ (48)
one hag(i) forr=1, and (iii) for generalr>2,

C,, 1 11 1

C, N—-r+1i0,i6, i(9r|1 _____ o)k

W]_'k(f) =

AGl i) =AK gl —y) @ g 1a o

x AG KT ) AL A, ) ok

C,, 1 11 1

Qe
! C, N—r+1i6,i0, i6,

1
X : A(jlg,
[mlp--,mrl;tj A(]vml!m27"'vmr1)[(|1 ..... I —9)e(my,...m_q) (.l r-2)
A Ja 0 d d 49
(ml,mz,...,mr,l) a_rnlﬁ_mz é’m—H_ a ( )
|
Like Q,",_;, when acting ofj¢;), Q,_,, can be simplified . B
0 9 1, =211 (efV)), with L7(r=10)=2 [(E~E)™Qry i) (vrl]. (5D
N
1 + +
01,-'“)252 W, k(r)+,8]-(r). (50) HereQ~ can be replaced b@ =. Furthermore
k# | ’

LY(nm)y=[L(r+1)]" ™,

Consequently, the lowering operatd@_,, or Q,_;, are
also found. L7(mn)=[L(r-=10)]"™ (n>m) (52

In particular,Qf’(,: sN_a(m)s,, Qp,1 can be simplified
to a more simple forrTQal:Er“,ﬂ:lr:rl(m)s,f1 when it acts  from Eq. (4) the dipole moment operator is established.
on|¢,). These two operators are mutually adjoint. However, Since the HC model is a spin-spin coupling system, it can
for generalr>2, the Hermitian properties ferJr'rir and be affected by an external magnetic field. With the help of
Q,_,, are not held. the dipole moment operator, the interaction Hamiltonian for

’ the HC in a time-dependent magnetic fi@¢t) can be ex-

pressed as
IV. INTERACTION H; AND EXPERIMENTAL

MEASUREMENT .
H,(t)=d-B(1), (53

The Hamiltonian of the HC shown in EL) is regarded
as the free HamiltoniaRl,. To write the interactioi,, we  where
have to write the dipole moment operator at first. From Eq.

6), one obtains
© | B(t>=§ [eMEM W +erMET D], (54

Z*<r+1,r)=2 [(Erv1—E0)™Q/ 1, [t ) (4],

and
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£§+)(t)=£)\(t)exp(—iw}\t), g;\_)(t):g)’\‘(t)exqq_iw)\t). therefore the number of spin-deviates in the ground state is
r =N/2 (the proof that the total spin is indeed minimal in the
For the fieldB(t) =By+ B, (t), we propose to put a static ground state is found if19]). des Cloiseaux and Pearson
magnetic fieldB, in the z direction at first, then to a ferro- (dCP were the first to study the elementary excitatip2g],
magnetic HC, in low temperature, its ground state is thewhich they interpreted as spin-wave-like states @k 1. It
vacuum statéiy,) with all spins up. Secondly, we superpose was later shown by Faddeev and Takhtajad] that the
on the static field a time-dependent magnetic fiBldt) natural excitations(spinong actually haveS;=1/2, and
which is perpendicular tB,. Hence, the time-dependent hence fermions. The underlying excitations occur only in
Schralinger equation is pairs[21]. The dCP states are now understood to be a super-
position of two spinons, one of which carries zero momen-
tum. In our experimental measure theory, if the energy spec-
trum is detected by the dipole transition mechanism, people
might ask: What are the first and the second excited states?
The general statg¥ (t)) is written as an expansion And what are their degeneracies? These problems are still
open and under investigation. However, guided by the obser-
[P ()= Cuo(t)|th)exp —iE,t), (56)  vation that the electric dipole moment usually transforms a
n=1 stationary state to its adjacent states in a harmonic oscillator
) o or a hydrogen atom, it might guess that one and two spin-
where|y,)’s are eigenstates df, the Hamiltonian of the  geviates to the ground state of the antiferromagnetic HC
HC. We thereby obtain a set of coupled equations should correspond to the first and the second excited states,
d respectively. The>2 excitations would not be simple com-
—ij _Cn(t):E E dni- &N E\ exd — i (@) — o) t]Cy(t) pounds ofr =1 andr =2, since the antiferromagnetic HC is
dt koA a strong spin-spin coupling model, nonlinear excitations
should play an important role in the dynamical behavior of
> Oni- € (N EF exd +i(wy the one-dimensional system.
Y (ii) Eventually, we would like to present an illuminating
— wp)ICH(D) (57) (but not a mathematically rigorousrgument on the low-
nk K temperature thermodynamic properties. In the measure
with wn=E,— Ey is the Bohr transition frequency. The first theory described above, the Bohr transition frequeagy
and the second excitations should be states with one and tv@§luals to the magnetic resonance frequengy which is
spins down, i.e. /i) and |4,), respectively. Obviously, carried by a photon. The occupation number should be
when w, = 0wy, the magnetic resonance phenomena would

J n
()= (H+d-BO) ¥ (D). (55

happen, thus the energy intervals of the spin chain can be (ny= ho
detected. hio _1'
XA keT

V. CONCLUSION AND DISCUSSION

In our work. based on the dinole transition mechanism inwhere kg is the Boltzmann constant. If the dispersion rela-
Y pole tral . tion w(k) is linear ink, one can show thatn one dimen-

an external time-dependent magnetic field, a possible experi-
sion)

mental measure theory to detect the energy spectrum of the

ferromagnetic HC is proposed. Of course, there can be other g (= 72K2

possible mechanisms. A question may arise naturally: How limc(T)= _f (n)dks B T,

does such a measure theory work for an antiferromagnetic T—0 dTJo 3h

HC? In the following, we would like to make some discus-

sions restricting to the dipole transition mechanism. i.e., the specific heat is proportional Toin the low tempera-

(i) Starting from the ferromagnetic “vacuum” staltéy,), ture.
if the raising operators are acted for enough times, then for
even-spins antiferromagnetic HC, it will reach the ground ACKNOWLEDGMENT
state. The corresponding ground state energy was first calcu-
lated by Hulth@ using Bethe's method18]. The ground This work was partially supported by the National Natural
state is a singlet with total spiB;=0 (for N=even intege;, ~ Science Foundation of China.
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