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Transient nonlinear dielectric relaxation and dynamic Kerr effect from sudden changes
of a strong dc electric field: Polar and polarizable molecules

J. L. Déjardin,* P. M. Déjardin, and Yu. P. Kalmykov
Centre d’Etudes Fondamentales, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan Cedex, France

S. V. Titov
Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Vvedenskii Square 1, Fryazino,

Moscow Region 141120, Russian Federation
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The nonlinear transient response of polar and polarizable particles~macromolecules! diluted in a nonpolar
solvent to a sudden change both in magnitude and in direction of a strong external dc field is considered. By
averaging the underlying Langevin equation, the infinite hierarchy of differential-recurrence equations for
ensemble averages of the spherical harmonics is derived for an assembly of polar and anisotropically polariz-
able molecules pertaining to the noninertial rotational Brownian motion. On solving this hierarchy, the relax-
ation functions and relaxation times appropriate to the transient dynamic Kerr effect and nonlinear dielectric
relaxation are calculated. The calculations are accomplished using the matrix continued fraction method, which
allows us to express exactly the solution of the infinite hierarchy of differential-recurrence relations for the
first- and second-order transient responses of the ensemble averages of the spherical harmonics~relaxation
functions!. The results are then compared with available experimental data and solutions previously obtained
for various particular cases.@S1063-651X~99!09808-6#

PACS number~s!: 05.40.2a, 78.20.Fm, 78.20.Jq, 77.22.Gm
ar
he

ll
tia
in
d
r

a
lu

ar

y
e

y
e
th
a

ng
th
s
a
pe
ly
le

h-
ion

ld.
the
re-
ble
s
ud-
re,
and
near-
thod
on-
lled

the
ro-
er-
his
l-
l
r-
f-
of
tor
-

he
ran-
ct

ric-
vel-
usly
ms
I. INTRODUCTION

Nonlinear dielectric and Kerr effect relaxation of pol
fluids springs from the rotational motion of molecules in t
presence of external electric fields and thermal agitation~see,
e.g., @1–4#!. Interpretation of these phenomena is usua
based on the rotational diffusion model in the noniner
limit that relies on the solution of the appropriate Langev
or Fokker-Planck equation and has usually been confine
the linear response or the nonlinear response in low orde
perturbation theory~see, for example, Refs.@1, 5–8#!, where
the energy of a molecule in the electric field is far less th
the thermal energy. However, a few exact analytical so
tions of particular nonlinear response problems exist~e.g.,
@2,9–13#!. Also, Morita @14# and Morita and Watanabe@15#
proposed a general formal theory of nonlinear response
ing from the transient and stationary processes~in particular,
the theory is valid for systems of polar molecules, the d
namics of which in the noninertial limit is governed by th
Smoluchowski equation!. In order to accomplish this the
expanded the Green’s function for the unperturbed stat
terms of appropriate orthogonal functions. They showed
this Green’s function is sufficient to calculate the nonline
behavior of the distribution function perturbed by a stro
external field. They found also that in the stationary state
nonlinear response function can be expressed in term
integrals of products of infinite matrices whose elements
composed of correlation functions in the absence of the
turbation. However, this formalism is very difficult to app
to the calculation of transient responses in nonlinear die
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tric and Kerr effect relaxation in high dc fields due to mat
ematical difficulties encountered. Indeed, the only express
for the birefringence function obtained in Ref.@15# was de-
rived for a weak ac superimposed on a weak dc bias fie

The goal of the present paper is to present a theory for
transient dynamic birefringence and nonlinear dielectric
laxation response of polar and anisotropically polariza
particles ~macromolecules! dissolved in nonpolar solvent
when both magnitude and direction of the dc field may s
denly be changed. This problem is truly nonlinear; therefo
there is no longer any connection between the step-on
step-off responses and the stationary ac response as in li
response theory. The theory is based on an analytical me
recently developed for the calculation of the linear and n
linear responses of systems of Brownian particles compe
to rotate in three-dimensional space@12,16,17#. This method
consists in the transformation of the angular variables in
underlying Langevin equation for the three-dimensional
tational Brownian motion and in the subsequent direct av
aging of the stochastic differential equation so obtained. T
allows us to derive the infinite hierarchy of the differentia
recurrence equations for the moments~averaged spherica
harmonics! without recourse to the corresponding Fokke
Planck equation@18#. ~This has been accomplished by Co
fey @19# who derived such a hierarchy by direct averaging
the one-dimensional Langevin equation for a planar rota
in a constant field!. Then, the modified Risken’s matrix con
tinued fraction approach@18# is applied to the solution of this
hierarchy@17#. As we shall show in the present paper, t
above method can also be used in the calculation of the t
sient nonlinear dielectric relaxation and dynamic Kerr effe
response of polar and anisotropically polarizable symmet
top molecules. We shall demonstrate that the theory de
oped contains as particular cases all the results previo
obtained for various particular transient relaxation proble
1475 © 1999 The American Physical Society
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caused by sudden changes of external fields and is in ag
ment with available experimental data.

II. ROTATIONAL DIFFUSION IN A STRONG ELECTRIC
FIELD: THE LANGEVIN EQUATION APPROACH

We study the three-dimensional rotational Brownian m
tion of a symmetric top polar and polarizable particle in
strong external electric fieldE. Let us take a unit vectoru(t)
through the center of mass of the particle in the direction
the axis of symmetry. Then the rate of change ofu(t) is

du~ t !

dt
5v~ t !3u~ t !, ~1!

wherev(t) is the angular velocity of the particle. We rema
that Eq.~1! is a purely kinematic relation with no particula
reference either to the Brownian movement or to the shap
the particle. Further, in the presence of an electric fieldE(t)
we suppose that the angular velocityv(t) obeys the Euler-
Langevin equation@17#,

Î
dv~ t !

dt
1zv~ t !5m~ t !3E~ t !1l~ t !, ~2!

where Î is the inertia tensor of the particle,zv(t) is the
damping torque due to Brownian movement~for simplicity
we assume that the friction coefficientz is a scalar!, andl(t)
is the white-noise driving torque, again due to Browni
movement so thatl(t) has the following properties:

l i~ t !50,

l i~ t1!l j~ t2!52kTzd i j d~ t12t2!. ~3!

Here the overbar means a statistical average over an
semble of Brownian particles whichall start at timet with
thesameangular velocityv and orientationu @17,18#; d i j is
Kronecker’s delta, indexesi , j 51,2,3 correspond to the Ca
tesian axesX,Y,Z of the coordinate systemOXYZ, andd(t)
is the Dirac delta function;m is the total dipole moment o
the particle in the fieldE(t). The termm(t)3E(t) in Eq. ~2!
is the torque due to the electric field acting on the partic
This torque can be expressed in terms of the potential en
V(u,t) of the particle in the fieldE as a function of the
components of the vectoru, viz.,

m3E52u3
]

]u
V.

Equation~2! includes the inertia of the particle. The no
inertial limit ~or the Debye approximation! occurs when the
inertial term in Eq.~2! is neglected. In this limit one obtain
from Eqs.~1! and ~2! @16,17#

z
du~ t !

dt
52

]

]u
V1u~ t !S u~ t !•

]

]u
VD1l~ t !3u~ t !. ~4!

This is the vector Langevin equation for the motion of t
vectoru in the noninertial limit.

In Refs.@12, 16, 17# a method has been suggested of
derivation of the infinite hierarchy of the differentia
ee-

-

f
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.
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recurrence equations for the averaged spherical harmo
~moments! by means of the direct averaging of the Langev
equation~4! for particular potentialsV. Here we extend this
method and derive the infinite hierarchy for an arbitrary p
tential.

This is conveniently accomplished by using the spheri
coordinate system. In its basis$er ,eq ,ew%:

u5$1,0,0%, u̇5$0,q̇, sinqẇ%,
]V

]u
5S 0,

]V

]q
,

1

sinq

]V

]w D ,

whereq and w are the polar and azimuthal angles, resp
tively. Thus, Eq.~4! is equivalent to two stochastic equation
for q andw:

q̇~ t !52z21
]

]q
V„q~ t !,w~ t !,t…1gq i„q~ t !,w~ t !…l i~ t !,

~5!

ẇ~ t !52z21
1

sin2 q

]

]w
V„q~ t !,w~ t !,t…

1gw i„q~ t !,w~ t !…l i~ t !, ~6!

where

gqX52z21 sinw, gqY5z21 cosw, gqZ50,

gwX52z21 cotq cosw, gwY52z21 cotq sinw,

gwZ5z21, ~7!

and the summation overi 5X,Y,Z is understood~Einstein’s
notation!.

Here we shall use the Stratonovich definition@17,20# of
the stochastic differential equations~5! and~6! with the mul-
tiplicative noise termsgkil j (t), as that definition always
constitutes the mathematical idealization of the physical s
chastic process of orientational relaxation in the noniner
limit. Therefore, it is unnecessary to transform the Lange
equations~5! and~6! to Itô equations~e.g.,@21#!. Moreover,
one can apply the methods of ordinary analysis@18,21#.
Thus, one can obtain the stochastic differential equation
any functionf (q,w) of the anglesq andw:

d

dt
f „q~ t !,w~ t !…5q̇~ t !

]

]q
f „q~ t !,w~ t !…

1ẇ~ t !
]

]w
f „q~ t !,w~ t !…. ~8!

As has been described in detail in Refs.@16, 17#, on av-
eraging Eq.~8! over an ensemble of Brownian particle
which all start at timet with the same orientationu, we
obtain

2tD ḟ ~q,w!5D f ~q,w!1
1

2kT
@V~q,w,t !D f ~q,w!

1 f ~q,w!DV~q,w,t !2D„V~q,w,t ! f ~q,w!…#,

~9!

where
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D5
1

sinq

]

]q S sinq
]

]q D1
1

sin2 q

]2

]w2

is the Laplace operator andq andw are the sharp values of the stochastic variablesq(t) andw(t) at the moment of averaging
t. Here we have used that

gq il i~ t !
]

]q
f „q~ t !,w~ t !…1gw il i~ t !

]

]w
f „q~ t !,w~ t !…5

1

2tD
D f ~q,w!

and

2z21S ]

]q
V

]

]q
f „u~ t !,w~ t !…1

1

sin2 q

]

]w
V

]

]w
f „q~ t !,w~ t !…D

5
1

4tDkT
@V~q,w,t !D f ~q,w!1 f ~q,w!DV~q,w,t !2D„V~q,w,t ! f ~q,w!…#.
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Let us now specify the problem of the calculation of t
nonlinear transient relaxation. Let us suppose that both m
nitude and direction of the dc field are suddenly change
time t50 from EI to EII . We are interested in the relaxatio
of the system of particles~macromolecules! diluted in a non-
polar solvent starting from an equilibrium state I with th
distribution functionWI (t<0) to another equilibrium state
II with the distribution functionWII (t˜`). The distribution
functions in the equilibrium states I and II are the Boltzma
ones, viz.,

WN5e2VN /kT/ZN ~N5I,II !, ~10!

whereZN (N5I,II) are the partition functions. On neglectin
effects due to the hyperpolarizability of the molecule, t
potential energyVN is given by@3#

VN52mEN cosJN2 1
2 ~a12a2!EN

2 cos2 JN ~N5I,II !.
~11!

Herem is the dipole moment of the molecule,a1 anda2 are
the components of the electric polarizability parallel and p
pendicular to the axis of symmetry of the molecule, andJN
is the angle between the vectorsu andEN . This problem is
intrinsically nonlinear because it is assumed that chan
both in the magnitude and in the direction of the dc field
significant.

Our goal is to evaluate the transient relaxation of the e
tric polarizationP(t) and the birefringence functionK(t) in
the direction of the fieldEII , viz.,

P~ t !5mN0^P1~cosJ II !&~ t ! ~12!

and

K~ t !5Ks^P2~cosJ II !&~ t !, ~13!

whereN0 is the concentration of molecules,Ks52pN0(a1
0

2a2
0)/n̄, a1

0 anda2
0 are the components of the optical pola

izability due to the electric field of the light beam,n̄ is the
mean refractive index,Pn(z) is the Legendre polynomial o
ordern, and the angular brackets^ & mean the usual statistica
averaging.
g-
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-

es
e

-

Both P(t) and K(t) may be expressed in terms of ave
ages involving the spherical harmonicsYl ,m(q,w) @see Eqs.
~34! and ~35! below#, which are defined as@22#

Yl ,m5~21!mA@~2l 11!~ l 2m!!/4p~ l 1m!! #

3eimwPl
m~cosq!, ~14!

Yl ,2m5~21!mYl ,m* , ~15!

where Pl
m(cosq) is the associated Legendre function, t

asterisk denotes the complex conjugate.
Thus Eq.~9! yields

2tDẎl ,m5
1

2kT
@VDYl ,m1Yl ,mDV2D~VYl ,m!#1DYl ,m .

~16!

On using the known relationships@23#

DYl ,m52 l ~ l 11!Yl ,m , ~17!

Yn,mYN,M5 (
j 5un2Nu

D j 52

n1N

(
k52 j

j

A@~2n11!~2N11!/4p~2 j 11!#

3^n,0,N,0u j ,0&^n,m,N,M u j ,k&Yj ,k ~18!

~^ l 1 ,m1 ,l 2 ,m2u l ,m& are the Clebsch-Gordan coefficien
@22,23#!, one can show that for any potentialV, which can be
expanded in a series as

V

kT
5(

R,S
nR,SYR,S , ~19!

Eq. ~16! can be presented as

tD

d

dt
Yl ,m5(

r ,s
dl ,m,l 1r ,m1sYl 1r ,m1s , ~20!
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where

dl ,m,l 1r ,m1s52
l ~ l 11!

2
d r ,0ds,01~21!m

3
A~2l 11!~2l 12r 11!

8

3 (
R5s

`

nR,s

r ~2l 1r 11!2R~R11!

Ap~2R11!

3^ l ,0,l 1r ,0uR,0&^ l ,m,l 1r ,2m2suR,2s&.

~21!

In order to obtain the equations for the moments, wh
govern the relaxation dynamics of the system, one also ha
average Eq.~20! over the probability density function
W(q,w,t) @17#. Thus, one obtains the infinite hierarchy
differential-recurrence relations,

tD

d

dt
^Yl ,m&~ t !5(

r ,s
dl ,m,l 1r ,m1s^Yl 1r ,m1s&~ t !, ~22!

where the symbol̂ & denotes the averaging overW.
For the potential given by Eq.~11!, we have

VN

kT
5 (

R51

2

(
S52R

R

nR,S
N YR,S2

sN

3
, ~23!

where

n1,0
N 52A~4p/3!jNgZ

N , ~24!

n1,1
N 52~n1,21

N !* 5A~2p/3!jN~gX
N2 igY

N!, ~25!

n2,0
N 52A~4p/45!sN@3~gZ

N!221#, ~26!

n2,1
N 52~n2,21

N !* 5A~8p/15!sNgZ
N~gX

N2 igY
N!, ~27!

n2,2
N 5~n2,22

N !* 52A~2p/15!sN~gX
N2 igY

N!2. ~28!

Here gX
N5sinQN cosFN , gY

N5sinQN sinFN , and gZ
N

5cosQN are the direction cosines ofEN in the coordinate
systemOXYZ~see Fig. 1! and

FIG. 1. The geometry of the problem.
h
to

jN5
mEN

kT
, sN5

~s12a2!EN
2

2kT
. ~29!

Without loss of generality it will be supposed that the fieldEI
is directed along theZ axis. Thus, below we will use tha
Q I50 andQ II5Q.

For the problem in question, it is convenient to introdu
the relaxation functionscn,m(t) defined as

cn,m~ t !5^Yn,m&~ t !2^Yn,m& II , ~30!

where^& II designates the equilibrium average in the state
Thus, we can derive the following 21 term differentia
recurrence equations:

tD

d

dt
cn,m~ t !5 (

r 522

2

(
s522

2

dn,m,n1r ,m1scn1r ,m1s~ t !,

~31!

where the coefficientsdn,m,n1r ,m1s are given by

dn,m,n1r ,m1s52
n~n11!

2
ds,0d r ,0

1
~21!mA~2n11!~2n12r 11!

8

3H n1,sF r ~2n1r 11!22

A3p
G ^n,0,n1r ,0u1,0&

3^n,m,n1r ,2m2su1,2s&

1n2,sF r ~2n1r 11!26

A5p
G ^n,0,n1r ,0u2,0&

3^n,m,n1r ,2m2su2,2s&J , ~32!

with dn,m,n61,m62[0. In order to derive Eq.~31! we have
used that the equilibrium averages^Yn,m& II (N5I,II) satisfy
the recurrence relation:

(
r 522

2

(
s522

2

dn,m,n1r ,m1s^Yn1r ,m1s&N50. ~33!

Thus, on solving Eq.~31! one is able to evaluate the tran
sient responses of the polarization^P&(t) and the birefrin-
gence function̂ K&(t), which are conveniently described b
the normalized relaxation functions,

f 1~ t !5
^P&~ t !2^P& II

^P& I2^P& II

5
gZ

IIc1,0~ t !2& Re$~gX
II2 igY

II !c1,1~ t !%

gZ
IIc1,0~0!2& Re$~gX

II2 igY
II !c1,1~0!%

~34!

and
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f 2~ t !5
^K&~ t !2^K& II

^K& I2^K& II

5
@3~gZ

II !221#c2,0~ t !1A6 Re$~gX
II2 igY

II !2c2,2~ t !%22A6g3
II Re$~gX

II2 igY
II !c2,1~ t !%

@3~gZ
II !221#c2,0~0!1A6 Re$~gX

II2 igY
II !2c2,2~0!%22A6g3

II Re$~gX
II2 igY

II !c2,1~0!%
, ~35!
ra
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respectively. Another quantities of interest are the integ
relaxation timestn , which are defined as the area under t
curve of f n(t):

tn5E
0

`

f n~ t !dt5 f̃ n~0!, ~36!

where the tilde denotes the Laplace transform

f̃ n~s!5E
0

`

f n~ t !e2stdt. ~37!

It should be noted that the system of Eqs.~31! can be also
be derived starting from the underlying Smoluchowski eq
tion for the probability distribution functionW(u,t) of ori-
entations of the vectoru in configuration space, namely,

2tD

]

]t
W5DW1

1

kT
div~W gradVN!. ~38!

The formal matrix-continued fraction method to the so
tion of the recurrence equations, such as Eq.~31!, where two
indexes vary, was suggested in Ref.@18#. However, in prac-
tice it is rather inconvenient, as one must use matrices
infinite dimension. We shall use below a more refined
proach to the solution of Eq.~31! recently suggested in Refs
@24,25# for the solution of similar recurrence equations,
that it is possible to reduce the computational task to op
tions involving matrices of finite dimensions.

III. SOLUTION OF DIFFERENTIAL-RECURRENCE
EQUATIONS „31…

Let us introduce a vectorCn(t), consisting of 8n ele-
ments:

Cn~ t !5S c2n,22n~ t !
c2n,22n11~ t !

]

c2n,2n~ t !
c2n21,22n11~ t !
c2n21,22n12~ t !

]

c2n21,2n21~ t !

D .

Then, Eq.~31! can be transformed in a matrix three-ter
differential-recurrence equation,

tD

d

dt
Cn~ t !5Qn

2Cn21~ t !1QnCn~ t !1Qn
1Cn11~ t !,

n51,2,3, . . . ~39!

with
l
e

-

-

of
-

a-

C0~ t !50 and C1~ t !5S c2,22~ t !
c2,21~ t !
c2,0~ t !
c2,1~ t !
c2,2~ t !

c1,21~ t !
c1,0~ t !
c1,1~ t !

D . ~40!

The matricesQn , Qn
1 , andQn

2 in Eq. ~39! are given by

Qn5S X2n

Y2n21

W2n

X2n21
D , Qn

15S Z2n

0
Y2n

Z2n21
D ,

Qn
25S V2n

W2n21

0
V2n21

D ,

with

Yn52
n

n12
Wn11

† , Zn52
n

n13
Vn12

† .

Here the symbol † denotes the Hermitian conjugation~trans-
position and complex conjugation!. Thus the matricesQn ,
Qn

1 , andQn
2 can be expressed in terms of the submatri

Xn , Wn , andVn , which are described in details in the Ap
pendix. The dimensions of the matricesQn , Qn

1 , and Qn
2

are accordingly equal to 8n38n, 8n38(n11), and 8n
38(n21). The exception is

Q1
25S V2

W1
D ,

which degenerates to a column vector of dimension 8.

FIG. 2. ln(t1 /tD) as a function ofj andQ for R51 ~a rapidly
rotating fieldjI5jII5j, 0.01<j<5!.
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The column vectorC1(t) @Eq. ~40!# contains all the
cl ,m(t), which are necessary for the calculation of the rela
ation functionsf 1(t) and f 2(t) from Eqs.~34! and ~35!.

On taking the Laplace transform of Eq.~39! we have

Qn
2C̃n21~s!1@Qn2stDI #C̃n~s!1Qn

1C̃n11~s!

52tDCn~0!, ~41!

whereI is the unit matrix, which has the same dimension
the matrixQn , and

C̃n~s!5E
0

`

Cn~ t !e2stdt.

On applying the general method of solution of the mat
three-term differential-recurrence Eq.~41!, suggested in
e
ns

on

on
n

-

s

Refs. @17,18#, we obtain theexactsolution for the Laplace
transformC̃1(s) in terms ofmatrix continued fractions, viz.,

C̃1~s!5tD@tDsI2Q12Q1
1S2

II~s!#21

3H C1~0!1 (
n52

` S )
k52

n

Qk21
1 @tDsI2Qk

2Qk
1Sk11

II ~s!#21DCn~0!J , ~42!

whereSn
II(s) is the infinite matrix continued fraction define

as

Sn
II~s!5@tDsI2Qn2Qn

1Sn11
II ~s!#21Qn

2

or
Sn
II~s!5

I

tDsI2Qn2Qn
1

I

tDsI2Qn112Qn11
1

I

tDsI2Qn12�
Qn12

2

Qn11
2

Qn
2 . ~43!
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The initial conditionsCn(0) are vectors that can also b
calculated with the help of the matrix continued fractio
Sn

N(0) ~see Appendix!. On puttings5 iv in Eqs. ~42! and
~43!, we are now able to calculate from Eqs.~34! and ~35!
the one-sided Fourier transforms of the relaxation functi
f 1(t) and f 2(t). Moreover, on using Eq.~36!, one can also
calculate the relaxation timest1 andt2 .

IV. RESULTS AND DISCUSSION

The matrix-continued fraction solution@Eq. ~42!# we have
obtained is very convenient for the purpose of computati
All the matrix-continued fractions and series involved co

FIG. 3. ln(t1 /tD) as a function ofj andQ for R51 ~a rapidly
rotating fieldjI5jII5j, 0.01<j<5!.
s

.
-

verge very rapidly, thus 8–10 downward iterations in calc
lating these continued fractions and 8–10 terms in the se
are enough to estimate the spectrumC̃1( iv) at an accuracy
not less than 6 significant digits in the majority of case
Having determinedC̃1( iv), we are now able to calculat
from Eqs.~34!–~37! all the quantities of interest. It should b
noted that for a given value ofj the two anglesQ ~polar! and
F ~azimuthal! define the direction cosines of the applied fie
EII in general. However, due to the symmetry properties
solution is independent on the angleF, so that we may se
F50 in the calculations.

Let us first calculate the transient responses when a st
dc fieldE is suddenly rotated at an angleQ, which leads one
to consider that only the direction of the field is changed, i
j I5j II . The rapidly rotating field method was introduced b
Morita and Watanabe@26#. This method has the advantage
comparison with other methods~such as rise transient or rap
idly reversing field methods! of obtaining a larger value for
the birefringence. Previously, the theory of this method w
developed only fornonpolarizablemolecules@2,26#. The ap-
proach developed in the present paper allows us to calcu
the relaxation time and spectra of the relaxation functions
polar and polarizable moleculesas well. Some results o
these calculations are shown in Figs. 2–7. The calculati
were carried out for

sN5
jN

2

2R
with R5

m2

kT~a12a2!
51

~the ratioR characterizes the relative effect of the perman
dipole moment with respect to the induced one and can v
from 2` to 1` @2#!.
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The evolution of the relaxation timet15 f̃ 1(0) of the
electric polarization as a function of the angleQ and the
dimensionless parameterj5j I5j II ~which characterizes the
strength of the dc field! is illustrated by a surface plot in Fig
2. For Q'0, the relaxation timet1'tD for j!1 ~small
fields!, while t1;tD /j for high values ofj. For small values
of Q, t1 decreases monotonically to zero with increasingj.
However, asQ˜p ~reversing field! one may notice thatt1
increases with increasingj. A similar plot of the Kerr effect
relaxation timet25 f̃ 2(0) is shown in Fig. 3. ForQ'0, t2
'tD/3 for j!1 andt2;tD /j for j@1. Just as fort1 , for a
fixed value ofQ'0 the relaxation timet2 decreases mono
tonically to zero with increasingj. For a reversing field (Q
˜p) the relaxation timet2 tends to infinity. However, such
a behavior is only due to the definition of the relaxation tim
t2 given by Eq.~36!, as in this case (j I5j II) ^P2& I5^P2& II
for Q5p. Thus, a more suitable quantity characterizing t
particular case would be the area under the unnormal
birefringence relaxation function, which is not equal to ze
at Q5p.

The real and imaginary parts of the spectra of the o
sided Fourier transform of the relaxation functionsf 1(t) and
f 2(t), are illustrated in Figs. 4–7. As one can see in th

FIG. 4. ln@Re(f̃1 /tD)# as a function of log10(vtD) and Q for a
rapidly rotating field~jI5jII53 andR51!.

FIG. 5. ln@2Im( f̃1 /tD)# as a function of log10(vtD) andQ.
s
d

-

e

figures, the dispersion curves have a very complicated
havior. It is clearly seen~Figs. 5 and 7! that in the vicinity of
Q50 corresponding to the step-on~or step-off! field re-
sponse, two relaxation processes appear in these spectra
~slow! Arrhenius-like process describes the overbarrier
versal of the molecule in the potential~23!, while the second
one describes the fast relaxation inside the wells locate
the minima of the potential energy, namely, atq50 and
q5p. On increasingQ, although both processes continue
exist, the amplitude of the slow process enhances and m
progressively the high-frequency relaxation. Such a beha
implies that for the rapidly rotating field the relaxation fun
tions f 1(t) and f 2(t) appropriate to polar and anisotropical
polarizable molecules may not be approximated by a sin
exponential in contrast to the Debye-like behavior enco
tered when only permanent moments are taken into acc
@27#. This difference arises mainly from the double-we
structure of the potential energy~23! considered in this pa-
per.

We considered above the transient behavior for a rap
rotating field assuming that there is no change in the stren
of the field. Similar calculations can also be carried out wh
the strength of the field may vary as well. The last ca
covers all possible situations for transient relaxation at s

FIG. 6. Re(f̃2 /tD) as a function of log10(vtD) andQ.

FIG. 7. ln@2Im( f̃2 /tD)# as a function of log10(vtD) andQ.
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den changes of the external field. If we suppose that only
strength but not the direction of the external field do
change, then the calculations can be considerably simpl
as in this case the dynamics of the system is governed
five term differential-recurrence equation. This correspo
to Q50 ~step-on and/or step-off response! and Q5p ~sud-
denly reversing field response! for arbitrary values ofEI and
EII . The details of the matrix-continued fraction approach
the solution of all these problems can be found elsewh
@12#. Moreover, for step-on and/or step-off~Q50! and sud-
denly reversing fields~Q5p! the relaxation timest1 andt2
can be calculated from an analytical equation@13,28#:

tn5
2tD

^Pn& II2^Pn& I
E

21

1 F~z!Cn~z!e2s IIz
22j IIzdz

12z2 ~n

51,2!, ~44!

where

F~z!5E
21

z

@WII~z8!2WI~z8!#dz8, ~45!

C1~z!5E
21

z

@P1~z8!2^P1& II#e
s IIz8

21j IIz8dz8, ~46!

C2~z!5E
21

z

@P2~z8!2^P2& II#e
s IIz8

21j IIz8dz8. ~47!

Equation~44! is a direct consequence of the nonlinear tra
sient response theory developed in Ref.@28# for systems
whose dynamics is governed by a one-dimensional Fok
Planck equation~for Q50 andQ5p the relaxational dynam
ics of Brownian particles is governed by a one-dimensio
Smoluchowski equation@2#!. Equation~44! provides us with
an independent check of the matrix-continued fraction so
tion as well as it allows one to evaluate readily the relaxat
times t1 and t2 for various particular cases. For examp
when a strong constant field is suddenly applied att50
~step-on response! to a system of nonpolar polarizable mo
ecules that corresponds in Eqs.~44!–~47! to the following
values of parameters:

j I5j II50, s I50, s II5s. ~48!

Both the birefringence and the polarization are expresse
terms of^P2&(t). Therefore, it is sufficient to calculate onl
t2 , for which Eq.~44! takes the form@13,28#
e
s
d
a

s

o
re

-

r-

l

-
n
,

in

t25
3tD

4s^P2& II
E

21

1 H z
erf i ~Asz!

erf i ~As!
@11 es~12z2!#

2es~12z2!
erf i 2~Asz!

erf i 2~As!
2z2J dz

12z2 , ~49!

where

^P2& II5
3es

2Aps erf i ~As!
2

3

4s
2

1

2
~50!

and

erf i ~x!5
2

Ap
E

0

x

et2dt ~51!

is the error function of imaginary argument.
We could find in the literature only a few experiment

data@29–32#, which can be used for checking the nonline
theory. Tolles and co-workers@29,30# presented experimen
tal results for the step-on nonlinear relaxation timet2 of
nonpolar polarizablezinc oxide particles as a function of a
applied electric field. The comparison of the theory w
these data is given in Fig. 8. Heret2 @Eq. ~49!# is plotted as
a function of

FIG. 8. Step-on response transient relaxation time~solid line! as
a function ofA given by Eq.~52!. Bars are the experimental dat
from @30#.
A52.4EIIA~«0tD /h!@ ln~2l /d!21.5727$@ ln~2l /d!#2120.28%2#/@3.49 ln~2l /d!21.84#, ~52!
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where«0 is the permittivity of free space,h is the viscosity
of the fluid, andl /d is the length-to-diameter ratio, taken
be 15 for these experiments. The agreement of the the
with the experimental data@29,30# is good. The theory also
agrees in all respects with the numerical solutions of
Smoluchowski equation obtained in Ref.@30#.

Some measurements of transient and steady-state ele
birefringence of rodlike macromolecules @helical
(Lys•HBr)n# in a methanol-water mixture were made b
Kikuchi @31#. For this system the electro-optical respon
exhibits the characteristics of a pure-induced dipole orien
tion mechanism~the contribution from the permanent dipo
moment is less than 5%!. The theoretical prediction for the
steady-state birefringence,

K~`!5Ks^P2& II ,

where ^P2& II is given by Eq.~50!, is in accordance with
clearly noticed experimental observations of upward dev
tions from Kerr’s law@31#. Unfortunately, the author did no
present experimental results for the field dependence of
transient relaxation time. Therefore, the detailed compari
with this experiment cannot be carried out.

Thus, in the context of the noninertial rotational diffusio
model, the transient nonlinear dielectric relaxation and
namic Kerr effect responses of an ensemble of noninterac
polar and polarizable molecules in a strong dc field, wh
both the magnitude and the direction of the dc field m
suddenly be changed, can be evaluated from Eq.~42! in
ry

e

tric

e
-

-

he
n

-
g

n
y

terms of matrix-continued fractions. The theory contains
particular cases all the results previously obtained for vari
particular transient relaxation problems such as transien
sponses on step-on, step-off, suddenly reversing or sudd
rotating fields@2,9–13#. Another advantage is that the non
linear dielectric and Kerr effect relaxation are considered
multaneously. The range of applicability of the results o
tained is restricted by a low-frequency range, as iner
effects are ignored in our model. The inclusion of the inert
effects cause the theory to be much more complicated as
then needs to solve the Euler-Langevin equation~2! ~even
for the linear rotator the differential-recurrence equatio
will involve four indices in that case!.

The approach presented in the paper can also be use
the evaluation of transient responses in the dynamic K
effect and dielectric relaxation when effects due to thehy-
perpolarizabilityof the molecule are taken into account~see,
e.g.,@7#!. Moreover, it can be applied~with small modifica-
tions! to the calculation of nonlinear magnetic response
superparamagnetic particles@32#, where the magnetic relax
ation is governed by an equation very similar to Eq.~31!.
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APPENDIX: EXPLICIT REPRESENTATION OF SUBMATRICES AND THEIR ELEMENTS IN EQ. „39…

The submatricesW l , X l , andV l are defined as

W l5S wl ,2 l
1

wl ,2 l 11

wl ,2 l 12
2

]

0
0
0

0
wl ,2 l 11

1

wl ,2 l 12

]

0
0
0

0
0

wl ,2 l 12
1

]

0
0
0

¯

¯

¯

�

¯

¯

¯

0
0
0
]

wl ,l 22

wl ,l 21
2

0

0
0
0
]

wl ,l 22
1

wl ,l 21

wl ,l
2

D , ~A1!

X l5S xl ,2 l xl ,2 l
1 xl ,2 l

11 0 � 0 0

xl ,2 l 11
2 xl ,2 l 11 xl ,2 l 11

1 xl ,2 l 11
11

� 0 0

xl ,2 l 12
22 xl ,2 l 12

2 xl ,2 l 12 xl ,2 l 12
1

� ] ]

0 � � � � 0 0

] � � � � xl ,l 22
1 xl ,l 22

11

0 � 0 xl ,l 21
22 xl ,l 21

2 xl ,l 21 xl ,l 21
1

0 ¯ 0 0 xl ,l
22 xl ,l

2 xl ,l

D , ~A2!
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V l51
n l ,2 l

11

n l ,2 l 11
1

n l ,2 l 12

n l ,2 l 13
2

n l ,2 l 14
22

0
]

0
0

0
n l ,2 l 11

11

n l ,2 l 12
1

n l ,2 l 11

n l ,2 l 14
2

n l ,2 l 15
22

�

0
0

¯

�

�

�

�

�

�

�

¯

0
0
�

n l ,l 25
11

n l ,l 24
1

n l ,l 23

n l ,l 22
2

n l ,l 21
2

0

0
0
]

0
n l ,l 24

11

n l ,l 23
1

n l ,l 22

n l ,l 21
2

n l ,l
22

2 , ~A3!

and have dimensions (2l 11)3(2l 21), (2l 11)3(2l 11), and (2l 11)3(2l 23), respectively. The elements of the su
matricesW l , X l , andV l are given by

wn,m5
gZ

NjN~n11!

2
A~n22m2!/~2n21!~2n11!,

wn,m
1 52~wn,2m

2 !* 5
~gX

N2 igY
N!jN~n11!

4
A~n2m21!~n2m!/~2n21!~2n11!,

xn,m5
sN@3~gZ

N!221#@n~n11!23m2#

2~2n21!~2n13!
2

n~n11!

2
,

xn,m
2 52~xn,2m

1 !* 52
3sN~2m21!gZ

N~gX
N1 igY

N!

2~2n21!~2n13!
A~n112m!~n1m!,

xn,m
225~xn,2m

11 !* 52
3sN~gX

N1 igY
N!2

4~2n21!~2n13!
A~n2m11!~n2m12!~n1m21!~n1m!,

nn,m5
sN~n11!

2~2n21!
@3~gZ

N!221#A@n22m2#@~n21!22m2#

~2n11!~2n23!
,

nn,m
2 52~nn,2m

1 !* 52
~n11!sNgZ

N~gX
N1 igY

N!

~2n21!
A~n22m2!~n1m22!~n1m21!

~2n23!~2n11!
,

nn,m
225~nn,2m

11 !* 5
~n11!sN~gX

N1 igY
N!2

4~2n21!
A~n1m23!~n1m22!~n1m21!~n1m!

~2n23!~2n11!
.

by
s

-

The vectors of the initial conditionsCn(0) can be also
calculated with the help of matrix-continued fractions
means of Risken’s method@18#. Namely, the component
cn,m(0) of Cn(0) are given by

cn,m~0!5^Yn,m& I2^Yn,m& II . ~A4!

We shall further transform Eq.~33! to matrix-recurrence re
lation:

Qn
2Rn21

N 1QnRn
N1Qn

1Rn11
N 50, n51,2,3, . . . ~A5!
where

Rn
N5S ^Y2n,22n&N

^Y2n,22n11&N

]

^Y2n,2n&N

^Y2n21,22n11&N

^Y2n21,22n12&N

]

^Y2n21,2n21&N

D , ~A6!
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The solution of Eq.~A5! is given by

Rn
N5Sn

N~0!Rn21
N 5Sn

N~0!Sn21
N ~0!...S2

N~0!S1
N~0!

1

A4p
,

~A7!

where

Sn
N~0!5@2Qn2Qn

1Sn11
N ~0!#21Qn

2 . ~A8!

Thus, the initial conditionsCn(0) are given by
s

A

s

ys
Cn~0!5@Sn
I ~0!Sn21

I ~0!...S1
I ~0!

2Sn
II~0!Sn21

II ~0!...S1
II~0!#

1

A4p
, n51,2,3 . . .

~A9!

In particular, forn51 we have

C1~0!5@S1
I ~0!2S1

II~0!#
1

A4p
. ~A10!
ir

s

s-

B

.
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