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Transient nonlinear dielectric relaxation and dynamic Kerr effect from sudden changes
of a strong dc electric field: Polar and polarizable molecules
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The nonlinear transient response of polar and polarizable partitiasromoleculgsdiluted in a nonpolar
solvent to a sudden change both in magnitude and in direction of a strong external dc field is considered. By
averaging the underlying Langevin equation, the infinite hierarchy of differential-recurrence equations for
ensemble averages of the spherical harmonics is derived for an assembly of polar and anisotropically polariz-
able molecules pertaining to the noninertial rotational Brownian motion. On solving this hierarchy, the relax-
ation functions and relaxation times appropriate to the transient dynamic Kerr effect and nonlinear dielectric
relaxation are calculated. The calculations are accomplished using the matrix continued fraction method, which
allows us to express exactly the solution of the infinite hierarchy of differential-recurrence relations for the
first- and second-order transient responses of the ensemble averages of the spherical haetom@tsn
functions. The results are then compared with available experimental data and solutions previously obtained
for various particular casepS1063-651X99)09808-4

PACS numbegps): 05.40—-a, 78.20.Fm, 78.20.Jq, 77.22.Gm

[. INTRODUCTION tric and Kerr effect relaxation in high dc fields due to math-
ematical difficulties encountered. Indeed, the only expression
Nonlinear dielectric and Kerr effect relaxation of polar for the birefringence function obtained in R¢L5] was de-
fluids springs from the rotational motion of molecules in thefived for a weak ac superimposed on a weak dc bias field.

presence of external electric fields and thermal agitatee, The goal of the present paper is to present a theory for the
transient dynamic birefringence and nonlinear dielectric re-

e.g., [1-4]). Interpretation of these phenomena is usually ; . ; .
based on the rotational diffusion model in the noninertiallr?;%g?gs (rrensapc?grsneolgz:uﬁglsadrisigcljv;jn 'isr?tgooprl;?)lllgr %%Iﬁlgzn?sle
limit that relies on the s_olutlon of the appropriate Lan_gevmwhen both magnitude and direction of the dc field may sud-
or Fokker-Planck equation and has usually been confined tgen|y be changed. This problem is truly nonlinear; therefore,
the linear response or the nonlinear response in low order ghere is no longer any connection between the step-on and
perturbation theorysee, for example, Reffl, 5-8), where  step-off responses and the stationary ac response as in linear-
the energy of a molecule in the electric field is far less tharresponse theory. The theory is based on an analytical method
the thermal energy. However, a few exact analytical soluvecently developed for the calculation of the linear and non-
tions of particular nonlinear response problems efgsg., linear responses of systems of Brownian particles compelled
[2,9-13). Also, Morita[14] and Morita and Watanadg5]  to rotate in three-dimensional spade,16,17. This method
proposed a general formal theory of nonlinear response ari§onsists in the transformatl_on of the angular \'/arlabl'es in the
ing from the transient and stationary proces@earticular, underlying Langevin equation for the three-dimensional ro-

the theorv is valid for svstems of polar molecules. the d tational Brownian motion and in the subsequent direct aver-
. y 1S vall¢ ystems ot polar ’ y aging of the stochastic differential equation so obtained. This
namics of which in the noninertial limit is governed by the

) X X - allows us to derive the infinite hierarchy of the differential-
Smoluchowski equatign In order to accomplish this they yecyrrence equations for the momeréseraged spherical

expanded the Green’s function for the unperturbed state iRarmonic$ without recourse to the corresponding Fokker-
terms of appropriate orthogonal functions. They showed thaplanck equatiofi18]. (This has been accomplished by Cof-
this Green'’s function is sufficient to calculate the nonlinearfey [19] who derived such a hierarchy by direct averaging of
behavior of the distribution function perturbed by a strongthe one-dimensional Langevin equation for a planar rotator
external field. They found also that in the stationary state thén a constant field Then, the modified Risken’s matrix con-
nonlinear response function can be expressed in terms aihued fraction approadt 8] is applied to the solution of this
integrals of products of infinite matrices whose elements ar@éierarchy[17]. As we shall show in the present paper, the
composed of correlation functions in the absence of the perabove method can also be used in the calculation of the tran-
turbation. However, this formalism is very difficult to apply sient nonlinear dielectric relaxation and dynamic Kerr effect
to the calculation of transient responses in nonlinear dielecresponse of polar and anisotropically polarizable symmetric-
top molecules. We shall demonstrate that the theory devel-
oped contains as particular cases all the results previously
* Author to whom correspondence should be addressed. obtained for various particular transient relaxation problems
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caused by sudden changes of external fields and is in agreeecurrence equations for the averaged spherical harmonics

ment with available experimental data. (moment$ by means of the direct averaging of the Langevin
equation(4) for particular potentials/. Here we extend this
Il. ROTATIONAL DIFFUSION IN A STRONG ELECTRIC method and derive the infinite hierarchy for an arbitrary po-
FIELD: THE LANGEVIN EQUATION APPROACH tential.

. . . ) This is conveniently accomplished by using the spherical
We study the three-dimensional rotational Brownian mo-coordinate system. In its badie, ey ,e,}:
. 1€9,€,}

tion of a symmetric top polar and polarizable particle in a
strong external electric fielH. Let us take a unit vectar(t) . o oV oN 1 oV
through the center of mass of the particle in the direction ot/={1.0.0,, u={0,8, sind¢}, —-= ( 0~ 5 sne %),
the axis of symmetry. Then the rate of changeuf) is
where ¥ and ¢ are the polar and azimuthal angles, respec-
du(t) = w(t) X u(t) 1) tively. Thus, Eq.(4) is equivalent to two stochastic equations
dt ’ for 9 and ¢:

wherew(t) is the angular velocity of the particle. We remark 49

that Eq.(1) is a purely kinematic relation with no particular HO)=-¢ ﬁv(’?(t)"P(t)thgﬁi(ﬁ(t)"P(t)))‘i(t)'
reference either to the Brownian movement or to the shape of (5)
the particle. Further, in the presence of an electric figlt)

we suppose that the angular velocibyft) obeys the Euler- _ .1 9
Langevin equatiofi17], p(t)=—{¢ 1m £V(ﬂ(t),¢>(t),t)
Td‘;’it) L =M XED AL, @ + 94 (1), (DAI(1), (®)
where

wherel is the inertia tensor of the particlé€m(t) is the

— =1 —_ 1 —
=— sing, = CoSo, =0,
damping torque due to Brownian moveméfdr simplicity Gox ¢ e Gov={ ¢ Gz

we assume that the friction coefficiefis a scalay, andA(t) Jox=—{ tcotdcosp, g.y=—¢ Lcotdsineg,
is the white-noise driving torque, again due to Brownian ¢ ¢
movement so thak(t) has the following properties: Upz= L (7)
Ni(0)=0, and the summation over=X,Y,Z is understoodEinstein’s
notation.
Ni(tp)Nj(t2) =2KTL 8 6(t1—ty). (3) Here we shall use the Stratonovich definitidv,20 of

the stochastic differential equatiof® and(6) with the mul-
Here the overbar means a statistical average over an efiplicative noise termsgy\;(t), as that definition always
semble of Brownian particles whichll start at timet with  constitutes the mathematical idealization of the physical sto-
the sameangular velocityw and orientatioru [17,18; §;; is  chastic process of orientational relaxation in the noninertial
Kronecker’s delta, indexesj=1,2,3 correspond to the Car- |imit. Therefore, it is unnecessary to transform the Langevin
tesian axes,Y, Z of the coordinate systef®XYZ and 5(t) equationg5) and(6) to 1to equationge.g.,[21]). Moreover,
is the Dirac delta functionm is the total dipole moment of one can apply the methods of ordinary analyiis,21].
the particle in the fieldE(t). The termm(t) X E(t) in Eq. (2) Thus, one can obtain the stochastic differential equation for
is the torque due to the electric field acting on the particleany functionf(%,¢) of the angless and ¢:
This torque can be expressed in terms of the potential energy
V(u,t) of the particle in the fieldE as a function of the

d . d
components of the vectar, viz., gt [0, e(1)=3(1) 75 13 (1), ¢(1))

J J
XE=—uxX—V. +o(t) — (1), 0(1)). 8
MXE=—ux--V b0 7o 1@(0.V). ®)
Equation(2) includes the inertia of the particle. The non-  As has been described in detail in Ref$6, 17], on av-
inertial limit (or the Debye approximatigroccurs when the eraging Eq.(8) over an ensemble of Brownian particles,
inertial term in Eq.(2) is neglected. In this limit one obtains which all start at timet with the same orientatiom, we

from Eqgs.(1) and(2) [16,17] obtain

dui)_ ay VN 4)  27pf(9,@)=Af(9 e AF(D, )

at +u(t)| u(t)- av )t (t)xu(t). (4) of(4,¢)=AT(T,¢) 2kT[ (9,¢,1)Af(I,0
This is the vector Langevin equation for the motion of the (3, @)AV(D,¢,t) —AV(I,¢,1)f(I,0))],
vectoru in the noninertial limit. (9)

In Refs.[12, 16, 17 a method has been suggested of the
derivation of the infinite hierarchy of the differential- where
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1 9 a d 1 a2
smﬁ ) sin St &

is the Laplace operator antland ¢ are the sharp values of the stochastic variabl@§ and¢(t) at the moment of averaging
t. Here we have used that

1
BN 25 T, G0+ G (1) 2 (D)6 (0)= 5 — AT(D,0)

and

1 Jd J
-¢t %Vﬁf(ﬁ(t)@(t)yr Py ﬁvﬁf(ﬁ(t)@(t))

= 4TDkT[V(ﬂ,¢,t)Af(ﬁ,¢)+f(13‘,@)AV(13‘,¢J)—A(V(1?,<P,t)f(19,¢))]-

Let us now specify the problem of the calculation of the Both P(t) andK(t) may be expressed in terms of aver-
nonlinear transient relaxation. Let us suppose that both magges involving the spherical harmoni¢s,( 9, ¢) [see Egs.
nitude and direction of the dc field are suddenly changed af34) and(35) below], which are defined a2]
timet=0 fromE, to E,,. We are interested in the relaxation

of the system of particlegnacromoleculesdiluted in a non- Y m= (=)™ 21+ 1)(I—m)/4m(l+m)!]
polar solvent starting from an equilibrium state | with the _
distribution functionW, (t<0) to another equilibrium state x e'M?P"(cosd), (14
[I with the distribution functiorW,, (t—<0). The distribution
funct|on_s in the equilibrium states | and Il are the Boltzmann - 1)mY| . (15)
ones, viz.,
Wy=e"WKT/z,  (N=LII), (100  Where P"(cosd) is the associated Legendre function, the

asterisk denotes the complex conjugate.
whereZy (N=1,11) are the partition functions. On neglecting  Thus Eq.(9) yields
effects due to the hyperpolarizability of the molecule, the

potential energyy, is given by[3]

. 1
ZTDYI,m:m[VAYI,m—’_YI,mAV_A(VYI,m)]+AY|,m'
Vy=—uEycosEn—3(a;—ay)E4cod By (N=1,II). (16)

(11)

Here u is the dipole moment of the molecule; anda, are ~ On using the known relationshipg3]
the components of the electric polarizability parallel and per-
pendicular to the axis of symmetry of the molecule, &gl AY | m=—1(1+1)Y, , (17)
is the angle between the vectarandEy . This problem is
intrinsically nonlinear because it is assumed that changes n+N
both in the magnitude and in the direction of the dc field are YomYnm= ; E J[(2n+1)(2N+ D/Am(2j+1)]
significant.

Our goal is to evaluate the transient relaxation of the elec-
tric polarizationP(t) and the birefringence functioki(t) in X(n,0N,0,00(n,m,N,M|j,Kk)Y; x (18)
the direction of the fieldg, , viz.,

_ (l1,mq,l5,my|l,m) are the Clebsch-Gordan coefficients
P(t)=uNo(P1(cosE))(t) (120 [22,23), one can show that for any potenti4] which can be

expanded in a series as
and

K(t)=KgP2(cosE)) (1), 13 v
()=K(P(cosZ,))(1) (13 Yo vnsVas 19
whereNj is the concentration of moleculelég=2mNg(a? '

—ad)/mn, af andad are the components of the optical polar-
izability due to the electric field of the light beam,is the
mean refractive index?(z) is the Legendre polynomial of q
ordern,_ and the angular brackets mean the usual statistical o= Y| = E A e mesYior moss (20)
averaging. dt

Eqg. (16) can be presented as
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x/

FIG. 1. The geometry of the problem.
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(29

Without loss of generality it will be supposed that the fild
is directed along th& axis. Thus, below we will use that
®|:O and®||:®.

For the problem in question, it is convenient to introduce
the relaxation functions, (t) defined as

Cn,m(t):<Yn,m>(t)_<Yn,m>ll ) (30

where(), designates the equilibrium average in the state II.
Thus, we can derive the following 21 term differential-
recurrence equations:

where 2 2
d
I(1+1) To; Caml(t) = 2 2 dnmn+r.m+sCntrmes(t),
d = 5 Bt (=) dt 1225572
Iml+r,m+s 2 r,00s,0 (32
« V@l+ 1)(? tar+l where the coefficientd,, m n+r m+s are given by
" n(n+1)
XZ v r2l+r+1)-R(R+1) dn,m,n+r,m+s:_Tés,O5r,0
= Jm(2R+1) ;
-1)™J(2n+1)(2n+2r+1
X (1,0 +r,0|R,0¢{I,m,I +r,—m—s|R, —s). +( il 8)( )
(21)
r(2n+r+1)—2
In order to obtain the equations for the moments, which X[ Vis T Ba (n,0n+r,0/1,0

govern the relaxation dynamics of the system, one also has to
average EQ.(20) over the probability density function
W(9,¢,t) [17]. Thus, one obtains the infinite hierarchy of

differential-recurrence relations,

d
TDa<YI,m>(t) = rE; dl,m,l+r,m+s<YI+r,m+s>(t)a

where the symbo{ ) denotes the averaging ovéY.
For the potential given by Eq11), we have

EZZ g Ny _9N
kT & <R R,S'R,S 3

where
V’II,o: —\J(4mI3) ¢y,
= — () )* = V@27 En(yX =i},
o= — (4m/a5) o[ 3(})2-1],
W ==y )* = (8@ oy (VR —i ),
o= (1)) == (2715 an(yX =12

(22

(23

(24
(29
(26)
(27)

(28)

Here yX=sin@ycosdy, ¥=sin@ysindy, and y)

=co®)y are the direction cosines &y in the coordinate

systemOXYZ(see Fig. 1 and

X{n,m,n+r,—m-s|1,—s)

r(2n+r+1)—6

V57

+ vy (n,0,n+r,02,0)

><<n,m,n+r,—m—s|2,—s>], (32

with d, mn=1m=2=0. In order to derive Eq(31) we have
used that the equilibrium averag€¥, )i (N=1,1) satisfy
the recurrence relation:

Mm

2
>
r=—2s

- dn,m,n+r,m+S<Yn+r,m+s>N=O- (33

Thus, on solving Eq(31) one is able to evaluate the tran-
sient responses of the polarizati¢R)(t) and the birefrin-
gence functionK)(t), which are conveniently described by
the normalized relaxation functions,

(PY(t)—(P)y
MW= Tm =Ry,

_ 200,40~ V2 RE{(yx— 1 )Cui(D)}
¥5¢10(0)— V2 Re{(v%—i74)cy4(0)}

(34)

and
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OO (K [3(y) = Llca o)+ VB ReL(¥x—174)%C, A1)}~ 2V674 Rel(y%—1 ) can(0)}

2 - - i K ’ (35)
(Kn=(Kou [3(y5)2=11cod0) + V6 Rel (¥~ ) ?c2 400}~ 265 Re{ (¥~ ) ez 4(0)}
|
respectively. Another quantities of interest are the integral Cp (1)
relaxation timesr,, which are defined as the area under the szf 1)
curve of f,(t): C’zo(t)
° - B | ocaa(t)
= fo fa(0)dt=T,(0), (36) Co)=0and CL)=| oy |- (40
Cy1,-1(t)
where the tilde denotes the Laplace transform Cyot)
B C1a(t)
F — —st
fa(s)= J; fa(ye™=dt. (37) The matriceQ,,, Q, , andQ,, in Eq. (39 are given by
It should be noted that the system of E(&l) can be also o Xon  Won ) QJr:(ZZn Yan )
be derived starting from the underlying Smoluchowski equa- "\ Yonor Xopog)t TP 0 Zy-y)

tion for the probability distribution functioW(u,t) of ori-

entations of the vectau in configuration space, namely, - Von 0
O =\ Wopy Vonoo)?
J 1 2n—1 2n—1
2TDa_t W=AW-+ T div(W gradVy). (B8 with
The formal matrix-continued fraction method to the solu- VA n wi 7 - n VAl
tion of the recurrence equations, such as @d), where two n n+2 Nt n n+3 nt2:

indexes vary, was suggested in Ref8]. However, in prac-
tice it is rather inconvenient, as one must use matrices dfiere the symbol t denotes the Hermitian conjugatteans-
infinite dimension. We shall use below a more refined apfosition and complex conjugatipnThus the matrice®),,
proach to the solution of E431) recently suggested in Refs. Q. , andQ, can be expressed in terms of the submatrices
[24,25 for the solution of similar recurrence equations, soX,, W,, andV,, which are described in details in the Ap-
that it is possible to reduce the computational task to opergpendix. The dimensions of the matric€s,, Q,T , andQ,,
tions involving matrices of finite dimensions. are accordingly equal tor8x8n, 8nxX8(n+1), and &
X8(n—1). The exception is
I1l. SOLUTION OF DIFFERENTIAL-RECURRENCE

EQUATIONS (31) _ (V2
Q=|w, )
Let us introduce a vecto€,(t), consisting of & ele-
ments: which degenerates to a column vector of dimension 8.

CanZn(t)
CZn,72'n+1(t)

CZn,Zn(t)
Con—1,-2n+1(1)
CZn—l,—_2n+2(t) 4

Cn(t)=

2

Con—1,-1(1)

(im0

Then, Eq.(31) can be transformed in a matrix three-term
differential-recurrence equation,

d
TDa Cn()= Qn Ch1 () +QCh() + QrTCnJrl(t):

n=123... (39
FIG. 2. In(r/7p) as a function oft and ® for R=1 (a rapidly
with rotating field§=¢,=§&, 0.01<¢<5).
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The column vectorCy(t) [Eg. (40)] contains all the Refs.[17,18, we obtain theexactsolution for the Laplace

¢;,m(t), which are necessary for the calculation of the relax-transformC(s) in terms ofmatrix continued fractionsviz.,
ation functionsf(t) andf,(t) from Eqgs.(34) and (35).

On taking the Laplace transform of E(9) we have Ci(s)=7p[7psI —Q1—Q; Sy(s)]*
_~ . ~ 4= 0 n
Qn o 1(8)+[Qu= 571 1Co(8) + Qs Cnia(9) y | c0+ 3, | IT ot s~
=—715C,(0), (41
wherel is the unit matrix, which has the same dimension as —Q;3|<|+1(5)]_1) Cn(o)} , (42)
the matrixQ,,, and

_ o whereS!(s) is the infinite matrix continued fraction defined
Cn(s)= fo Cn(t)e™sdt. as

Si(s)=[7psl —Q,— Qi Sh. 1(5)]17'Q,

On applying the general method of solution of the matrix
three-term differential-recurrence Ed41), suggested in or

TDSI_Qn_Q: | Qn+1

+
oSl = Qni1— Qi1

7pSI = Qn+2™.

The initial conditionsC,(0) are vectors that can also be verge very rapidly, thus 8—10 downward iterations in calcu-
calculated with the help of the matrix continued fractionslating these continued fractions and 810 terms in the series
g}'(O) (see Appendix On puttings=iw in Egs.(42) and are enough to estimate the spectr@j(i @) at an accuracy
(43), we are now able to calculate from Eq84) and (35  not less than 6 significant digits in the majority of cases.
the one-sided Fourier transforms of the relaxation functionsaving determinedC,(iw), we are now able to calculate
f1(t) andf,(t). Moreover, on using Eq36), one can also from Egs.(34)—(37) all the quantities of interest. It should be
calculate the relaxation times and 7. noted that for a given value dfthe two angle® (polan and
® (azimutha] define the direction cosines of the applied field
E, in general. However, due to the symmetry properties the
solution is independent on the angle so that we may set
The matrix-continued fraction solutidiq. (42] we have ~ ®=0 in the calculations.
obtained is very convenient for the purpose of computation. Let us first calculate the transient responses when a strong
All the matrix-continued fractions and series involved con-dc field E is suddenly rotated at an ang®e which leads one
to consider that only the direction of the field is changed, i.e.,
1= & . The rapidly rotating field method was introduced by
Morita and Watanab26]. This method has the advantage in
comparison with other methodsuch as rise transient or rap-
idly reversing field methodsof obtaining a larger value for
the birefringence. Previously, the theory of this method was
developed only fononpolarizablemoleculeq 2,26|. The ap-
proach developed in the present paper allows us to calculate
the relaxation time and spectra of the relaxation functions for
polar and polarizable moleculeas well. Some results of
these calculations are shown in Figs. 2—7. The calculations
were carried out for

IV. RESULTS AND DISCUSSION

In(ry/1p)

N s
O-N:ﬁ with R= mzl

0

(the ratioR characterizes the relative effect of the permanent
FIG. 3. In(r,/7p) as a function of¢ and® for R=1 (a rapidly ~ dipole moment with respect to the induced one and can vary
rotating field§=§,=¢, 0.0l ¢<5). from —oo to +o [2]).
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0

-5

1

In[Re(F1/7p)] . Re(fo/rn)

0 0

log 19(wp) logo(wmp)

0 0

FIG. 4. IfReff,/m)] as a function of logwrp) and ® for a FIG. 6. Ref,/7p) as a function of logwp) and©.

rapidly rotating field(§=¢,=3 andR=1).
_ figures, the dispersion curves have a very complicated be-

The evolution of the relaxation time;=1f,(0) of the havior. Itis clearly seefFigs. 5 and Ythat in the vicinity of
electric polarization as a function of the angieand the ©®=0 corresponding to the step-dior step-ofj field re-
dimensionless parametér &= &, (which characterizes the sponse, two relaxation processes appear in these spectra. One
strength of the dc fields illustrated by a surface plot in Fig. (slow) Arrhenius-like process describes the overbarrier re-
2. For ®=0, the relaxation timer;~ 7y for é&<1 (small  versal of the molecule in the potenti@3), while the second
fields), while .~ 7 / & for high values of. For small values one describes the fast relaxation inside the wells located at
of ®, 7, decreases monotonically to zero with increasing the minima of the potential energy, namely, &0 and
However, a®® — 7 (reversing fieldl one may notice that; J=ar. On increasind, although both processes continue to
increases with increasing A similar plot of the Kerr effect  exist, the amplitude of the slow process enhances and masks
relaxation timer,=1,(0) is shown in Fig. 3. Fo®~0, 7, progressively the high—_frequency rel_axation. Such a behavior
~ 7p/3 for ¢<1 andr,~ 7 /£ for &1. Just as forr,, fora  implies that for the rapidly rotating field the relaxation func-
fixed value of®~0 the relaxation timer, decreases mono- tionsfi(t) andf(t) appropriate to polar and anisotropically
tonically to zero with increasing. For a reversing field@  Polarizable molecules may not be approximated by a single
— ) the relaxation timer, tends to infinity. However, such €xponential in contrast to the Debye-like behavior encoun-
a behavior is only due to the definition of the relaxation timet€red when only permanent moments are taken into account
7, given by Eq.(36), as in this caseg=&,) (P,),=(P,), [27]- This difference arises mainly from the double-well
for ®=1r. Thus, a more suitable quantity characterizing thisStructure of the potential enerd¢3) considered in this pa-
particular case would be the area under the unnormalizeB®':

birefringence relaxation function, which is not equal to zero We considered above the transient behavior for a rapidly
at®=. rotating field assuming that there is no change in the strength

The real and imaginary parts of the spectra of the one®f the field. Similar calculations can also be carried out when

sided Fourier transform of the relaxation functidnét) and  the strength of the field may vary as well. The last case
f,(t), are illustrated in Figs. 4—7. As one can see in thes€OVers all possible situations for transient relaxation at sud-

Inf—Tm( Fy/rp)] >

-10

logo(wp) log ;o(wTp)
0 0

FIG. 5. If—Im(f,/7)] as a function of logh( wmp) and ®. FIG. 7. If—Im({f,/m)] as a function of logh(wp) and .
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den changes of the external field. If we suppose that only the 1.2 | |
strength but not the direction of the external field does | |
change, then the calculations can be considerably simplified 01 FF-1+| |
as in this case the dynamics of the system is governed by a I
five term differential-recurrence equation. This corresponds 08 N
to ®=0 (step-on and/or step-off responsnd @ = (sud- & |
L ) 0.6 ]
denly reversing field responstor arbitrary values ok, and S| | |
E, . The details of the matrix-continued fraction approach to 0.4 |
the solution of all these problems can be found elsewhere I
[12]. Moreover, for step-on and/or step-@fd=0) and sud- 02h
denly reversing fieldé® =) the relaxation times; and 7, -
can be calculated from an analytical equatj@g,28: 00, : L : .
5 A
2 1 d(2)¥ —onzt—éyz
= D j (2)¥n(z)e > dz (n FIG. 8. Step-on response transient relaxation tisodid line) as
(Paou—=(Pn)1 J -1 1-z a function ofA given by Eq.(52). Bars are the experimental data
~12), (44) from [30].
where 371 Jl Zerfi(\/;z) [1+ ea’(l—Zz)]
o=
2 40(Poy 1| ” erfi(Jo)
z
<I>(Z)=f [Wy(2')—W(z')]dZ’, (45) "
-1 L2 erfiZ(Joz) | dz
—e” T —— -z 5, (49
erfi2(\o) 1-z
z ! !
‘I’l(z):J [P(z")—=(Py)yle* “rar'gz,  (46)
-1
where
4 ! ’
‘Pz(Z)IJ [Py(2') = (Py)ylem? “*éi7'dz . (47)
-1 (P}, = 3e’ 3 1 50
N 2moerti(Jo) 40 2
Equation(44) is a direct consequence of the nonlinear tran-
sient response theory developed in Rgf8] for systems
whose dynamics is governed by a one-dimensional Fokker- d
Planck equatiotifor ®=0 and®= 7 the relaxational dynam- an
ics of Brownian particles is governed by a one-dimensional
Smoluchowski equatiof2]). Equation(44) provides us with
an independent check of the matrix-continued fraction solu- 2 [x
tion as well as it allows one to evaluate readily the relaxation erfi(x)= _f et’dt (51)
times 7, and 7, for various particular cases. For example, Ja Jo

when a strong constant field is suddenly appliedt-a0
(step-on respongdo a system of nonpolar polarizable mol-

ecules that corresponds in Eqg4)—(47) to the following
values of parameters:

&E=&=0, =0, oy=o. (48)

is the error function of imaginary argument.

We could find in the literature only a few experimental
data[29-32, which can be used for checking the nonlinear
theory. Tolles and co-workef29,3(Q presented experimen-
tal results for the step-on nonlinear relaxation timge of
nonpolar polarizablezinc oxide particles as a function of an

Both the birefringence and the polarization are expressed iapplied electric field. The comparison of the theory with

terms of(P,)(t). Therefore, it is sufficient to calculate only
75, for which Eq.(44) takes the forni13,2§

these data is given in Fig. 8. Herg [Eq. (49)] is plotted as
a function of

A=2.4E,\(eomp I p)[In(2/d)— 1.57— 7{[In(2l/d)] 1—0.282]/[3.49In(2I/d)— 1.84],

(52
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whereeg is the permittivity of free spacey is the viscosity terms of matrix-continued fractions. The theory contains as
of the fluid, andl/d is the length-to-diameter ratio, taken to particular cases all the results previously obtained for various
be 15 for these experiments. The agreement of the theongarticular transient relaxation problems such as transient re-
with the experimental dati29,30 is good. The theory also sponses on step-on, step-off, suddenly reversing or suddenly
agrees in all respects with the numerical solutions of theotating fields[2,9—13. Another advantage is that the non-
Smoluchowski equation obtained in RE3Q]. linear dielectric and Kerr effect relaxation are considered si-
Some measurements of transient and steady-state electriwultaneously. The range of applicability of the results ob-
birefringence  of rodlike  macromolecules[helical tained is restricted by a low-frequency range, as inertial
(Lys-HBr),] in a methanol-water mixture were made by effects are ignored in our model. The inclusion of the inertial
Kikuchi [31]. For this system the electro-optical responseeffects cause the theory to be much more complicated as one
exhibits the characteristics of a pure-induced dipole orientathen needs to solve the Euler-Langevin equati@n(even
tion mechanisnithe contribution from the permanent dipole for the linear rotator the differential-recurrence equations
moment is less than 5p4The theoretical prediction for the will involve four indices in that cage
steady-state birefringence, The approach presented in the paper can also be used for
the evaluation of transient responses in the dynamic Kerr
effect and dielectric relaxation when effects due to fiye
K()=KgP2)y, perpolarizabilityof the molecule are taken into accousée,
e.g.,[7]). Moreover, it can be applie@vith small modifica-
tiong) to the calculation of nonlinear magnetic response of

where (P»), is given by Eq.(50), is in accordance with gherparamagnetic particlga2], where the magnetic relax-
clearly noticed experimental observations of upward deviaxiion, is governed by an equation very similar to E3f).
tions from Kerr's law{31]. Unfortunately, the author did not

present experimental results for the field dependence of the
transient relaxation time. Therefore, the detailed comparison
with this experiment cannot be carried out.

Thus, in the context of the noninertial rotational diffusion ~ We thank Professor W. T. Coffey for useful discussions,
model, the transient nonlinear dielectric relaxation and dycomments, and suggestions. The support of the paper by the
namic Kerr effect responses of an ensemble of noninteractintpternational Association for the Promotion of Co-operation
polar and polarizable molecules in a strong dc field, wherwith Scientists from the New Independent States of the
both the magnitude and the direction of the dc field mayFormer Soviet Unior{Grant No. INTAS 96-0668is grate-
suddenly be changed, can be evaluated from #8) in  fully acknowledged.
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APPENDIX: EXPLICIT REPRESENTATION OF SUBMATRICES AND THEIR ELEMENTS IN EQ. (39

The submatricedV,, X,, andV, are defined as

W 0 0 o0 0
Wi 1 Wi 0 0 0
- +
Wi—i+2 Wiz Wi—ig2 7 O O
W|: : . : : : , (Al)
0 0 0 W2 W|+,|—2
0 0 0 Wii—1 Wii-1
0 0 0o 0w
XX X 0

- + ++
X141 Xi—1+1 X141 X 141
—— - +
Xi—1+2 X —1+2 X, =142 X —1+2
X, = 0 0 0 , (A2)
: . + ++
Xii—2 Xii-2
0 X4 X X N
-1 -1 Xii-1 X -1

0 0 X X X |



1484 DEJARDIN, DE]ARDIN, KALMYKOV, AND TITOV PRE 60

v 0 0 0

Vier Vo 0 0

V| —1+2 V|+,—|+2

Vi—i+3 Vi-l+41 s 0

Vi=| Woiee Pioiea e Miea Mital, (A3)

0 Y 145 VIi-3 -3

: : ooVZp V-2

0 0 VITI—l V|_’|_1

0 0 0 v

and have dimensions [21)X(21—-1), (21+1)x(2I+1), and (2+1)X (2l —3), respectively. The elements of the sub-
matricesW,, X,, andV, are given by

Yyén(n+1)
Wn,m:T

V(n?=m?)/(2n—1)(2n+1),

N_: N 1
m —(Wn_,-m)*=(yX WYEN(M )J(n—m—1)(n—m)/(2n—1)(2n+1).

RS

_on[3(y2)?—1][n(n+1)=3m*] n(n+1)
Xnm= 2(2n—1)(2n+3) T2

v 3on@m=1)yr(yk+iW)
n-m/ 2(2n—1)(2n+3)

J(n+1-m)(n+m),

nm— _(X

3on(YX+i)? N

a(zn—1)(2n+3) V(N~MFD(n=m+2)(n+m=1)(n+m),

Xnm (an )*__

on(n+ [n*~m?][(n—1)*~m?]
Ynm=T22n— 1)[3( v2)*= 1]\/ (2n+1)(2n—3) '

L Doy iR+ \/(nz—m2>(n+m—2>(n+m—1>
Vam=" V0, -m)™ =~ (2n—1) (2n—3)(2n+1) '

e Doy AHIN? [+ m=3)(n+m—2)(n+m—1)(n+m)
nm=(Vn=m)™ = 4(2n—1) (2n—3)(2n+1) '

14

The vectors of the initial condition€,(0) can be also where
calculated with the help of matrix-continued fractions by
means of Risken’s methodl8]. Namely, the components

Cnh.m(0) of C,(0) are given by Yon —amn

(Yan,—2n+1)
Cn,m(o):<Yn,m>I_<Yn,m>ll- (A4) 2 12 YN

RN_ <Y2n,2n>N
We shall further transform Ed33) to matrix-recurrence re- ol (Yonoi-ons N |
lation:

(AB)

<Y2n71,j2n+2>N

QRN 1T Q.RY+QiRY,;=0, n=123... (A5) (Yon-1.0-1IN
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The solution of Eq(A5) is given by

1
RE=smom#,fsmomml(m..$<0)§1“<0>E,
(A7)

where
SN0)=[-Q,—Q; S\, (0] 'Q; .

Thus, the initial condition&,(0) are given by

(A8)

TRANSIENT NONLINEAR DIELECTRIC RELAXATION . ..
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Cn(0)=[S,(0)S;,-1(0)...S,(0)
1
_all | | i _
§n(0)§n,1(0)...§1(0)]m, n=123...

(A9)

In particular, forn=1 we have
1
c1<0>=[5'1<0>—s!<0)]ﬁ. (A10)
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