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Binary data corruption due to a Brownian agent. Il. Two dimensions, competing agents,
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This work is a continuation of our previous investigation of binary data corruption due to a Brownian agent
[Phys. Rev. B59, 5172(1999]. We extend our study in three main directions which allow us to make closer
contact with real bistable systems. These @jea detailed analysis of two dimension@,) the case of
competing agents, andi) the cases of asymmetric and quenched random couplings. Most of our results are
obtained by extending our original phenomenological model, and are supported by extensive numerical simu-
lations.[S1063-651X%99)07208-6

PACS numbegps): 05.40—a, 66.30.Jt, 82.30.Vy

[. INTRODUCTION it is necessary to consider a more general model. This is the

aim of the present work. We shall extend our original inves-

This paper is the second part of a two-stage investigatiotigation in three directions. First, we shall present a careful
into the statistics of an active random walk@rownian  analysis of two spatial dimensions. We find that the phenom-
agenj in a bistable medium. This is but one example of theenological model predicts the correct asymptotic behavior,
myriad of systems in which a random walker interacts indespite the need to introduce some form of regularization.

some way with its environmert,2]. We consider systems \ve present results for the mean density of disorgeand
in which the Brownian agerntBA) performs a pure, unbiased ysing some special properties of the continuum description,
random walk in a medium composed of elements which mayye shall also derive an approximate form for the probability
take one of two values. On visiting a given element, the BAgjstribution of the density of disorder. Second, we shall con-
has a certain prObabl“ty of SWitChing the value of that ele-sider a system Containing more than one BA, thereby induc-
ment. In our first papef3] [hereafter referred to as data ing “competition” as each BA interferes with the disorder
corruption I(DCI)] we motivated our investigation into such created by the others. The main result here is that the disor-
processes using the example of data corruption caused bydring efficacy(i.e., the global amount of disorder dueNo
Brownian agenii.e., the elements were taken to be bits Ofagents as compared to one ageatmassively reduced for
binary data, and we outlined the possible applications of ourdimensions less than two, whereas in precisely two dimen-
results to describing soft error production in small-scalesions, each BA eventually becomes independinthat the
memory device$4,5]. The disturbance of a bistable medium disorder it creates is not reordered by other BAWe shall
by a BA is also related to reversible chemical kinetics by apresent calculations based on the continuum model to make
high mobility catalyst, and disordering of biatomic structuresthese statements quantitative. Third, we shall consider two
by a wandering agerj6,7], such as an anion or cation va- kinds of generalized couplings between the BA and the
cancy in NaCl, or an impurity in a semiconductor compoundbistable medium: asymmetric switching probabilities, and
(e.g., Zn in GaAs One may also view this process as aduenched random switching probabilities. We shall argue
nonconserved cousin of magnetic disordering via spin exthat these generalized couplings may be modeled within the
change with a wandering vacank8~10]. Last, but not least, continuum limit by simple generalizations of our original
the analysis of this process yields a deeper understanding 81odel, and we shall derive some basic consequences, which
the statistics of random walks. for the case of quenched randomness are particularly inter-
In DCI we studied the simplest possible process, namelyesting(see the outline belowIn all cases, we shall support
a single BA disordering a bistable system, with a switchingour results by numerical simulations of the underlying lattice
probability which is independent of the value of the elementmodel.
One of our main concerns in DCI| was to construct a phe_ A more detailed outline follows: In Sec. Il we present a
nomeno]ogica| continuum model of the process. This enrecapitula’[ion of the results of DCI. We shall brlefly describe
abled us to find results independent of microscopic detailsthe lattice model in general spatial dimensrand present
and also to study coarse-grained quantities, such as the prob-in the form of a master equation. We then describe the
ability distribution for the local “density of disorder” which ~associated continuum theory, and we state without derivation

is less easily defined on a lattice. Our results were derive§ome pertinent results previously derived from this con-
mosﬂy for the case of one Spatia] dimension. tinuum_model in DCI. In Sec. Ill we concentrate on calcu-
In order to make contact with a wider range of processesating p in two spatial dimensions. Given that two is the
critical dimension of the process, the results are modulated
by logarithmic corrections. Therefore, great care is needed to
*Electronic address: wtriampo@vt.edu compare different theoretical predictions and numerical re-
"Electronic address: tinewman@vt.edu sults. We shall presertbriefly) four alternative methods of
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calculation, and show that they all predict the same il 11 11 1]eleN1
asymptotic behavior, and agree with the numerical simula- 11111101 1 g0 8
tions once the strong corrections to scaling are included. Us- 4|1|1)1]1]1 0 )
ing these results, we are also able to reconstruct the probabil- 111111 1606 b
ity distribution for the density of disorder approximately. In 111111 11]1]eRd]1
Sec. IV we study the case of more than one BA in the con- Lj1j1j171/1 1 1111

text of a generalized version of our continuum model. We

shall derive an exact integral expressidor asymptotically FIG. 1. lllustration of the data corruption process dio 2, with

: . . . . p=q=1. The initial uncorrupted state is shown on the left, with the
large time3 for the disordering efficacy(d) for arbitrary BA represented by the filled circle. On the right we show a typical

N. First we concentrate od=1. _We eval_luaterN(l) for N walk of ~20 steps. The BA switches a bit with each visit, so those
=2,3, and 4, and also extract its functional form /¥ 1. i yisited an even number of times are restored to their original

We then extend our study to arbitrary spatial dimension yajye.

<2, and evaluater,(d) and o(d) for large N. We use

these results to analytically continue to two dimensionsp(R,{o,},t+ 6t)

thereby avoiding the use of a microscopic regularization. In (1-q)

Sec. V we consider the system @h=1 with generalized _a pii—

couplings. First we study asymmetric rates, so, for example, =(1=p)P(RAoHO+ 2d 2| P(R*LiodD

in the data corruption process the BA will have different

probablht!es t(_) swnch 6»1 and 1_—>O. We propose to + @2 PR+, ..., —0raty - ), (1)
model this using a simple extension of the original con- 2d

tinuum theory, based on the idea that relative to the nonzero . _
“background disorder” the dynamics of the system are thewhere{l} represents thed®orthogonal lattice vectorsvhich

same as the symmetric case. Second, we consider quencH%%ive magnltud¢). -
, . — The most direct quantities to extract from the master
random couplings. In this case we argue tpapicks up

. X . L . equation are marginal averages, the simplest of which is the
logarithmic corrections in time, while the global amount of magnetization density given by

disorder remains unaffected. We shall also discuss the

guenched average of the distribution function of disorder @(rl,R,t)ETrga,lP(R,{a,},t). 2
density, and show that it is very sensitive to the distribution

of the couplings. We shall support our results by numericaAveraging the master equation over the spin variables gives
simulations which are described in detail in Sec. VI. We end

the paper with a summary of our results and our conclusions(T)(r’R’tJr H)-6(r.RY

=%E [O(r,R+1,1)—O(r,R,1)]
II. RECAPITULATION !

pq

In this section we give a very brief review of the main N ?G(r,r,t)El Or R+1 - )
ideas and some of the results contained in DCI in order to
place the present work in a proper context. The process of a At this stage a continuum limitin both space and time
BA in a bistable medium is first modeled on a hypercubicmay be taken of the above equation, which yields
lattice of dimensiord. The position of the BA is denoted by
a lattice vectoR. In a}time stepot thg BA has-a probabilit_y r7t(r,R,t)=EV§®(r,R,t)—)\G)(r,R,t)A|(r—R). ()
p to move to one of its @ nearest neighbor sites. In making 2
such a jump, there is a probabilitythat the element on the
site departed from is switched. The elements are describ

by spin variablesr, (wherer denotes a discrete lattice vec- . . q
tor) which may take the values 1. The spin variables en- pllng between the BA and the spins given hytpql /5F'

. . | . This continuum equation fo® has the form of a diffusion
code the information about the disordering process. For ex- ; . . . -

. . quation with a sink potential,(r) which is a strongly lo-
ample in the data cqrruonn process we Igbel uncorrupte alized function with lateral extehtand normalized to unity.
bits (of value J by spin+1 and corrupted bit¢of value 0 |, e najve continuum limit, this function may be taken to
by —1. [Thus, we shall often use the terms “magnetization,s 5 g gimensional Dirac delta function. However, fdr
density” and “global magnetization” which may be simply 5 “jt js necessary to smear this function in order to regu-
translated as “density of disorder” and “total amount of |5rize the theory.
disorder.”] This process is illustrated in Fig. 1 for=2 and In DCI an alternative continuum description was obtained
p=g=1. We can define the dynamics via the probability by viewing the process as a stochastic cellular automaton.
distribution P(R,{o},t), which is the probability that at The process is then defined in terms of the posifgh) of
time t, the BA is at positionR and the spins have values the BA (which is now an independent stochastic progess
given by{c,}. This distribution evolves according to a mas- and the coarse-grained density of disor@termagnetization
ter equatior[11] which takes the form density which is defined in a small region of space at a

chvo parameters have appeared: the effective diffusion con-
stant of the BA given byD=21?p/t, and an effective cou-
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specific time, and is a functional &{(t). In some sense, one whereg(r,s) is the Laplace transform of the diffusion equa-
may view this in the same spirit as a Langevin description otjon Green function
a stochastic process described at a more fundamental level

by a master equation. Taking the continuum limit of this g(r,t)=(2wDt) " %2 exp(—r?/2Dt). (10)
description yields first a simple Langevin equation for the
position of the BA, This exact result allows one to extract a great deal of
statistical information about the process. First one may sim-
dR . .
Tt 5) ply invert the Laplace transform to find the average magne-
gt — &0, (5) Pl . 10 find |
t tization density(or average density of disorder relativeip

as a function of andt. Explicit forms are given in DCI for

where £(t) is a noise term, each component of which is ang_ 1 \we note here that the average magnetization density at
uncorrelated Gaussian random variable with zero migam, the origin decays for long times id=1 as

§|(t) iS a Wllite ||Oise proceﬁsl e Correlator OE iS giVe
( )
)\Zt .

b
’ 0t)= 2 | 1+0
(&(DE(t))=D"65t—1"). ®) mOv=|
9he continuum solution has the important property that
(&(r,t;N)"y={(e(r,t;n\)). This allows us to utilize the ex-

Here and henceforth, angled brackets indicate an avera
over the noisdor equivalently the paths of the BAThe BA

act solution(9) to reconstruct the probability density for the
magnetization density. We defirfe via

(11)

is chosen to reside initially at the origiR(0)=0.
The evolution of the magnetization densipyis described

by
ad(r,t)=—N\"d(r,t)A(r—R(1)). 7) P(,r,t)=(8(d— ¢pr(r,1))), (12)

This equation may be integrated to give the explicit func-where ¢g(r,t) is the stochastic field solution given in Eq.

tional solution (8). As explained in DCI, one may solve for this distribution
exactly. In particular, ford=1 the probability distribution

_ ) for the magnetization density at the origin takes the form

¢mo=w%—wjhvmu—mv»
0

The above solution is obtained for an initial condition P(p,0,t)= ;1/2 ~— e
¢(r,0)=1, which we shall use exclusively. In terms of the (mt)"" N ¢
original lattice model it corresponds to choosing all the spins

to have the initial value of-1, so that we measure the sub- which is a log-normal distributiofiand where we have de-
sequent disorder of the system by counting the number dfned A =\/(2D)*?]. This is interesting, as it indicates the
minus spins in the systerpAlthough of no relevance to the extreme nature of the fluctuations in this system. For in-
coarse-grained description, we mention here that it is ofteBtance, the typical value of the magnetization density can be
convenient to choose the spin at the origir., the initial  found from the above expression to decay exponentially, i.e.,

BA position) to be —_1, S0 that forp=q=1 all spins have ¢typ~exp(—f\2t/2), whereas the mean density decays as
value +1 after the first jump of the BA. 1A as given in Eq(11)

In DCI we showed that the continuum descriptiis Another interesting quantity which may be extracted from

and (7) are indeed equivalent with the identificatiois . o ) )
=D’ and A=\'. [This was proven by considering the m(Q,t) is the average global magnetization defiriezlative
to its initial value as

former as an imaginary time Schiinger equationn12], and
writing the solution of the latter as an imaginary time Feyn-
man path integral13]]. This ends our review of the model- M(t):j dor[(B(r,0)—(A(r,1))]. (14)
ization of the process—the reader is referred to DCI for fur-
ther details and discussions.

In DCI we exclusively used the continuum descripti®  As shown in DCI, ford<2 this quantity obeys the exact
to generate results for various average quantities. The simelation
plest quantity to consider is the mean magnetization density
given bym(r,t)=((r,t)) [which is equivalent to the sum dM(t)
of O(r,R,t) over the BA positionR]. For d<2 there is no g AmO.). (19
necessity for regularization, and we replaced the sink func-
tion A, by thed-dimensional Diracs function. The(tempo-
ral) Laplace transform fom(r,t) was found to have the
exact form

. (13

1 F{_ (In($))*
aN%t

Thus, for large times in one dimension we hal(t)

~ (Dt)Y? independent of the coupling. In other words, the
total amount of disorder created by a single BA on average
increases asf(t)?, and is(rather surprisinglyindependent

, (99  of the coupling between the BA and the spiffer times

1 Ag(r,S)
larger thanD/\?).

mr,s)=—|1—- ————
1+Ag(0,s)

S
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. TWO-DIMENSIONAL SYSTEMS of the origin] Thus®(r,R,0)= 8 o(1—286; ). The solution

In this section we shall present a careful analysis of the®’ Ed: (16) may be attained by discrete Fourier and Laplace

case of two dimensions. The simple random walk is recuriransform. Defining the former via

rent for dimensionsl<2, whereas fod>2 the walker has a ~
probability less than unity for ever returning to its starting O(r,k,t)=>, O(r,R,t)e'k R (17
point [1]. This basic fact from the theory of random walks R
has an immediate implication for our data corruption prob-

lem. The nonrecurrent nature of random walksdor2 im- and the latter via

plies that the BA will continually corrupt new regions of the . o
system, and rarely revisit sites which it has previously cor- O(r,R,z)= 2 O(r,R,ndt)z", (18)
rupted. Thus the relative density of disorder average mag- n=0

netization densityat the originm(0,t) will decay to a non- | . ) .
zero (and nonuniversal value, and the total amount of it is fairly straightforward to diagonalize E@L6) to the form
disorder (or average global magnetizatio (t) will in- o
crease linearly in time, with a nonuniversal prefactor. For (f)(r K.2)= (1-26,00—2qzf(k)e™"O(r,r,2) (19
practical applications, in which one wishes to limit the dis- Y 1-2z1(k) '
ordering capabilities of the BA, the first requirement is to
restrict the geometry of the system to a dimengier2. So ~ Where f(k) =[cosk,| + cosk,l ]/2. One may now solve the
d=2 is the critical dimension of the problem, and because obove equation self-consistently fé¥(r,r,z) by inverting
this we can expect logarithmic corrections to modulate thehe discrete Fourier transform. One has
leading order results, and also to cause long crossover times,
thus making numerical results more difficult to interpret. . —iker

In DCI we studied some general properties of higher di- ~ (1 25"°)J die D(k.2)
mensional systems, and we also derived an approximate O(rr,z)=
form for m(0,t) in d=2 using a crude form of regulariza- 1+2qZJ dk f(k)D(k,z)
tion. Rough agreement was found between this result and
simulations, but no quantitative data analysis was performedyhere D(k)=[1—zf(k)] ! and the momentum integrals
In this section we shall rederive the form of(0,t) more  are over the two-dimensional Brillouin zone. The average
carefully. The reasons for this are threefold: first, so that wanagnetization density at the origin is given by summing
can have confidence in the leading order result, and als@(0,R,t) over R, which is equivalent to the zero Fourier

obtain some idea of the subleading corrections; second éj = - .
AR . ; : '’ Tode ®(0,0,t). Thus, substituting Eq(20) into Eq. (19),
provide insight into the relation between the discrete an fter some rearrangement we have

continuum approaches in two dimensiafghich is impor-
tant given that the latter must be regularized det 2); and
third, to allow us to construct the form of the probability A q 1+q’(1—2)f dk D(k,z)
distribution of the magnetization densitfor which we need > ©(0,R,2)=

as much information aboum(0,t) as possiblge We shall use R (1-2)
four different methodgwhich will each be described with

brevity) to derive the form ofn(0,t). Each has its strong and (21)

weak points, as we shall see. whereq’=2q/(1-2q). [The function[dk D(k,z) is very
_ _ well known in the theory of random walkd], and is the
A. Lattice calculation from Eq. (3) discrete Laplace transform of the probability of a random

Referring to the equation of motiof8) for the marginal ~ walker to return to its starting point aftersteps] Finally we
average, we sal=2, and for convenience we set the hop- Must inverse Laplace transform the above equation. For large
ping probabilityp=1, giving n we can extract the asymptotic form of the average magne-

tization by invoking the Tauberian theordr]. In this case

1 q we need the form of the Laplace transformzs 1. Using
O(r,Rt+t)== > O(r,R+1,1)— E(r,r,t)E OrR+1- (1]
| |

4
(16)

. (20

1+q’f dk D(k,z)

1 8
_ iy f de(k,Z)~—|n(—)[1+0(1—2)], (22)
As an initial condition we take the BA to be located at the m \1-z

origin, and all spins to be-1, except the spin at the origin , )

which is taken to be-1. [This convention is useful fog from the Tauberian theorem we have the asymptotic result
=1, so that all spins have valu¢l after one time step.

Howeygr, |fq<1,. |.t is more convenient to takg th_e spin at 2 @(0,R,nt) =
the origin to be initially+1, as the chance of it flipping after R

one time step is small. We stress that these different choices

for the initial value of the spin at the origin have no effect on The constan€(q) is not accessible from the Tauberian theo-
the asymptotic properties of the system, and only serve toem, although it could in principle be calculated from a care-
smooth the magnetization density in the immediate vicinityful inverse Laplace transform of EQ1).

-1
(q'/m)Inn+C(q)

(23
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In our simulations we generally take the switching prob- Thus we have arrived at our result, and indeed the leading
ability g to be unity, which implieg)’ = —2 and thus order behavior has the same functional form as £§) de-
rived in Sec. lll A. A closer comparison of the leading terms
indicates thathe«q for q<1 as expected on physical
grounds. In the present continuum calculation, we have also
extracted an explicit form for the subleading tefre.,

In Sec. VI we shall make a direct comparison of this resuItW(X)], which is nonuniversal and depends on the precise
with numerical simulations in two dimensions. It is also in- form of the smeared sink function.

teresting to note from Eq(21) that setting the switching
probability g=1/2 givesXr®(0,R,nét)=—5,4. In other
words, the average value of the spin at the origin remains at
zero after one jump of the agent. This “maximal uncer- In DCI all results were obtained from an infinite order
tainty” for g=3 only holds at the origin, and spins at other perturbation expansion of E@8). In two dimensions each
lattice sites will have a positive mean for all times. As a finalterm in the expansion is divergent. Using the time cutoff
note, ifq<1 it is more convenient to choose the initial value regularization scheme allows one to extract the dominant
of the spin at the origin to be 1 in which case we find, from contribution from each term, and to resume the series. The

; O(0,R,ndt)= (24)

(2/m)Inn—=C(1) "

C. Infinite order perturbation theory of Eq. (8)

the foregoing analysis, result is
> O(0,R,NG) (25) (0,t) ! (29
& ’ ln = . m y - .
R (29/m)Inn+C(q) 1+X In(t/ty)
B. Diffusion equation (4) with smeared sink function It is interesting to compare this with E¢28) obtained in

Sec. Il B. They are seen to agrffer small\, in which case

w(X)~1] if we make the identificationy,= (= 2I%e~?/D).
This indeed supports the role @f as a microscopic correla-
tion time of the noise, since it is seen to correspond to the
time taken for the diffusion process to correlate a micro-
scopic region of size-12.

We now wish to solve for the coarse-grained magneuza
tion density m(0,t) within some continuum limit. In this
subsection we accomplish this by solving the diffusion equa-
tion (4) with a smeared sink function. This calculation is the
closest in spirit to the lattice calculation sin@h is the direct
continuum analog of the discrete equati@ solved in Sec.

[l A. Setting r=0, Eq. (4) takes the form
D. Analytic continuation from Eq. (9)

O(0,R t)——V O(0,R,t1)-NO(0,R,H))A|(R). (26) As a fourth method of extracting the form of(0,t) for
d=2 we briefly mention analytic continuation frooh<2.

As discussed in Sec. Il, no regularization is required in the
perturbation expansion method fd 2, and one retrieves
the exact result

The simplest finite range form to take for the sink function
A, is a radial function which is zero outside a radlusnd
(through normalizationequal to (1#12) within this radius.

It is also convenient to smear the initial condition®fin the 1
same way. m(0,8)= —| ————|, (30)
The above equation may be solved by standard boundary S|1+g(0;s)
value techniques. For the sake of brevity, we shall present no
calculational details. The Laplace transform of the magnetiwhere
zation density at the origin is found to l§m the limit of |
—0) _ r(1-dp)
1 1 g(o ) (2 D)d/Z 1-d/2’ (31)
m(0,8)= <| —=——= ] (27)
S _ 12
W(A) =X In(sI") and I'(z) is the gamma functior{14]. Using the result
~ I'(z) ~1/z for 0, for e=2—d—0 we have
where X=w/2aD,  I'=I(2D)Y2  and w(x) | (ATzforz=0.fore —owehay
= X1o(2VX)/1,(2yX), which approaches unity for small
(I,(2) is the modified Bessel functiori4]). It is important m(O, )_ 1 1 (32)
to mention that this expression is not valid for Re¢ 111", 1-XIn(s/sg) |’
and thus the apparent pole is an artifact of the lim#0. We
refer the reader to Appendix A, in which this Laplace trans- “wheres,=e~2-.
form is inverted. For large the result takes the form On comparing this result with Eq27) obtained in Sec.
Il B, we see that they are equivaleffior small\, in which
m(0,t) = % (29) casew(\)~1] if we make the identification &~=In(1/1').
W(N)+NIn(t/7) This relation has only a formal meaning, as there is no physi-

cal sense in continuing dimensionality. However, it is in-
wherer=1'%e"7, andy=0.5772 ... isEuler's constant.  structive to learn that the leading order result may be re-
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trieved intact from analytic continuation. Indeed, we shall M(N)(t)
use this tool in Sec. IV to study competing agents in two on(d)=Ilim D (34
dimensions. t—e M(1)

where MN(t) is the average global disorder created Ky
E. Calculation of the probability distribution agents. If the BA’s were truly independe(it terms of the
disorder they creajethen we would expeciry=N. As we

To complete this section, we shall briefly discuss the hall fod<2 th | o v reduced bel
probability distribution of the magnetization density at the Shall see, fod< the value o N IS strong_y reduced below
this value. However, fod=2 this value is recovered, but

origin. As mentioned in Sec. Il, the continuum the@8y has . } : N
the property( (0,t;:\)") = (#(0,t;n\)). Thus knowledge of ©NIY in the deep asymptotic regimee™). o

the A dependence of the first moment allows one to recon- The extension to many BA's is easily modeled within the
struct all the moments of the magnetization density, and thugoﬁt'”“‘%m theory. We introdudd rqqdom walkers, each of
the probability densityP(¢,0,t) for this quantity. The which is des_crlbed by , a po_smon VECIOR,(1), a
method for retrieving? from the moments is given in detail — 1+2: - - - N. Since the BA’s are independent, we have

in DCI for the case ofdl=1. A similar calculation suffices dR

for d=2, so long as one has an “accurate” form for the _“zga(t), (35)
mean magnetization density. In the present section we have dt
attacked this problem from four different directions, and . . . .
have arrived at agreement for the asymptotically dominan‘f\’.here £q(t) are mdependent_Gaussmn .Wh'te noise sources
term form(0,t). However, as noted in DCI, it is necessary to W'th Z€ro mean. T_he equapon) of motion for the coarse-
have more information than this in order to constrator- grained magnetization densit™ takes the form

rectly. If one tries to calculaté®® using m(0,t;x)~1/x Int N

one obtains a distributio®~m(0,t)/ ¢ which is singular at M (r,H)=—NdpMN(r,t) D A(r—R,(1), (36
¢=0. The subleading correction tm(0,t;\) is crucial to a=1
determine the distribution correctly. Our results from Secs. . h soluti
[l A-111 D are in agreement with regard to the time depen- with solution

dence, but differ in the way in whick appears in the sub- N .

Iea~ding term. We prefer E¢28), in that an explicit form M (r 1) = H eXF{—?\f dt'A,(r—R,(t"))
w(\) appears. However, we have been unable so far to re- a=1 0

constructP using this form due to the complicated nature of
w. For small\, W(X)%l, and Eq.(28) then coincides with
the less controlled result®9) and (32) of Secs. IlIC and
[II D, respectively. The reconstruction @ is possible from MmN ) =(dM(r 1)) =mD(r )N 38
these forms, and one finds (nH=(¢(r.0) (r,)". 38

P(¢,0,t)=pB(t) PO, (33

. (@37

On averaging over the paths of tiNeagents, we have the
particularly simple result

Thus the average global magnetization is given by

_ M(N)(r,t)EJ' ddr[m<N>(r,0)—m(N>(r,t)]=f d
with B(t)=1/\ In(t/ty). Ast—oe this distribution approaches

the formm(0,t)/ ¢, but is never singular for finite times. In X[1—mD(r,t)N]. (39
Sec. VI we shall describe our attempts to measBréor

two-dimensional systems. Our numerical results are in surScaling the spatial coordinate by the diffusion length scale
prisingly good agreement with E¢33) above. (2Dt)%2, from Eqs.(34) and(39) we have

IV. COMPETING AGENTS f dr[1-mD@/(2DH 0N

- | on(d) = lim . (40

. In this section we shall analyze the effects of many BAs t—o0 f d9r[1—m®(r/(2D1)¥2 )]

within the system. We shall assume the BA'’s to be noninter-

acting, in the sense that they are unaware of each other’s ) o ) _
immediate presence. The nontrivial statistics reside in the 10 proceed with the calculation it is convenient to first
fact that the disordering effects of the BA’s statistically in- Perform the largd- limit. We concentrate ord<2, and
teract via the overlap of the BA histories. As we have alreadyherefore replaceé,(r) by the Diracé-function. From Egs.
seen, a single BA interferes with the previous disorder it ha$®) and(10) it is a fairly straightforward matter to show that

created, such that the amount of disorder does not simply

increase linearly in time. This effect is more severe when,, .\y—|im m® r/(2D1)Y2 t)= 2 J"du ul—de—v?
more than one BA is present, as each BA can disturb the (") toyee (t/(2DH 0 I'(1-d/2) Jo '
disorder that another BA has previously created. (41)

We measure the strength of this interference via a quan-
tity called the “disordering efficacy” of the agents, defined We may use this result to explicitly evaluate the denominator
as of Eq. (40), giving us
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TABLE I. The predicted values oéry(1) for N=2,3, and 4, » )
from Eq. (45), compared with our numerical simulations. Qn(B.d)= Jo drri=9%e A m(r)N, (46)
N IN(Dineory IN(Lsimu with m(r) as given above in Eq41). We can recover the
2 144 ... 1.421) disordering efficacy via
3 l1.6&... 1.661
4 1.8%5. .. 1.83(2; on(d)= MQ (2,d) 47
N [(1—df2) <N-257

" We wish to implement a saddle point calculation, so we re-
crN(d)=dl“(1—d/2)f drrd=@-m()N). (420  write Eq.(46) as
0

T e p1-da—Fa)
We refer the reader to Appendix B, where it is demonstrated Qn(4.d) jo drrofe ™, (48)
that the above expression may be recast in the more useful
form where
2N(N—1) Fn(r;8,d)=pBr2=NIn(m(r)). (49)

on(d)= —f drri-de=2m(r)N-2 (43
N I'(1-d/2) Jo The saddle point is defined viFy /dr|,_, =0, which for

ro yields the transcendental equation
for N>1. We note that the result for two agents follows
; ; ; ; di2 2
immediately from this expression, and we hawg=2%~ § Ne "o
This result is striking. For the case df 1, we see that two Bro=——r 735"
) m(rg)'(1—d/2)
agents create only2 as much disorder as one agent. Also,
assuming we may continue this result to exactly two dimenfor N>1, it is easy to see thaty~(InN)Y2>1, so that

sions, we find thatr,(2)=2, i.e., two agents create disorder F(r )>1 and the saddle point method is self-consistently
independently. In the remainder of this section we shall usgstified.

Eq. (43) for two purposes. First, we shall concentratecn ~ For the sake of brevity we give no details of the saddle
=1 and evaluate the exact values @§(1) and o4(1),  point calculation. The result is
which may be used to compare with numerical simulations.

(50

Second, we shall evaluate the integral for laNdor arbi- (BT (1—d/2)# (InN)B-1d2
trary d € [0,2] using a saddle point method. This calculation ~ Qn(8.d)= 5 NT;
will make clear the tremendous difference in the laiye-
behavior ofoy(d) for d<2 andd=2. We end the section (B—1)d? In(InN) 1
with a simple scaling argument which helps us to understand X|1=— N CPlinN -
these analytic results.

Ford=1, expressiort4l) is simply m(x) = erf(x), where (53)
erf(z) is the error functiorf14]. Thus from Eq(43) we have Combining Eqs(47) and(51) then gives us the final largh-

IN(N=1) result
—_— ee] _ 2 _
on(1)= TJ dx e *erfo)N"2. (49 d2 In(InN) 1
™ 0 on(d)=T(1—d/2)(In N)d/z[l—zw+ (m) :

We are able to evaluate these integralsNer 3 and 4. The (52

details may be found in Appendix C. The results are In particular, ford=1 the disordering efficacy increases as

(InN)¥2 with strong logarithmic corrections. We also note
6v2 |1 that for real-valuedi<2, the disordering efficacy increases
o2(1)=12, 03(1)27 sin ﬁ ’ as (InN)?2, In other words, the BA's overlap very strongly in
their disordering for ald<2.
The main reason for calculatingy(d) for real-valuedd
04(1):% Sin—l(i). (45) <2 was to attempt to analytically continue the resultdto
3 =2, which is otherwise difficult to calculate due to the pres-
ence of an explicit regulator. However, if we simply skt
The numerical values of these expressions are presented f2 in our expression fowy(d) above, we find that the
Table | along with the results from our computer simulationsapparent behaviosy(2)~In N is multiplied by the infinite
(the details of which may be found in Sec.)VExcellent constant. This gives us the hint that the lafgdehavior for
agreement is found. d=2 is stronger than IN, but offers no more information
We now return to the case of arbitragy=[0,2] and con-  than that. We can, however, trace the failure of the saddle
sider the limit of largeN. For the sake of generality, we point calculation ford=2 back to the saddle point equation
study the integral (50) for r. For largeN andd<<2 we have the leading result
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ro~[In eNJ?, where e=2—d [and we have obtained this by N random walkers”[15]. In Sec. VI we shall present
result from Eq.(50) by taking the smalk and larger limit results forN=2,3, and 4 in two dimensions. The disordering
of m(r)]. Thus for fixede>0 we may always tak&l large  €fficacy is seen to approach its expected value slowly.
enough to create a saddle point at a large valueypfin

which case the resu(62) is valid. However for fixed\N (no V. GENERALIZED COUPLINGS

matter how largg taking e—0 squeezes the saddle point
back into the origin, in which case the saddle point method i%e

of no use. ST
homogeneous. At least one of these properties is likely to be

Therefore we cannot use E(p2) to continue tod=2 absent in a practical application of our model. Asymmetry in
analytically. However, a simpler method may be used to ex:[he switchinp robabili?pis likely in data corru. tiozsince tyhe
tract the result. We refer the reader to the original expres- gp y y P

sions for oy(d) andm(r) as given in Eqs(43) and (41), states of a bit are not physically encoded in a symmetric

. . S , way. Also, in chemical kinetic applications, the reaction rates
respectively. Takinge<1l and N>1, these equations take between two chemical species are unlikely to be symmetric.

In all of our work so far we have taken the coupling
tween the BA and the spins to be symmetric and spatially

the forms Spatial homogeneity of the couplings is also an idealized
w 5 situation. Generally there will be quenched random fluctua-
on(d)= eNZJ drre e 2 m(r)N (53 tions in the switching rates of different sites, and it is impor-
0 tant to quantify the effect of this randomness on the results
and obtained so far. In the next two subsections we shall consider

these important generalizations in turn.

r
_ —1,-u?
m(r)=e f . duute ", (54) A. Asymmetric rates

) ) ) Consider the lattice model described in Sec. Il with the
On studying Eq.(53) we see that az—0 the integral is  aqgitional property that the probability of flipping a spin de-
dominated by small. Thus we require the smailform for  nends on the value of the spin. If the BA leaves a site with
m(r) which is easily extracted from Ed54) to bem(r)  spin+1, we flip that spin with probabilitg*, whereas if the
=r*. We now break the integral in E(53) into two pieces. B |eaves a site with spin-1 we flip that spin with prob-
The first piece encompasses the rangg(0,1) so that we  gpjjity q~. At a microscopic level the model is now consid-
can neglect the Gaussian factor and substitute the small grapjy more complicated as the transition rates for flipping

form of m(r) to find the leading order result depend explicitly on the values of the spins. We shall not
1 construct the master equation for this case. Rather, we shall
UlN(d): ENZJ drrNe 1=N. (55) try to construct an analog of the continuum mo@®l using
0

a simple physical idea.

. The main effect of the asymmetric couplings is to favor
The second piece encompasses the ranggl =), anl(lj for  one type of spin over the other. We make the approximation
large enoughN will have the asymptotic formon(d)  that in a coarse-grained model the dynamics of relaxation to
~(InN)/e. To summarize, the contributiam(d) dominates  this “packground magnetization” are the same as the relax-
for N<1/e, and the contributionry(d) dominates forN  ation to zero magnetization in the symmetric model. We
>1/e. Thus ford=2 we have the resutt\(2)=N for all N.  therefore write the analog of E(7) for asymmetric rates in
This is consistent with the analytic continuationde=2 of  the form
the exact resultr,(d) =292 found earlier.

These results may be understood in the following way. dp(r,t)=—N[&(r,t) —meglA|(r—R(1)),  (56)
ConsiderN agents in a system af dimensions. Since each
agent performs a random walk, the amount of availab
spadfzze in which we can expect to find the agents has a volu
~t%s. Also, we know from our previous results that the (1
amount of disorder created by a single agent increas&¥as PAl )= Meq~ (1= Meq) fs(r1), S
for d<2, but ast/Int for d=2. Thus ford<2 the available where the subscripté and S indicate “asymmetric” and
space forN agents and the amount of disorder created by asymmetric” respectively. Integrating this equation over

single agent both scale 487 which means that there is space, and using definitiofi4) of the average global mag-
certain to be interference between the agents, which will benetization, we find

come severe for larghl as we have seen. However fdr

|éNheremeq=(q‘—q+)/(q‘+q+). From this simple model
n{&is easy to show that

=2 the amount of available space fdragents scales loga- 2
rithmically faster witht than does the amount of disorder MA('[)Z(1—meq)Ms(t)=WMs(t), (58)
created by a single agent. Thus for times large enough such (1+97/a")

thatN<Int, v_ve_expe(_:t the disorder created by the agents Qvhich is an intuitively acceptable result.
become statistically independent and thiyg2)=N. Note
that the “independence time” grows exponentially with the
number of agents, making a numerical observation difficult
for even moderate values bf Similar arguments have been ~ We now consider an alternative generalization in which
made in the context of “the number of distinct sites visitedthe rates are symmetric, but spatially inhomogeneous. At the

B. Quenched random rates
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)\2 1/2
—’“s) } (63

Inverse Laplace transforming yields the asymptotic result

microscopic level, this is modeled by attaching to each lat- . op | ?
tice positionr a quenched random variabdge (0,1) drawn (m(O,s;A)>S=<T) In
from some distributionS({q,}). The random variabley;, AmS
gives the probability of switching in the event that the BA
visits the siter. In the continuum theory, we model these
qguenched random couplings by a simple extension of Bg. 12 2
We generalize the coupling parameleto a spatially inho- ) _( D ) (M)
. . A (M(0t;N))s= n . (64)
mogeneous random function(r), with a distribution§ \ ]. A2 2D
This does not affect the solvability of the model due to the
locality of the continuum theory, so that we have the explicitTherefore, the decay in the homogeneous dasd/\t be-
solution havion for the average magnetization density is slowed by a
logarithmic factor due to the presence of the quenched ran-
. (59 dom couplings. It is interesting that this logarithmic slowing
down does not affect the average of the global magnetiza-
tion. This quantity may be explicitly calculated using the
where we have emphasized the dependencgé of \. method of infinite order perturbation theory described in
There is an enormous variety in the forms of the quenche®Cl. The result is that the leading order term for large times
disorder distributiorS that one may study. A comprehensive is independent of the coupling, and is unaffected by the av-
analysis is beyond the scope of the present work. In ouerage overS. Thus the average over the random couplings
simulations(to be described in Sec. )Ywe have chosen to will in no way affect the leading order behavior ®(t)
study switching rates), € (0,1) which are independent ran- ~(Dt)2 The average of the global magnetization is a very
dom variables drawn from a uniform distribution. There isrobust quantity, and is unaffected by scalings of the homo-
more than one way in which such a distribution can manifesgeneous couplingéas seen in Sec.)ll and by making the
itself at the continuum level. Depending on the extent tocouplings, quenched random variables. We have performed
which one coarse grains the lattice model, the continuurmumerical simulations for systems with quenched random
theory will have a distribution of couplings which is either couplings and report our findings toward the end of Sec. IV.
very similar to the lattice distributiofi.e., uncorrelated and Finally, we briefly discuss the changes that can occur to
uniform), or more Gaussian in natutdue to the central limit  the probability distributior® of the local magnetization den-
theorem. We expect different physics according to the be-sity at the origin, when quenched random couplings are in-
havior of the distributior§[\ ] asA—0. Roughly speaking, troduced. From Sec. Il we have the exact reéi® for this
if Shas zero weight for smalk, we expect the quenched function ind=1: it is a log-normal distribution. The same
disorder to be irrelevant to the system for large times. Conform will hold in the present case, but now the paramater
versely, if S has nonzero weight for small, then the disor- is to be averaged oves{ \]. We average over the uncorre-
der will play a role for arbitrarily late times. In order to lated uniform distribution given above in E¢61). Simple
exemplify this latter case, we consider as an example thintegration gives

distribution
(Proe— E(<In¢>2> 5
SN =11 Sech (1)), (60) S 2(mt) ¥R | 4RZE )

1+

¢(r,t;)\)=exp{ —A(r)jtdt’A,(r—R(t’))
0

_ e . where X ,=\,,/(2D)*?, and E(z) is the exponential inte-
where Sy, is a local (or “on-site”) distribution function  o51114] . This distribution behaves very much like the pure
which we take to be uniform: log-normal distribution forp<1. However, we have the in-
teresting result that the distribution is singulardat 1. Ex-

Sioc(M) = (A m)HAm=MH(), (61) plicitly, for ¢y=1— ¢<1 we have
whereH(x) is the Heaviside step functidri6]. Henceforth In[ 21482t
we shall concentrate oth=1 for simplicity. (Pyg~ —————. (66)
Due to the way in which the quenched random couplings 2(mt) o\,

enter the continuum theory, we can easily generalize our

earlier exact results. Let us first concentrate on the magnetithis logarithmic singularity stems from the fact thaS[fA ]
zation density at the origin, averaged over both the BA trahas a nonzero weight for arbitrarily smal| there will be a
jectories, and the distribution of. The first average is per- nonvanishing subset of systems for which almost no corrup-
formed in the usual way using Laplace transfor@sme DC)  tion occurs. For large times, this subset will appear as a

and we have the analog of E() pronounced “peak” in the distributiogP)s for ¢p—1.
~ 1 1 VI. NUMERICAL SIMULATIONS
moOs\)=—| ——|. (62 _ . . . ,
S| 1+A(0)g(0ys) In this section we describe the details of our numerical

simulations, and present figures of our data to support the
On averaging this density over the distribution of randomvarious theoretical claims made in the preceding sections.
couplings(61), we have The simulations are performed ondadimensional lattice
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) ~ for d=2, for timest=10° (diamond$, t=10" (plusse} and t
FIG. 2. Plot of 1m(0,t) (the inverse of the average magnetiza- — 165 (squares Note the qualitative similaritfas time proceeds

tion density at the origin as a function of Int for d=2. The lower  petween these different histograms, and the theoretical prediction
solid line is the asymptotic prediction, while the upper solid line [gq. (33)].

(which is partially obscured by the datis the prediction with cor-
rections to scaling included. The inset shows the difference betweegma” the resulting histogram will have too few bins to have

1/m(0,t) and its asymptotic form, plotted against ItliThe data any smooth structure, but if the patch is too large, the time

may be fitted to a straight line, thereby yielding the corrections to .
scaling explicitly. scales required to allow the agent to wander far away from

the patch and return many times become numerically pro-

(with d either 1 or 2 and follow the lattice rules described in hibitive. Thus we must compromise, and we use a square
Sec. Il. We set the hopping probabilip=1, so that in each patch of 121 spins. The agent is started on the boundary of
time step the BA is moved randomly to one of itd Bearest the patch to avoid the patch being internally decimated by
neighbor sites. In doing so, the spin it leaves behind ighe transient motion of the agent. The predicted resultor
flipped with probabilityq (which is set to unity unless oth- is given in Eq.(33). It shows three types of behavior set by
erwise stated Systems are taken large enough so that thé crossover tim¢* defined byg(t*)=1. Fort<t* the dis-
BA never touches the boundary during the lifetime of thetribution has most weight neas=1, and then fot~t* the
simulation. We generally average over between d0d 10 distribution becomes uniform over the entire intervaldaf
realizations, depending on the desired precision of the simuFor late timest>t*, the distribution approaches the form
lation. ~1/¢. Our numerical measurement Bfis shown in Fig. 3

In Sec. Il we calculated the asymptotic form of the aver-for these three time regimes. Good qualitative agreement is
age magnetization density at the origin from an exact latticéound. [Note that the measured distribution has nonzero
calculation. As noted, the subleading term is not obtainableveight for negative¢ due to the modest patch size, and is
from the Tauberian theorem. However, it is clear from thealso suppressed neér=1 due to internal decimation of the
various calculations in Sec. Ill that the corrections decay apatch magnetizatioh.
1/(Int)%. We have checked this in the following way. From  In Sec. IV we presented an analysis of the continuum
our simulations we measura(0,t)[ ==z0®(0,R,nst)]. We  theory withN agents. We described the interference between
take its inverse and subtract the predicted asymptotic resulbe agents by a number termed the “disordering efficacy”
of (2/m)Inn [in order to compare with Eq24)]. The result-  o(d). In particular we calculated the exact value éq§(1)
ing data is plotted against 1/m which should yield a for N=2,3, and 4, as given in E¢45). We also predicted the
straight line, they intercept of which fixe<C(1). Asseenin largeN form of o\(1), along with the exact form of the
the inset of Fig. 2, the data indeed confirm this expectationstrong logarithmic corrections, as shown in EgQ). In two
and we findC(1)=—0.742. In Fig. 2, we plot the inverse of dimensions we argued thaf,(2)=N for all N, but only for
the data against Ip along with the predicted asymptotic re- timest>eN. We have performed numerical simulations of
sult. The large difference between the curves indicates ththe many agent system in order to test these results. The
strong role of the correction@svhich are of order 10% even microscopic rule we use is that there is no hard-core exclu-
for t~10P). sion between the agents, and that for each time steiNthe

We have also attempted to measure the probability distriagents are in turn moved to a randomly chosen nearest
bution P(¢,0,t) in d=2, as calculated in Sec. IIlE. In DCI neighbor site. A spin which is occupied by two agents, say,
we attempted to measure this quantitydis 1, and met with ~ will thus (for g=1) be flipped twice in that time step. In Fig.
limited success. The difficulty lies in the fact that the distri-4 we show the evolution of the ratio of the average global
bution only makes sense for a coarse-grained magnetizationagnetization folN agents as compared to one agent,dor
density (since a single spin always has a bimodal distribu-=1. Asymptotically this ratio is the disordering efficacy by
tion). Thus to construcP numerically we must measure the definition. Results are shown fdf=2,3, and 4. The curves
magnetization density for a patch of spins. If the patch is tocasymptote to constants as expected, the values of which are



1460 WANNAPONG TRIAMPO AND T. J. NEWMAN PRE 60

14 T

1.2

_ M(N)it)
MO@' [

0.8

1.8
M)

MP ()
1.6

1.4 04 F

02

1.2 M M| L M| L M| L |

0
0 005 01 015 02 025 03 035 04
1/Int

5 6
log,,t

FIG. 4. Plot of the ratio of the average global magnetization for  FiG. 6. Plot of the ratio of the average global magnetization for
N agents as compared to a single agent,(forascending ord¢r agents as compared to a single agent, subtracted ftpas a
N=2, 3, and 4, id=1. The solid lines are the theoretical predic- fynction of 1/Int for (in ascending ordeN=2, 3, and 4, ind=2.
tions[Eq. (45)] for the disordering efficacies, which are the asymp-The data in each case are apparently heading for the origin, thus
totes of this ratio. supporting the theoretical predictiarn,= N.

compargd to the theore_tical predictions. Exqellent agreementy 3 and 4. The resulting curves appear to be heading for
(to within less than 2%is found. The numerical values are the origin, and therefore constitute numerical support for the
also given in Table | in section IV. We have measured thepredictioncrN(Z):N.
disordering efficacy for higher values bifin d=1, and plot In the first part of Sec. V we considered a system with
our results on a logarithmic scale in Fig. 5. Also shown is theasymmetric switching rates, and argued for the very simple
theoretical prediction(52) for large N (where we have in-  phenomenological description given by the equation of mo-
cluded both the leading and sub-leading termsyain, ex-  tion (56). This equation may be solved and one obtains the
cellent agreement is found. As argued in Sec. IV, the crosssimple relationshi57) between the magnetization density
over times in the two-dimensional many agent system argor asymmetric rates and that for symmetric rates. In particu-
very large, growing exponentially wittN. We have at- |y this result may be used to derive the intuitive re¢s®
tempted to measure(2) numerically, but we have been for the proportionality of the average global magnetization
unable to reach large _eno_ugh times to see the ratio of thgy the asymmetric and symmetric cagds,(t) andM(t),
average global magnetizations reach a constant value. HOWespectively. We have performed simulations of the system
ever, we may still compare our results to the theoretical pregith asymmetric rates id=1. In Fig. 7 we show the ratio of
diction, _by plotting the predict_ed valge of the asymptoten, (t)/M(t) for different choices of the rates” andq™. It
(=N) minus the measured ratio, against 1/lff the pre- s seen that the ratio gradually tends to a constant, and that
dicted asymptote is correct, the data so plotted should conpe constant is in agreement with the theoretical prediction
verge to the origin. In Fig. 6 we present such a plotfor (5g) \we have also tried to test E€57) at the level of the
average magnetization density. We have found that the ratio
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FIG. 7. Plot of the ratioM o(t)/Mg(t) vs time for systems in
FIG. 5. Plot of the disordering efficaeyy as a function oN in d=1 with asymmetric rates. In ascending order, the values of the
d=1. The solid line is the theoretical predicti¢s?) (including the  rates areq~,q*)=(0.5,0.2),(0.5,0.4, (0.4,0.5, and(0.2,0.5. The
strong logarithmic corrections solid lines are the theoretical predictions obtained from (B§).
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FIG. 8. Plot of the ratio of magnetization densities
ma(0,t)/mg(0t) for d=1 with asymmetric rateg™ =0.2 andq*
=0.8. The ratio is measured for different patch sizes, the patches o )
having 9, 19, and 101 spins, respectively, from top to bottom. The FIG. 9. _Plot of the average global magnetlza_tlon_ vs time for
solid line is the theoretical prediction from EG7). systems with quenched and puiftomogeneousswitching rates.

For long times the functions become identical, growingft.
of the densities is constant for all but the shortest times,
which already indicates that the form of the time decay ofdue to insufficient averaging over batches. In the simulation
m(0,t) (relative to its equilibrium valueis insensitive to the we average oveN, batches, and thus selelst, couplings
asymmetry in the rates. However, we have found that thisrom the uniform distribution. There will be a smallest se-
constant is sensitive to whether we measure the densities f@gcted valueq;~ 1/N,, of the coupling, and thus, from this
an individual spin, or for a patch. The value of the constanfinite sampling ofS, we cannot discern if we are really using
decreases as we increase the patch size. In Fig. 8 we plot theuniform distribution with nonzero weight all the way down
ratio of magnetization densities for asymmetric and symmetto q=0, or a distribution with nonzero weight only down to
ric systems, for various patch sizes with the ragés=0.8 g=09. In the latter case, one can showfmom either the
andgq~ =0.2. As we see, the ratio seems to be approximatelyattice or continuum theorigsthat the logarithmic slowing
constant, and the value decreases as the patch size is own will vanish after a timef~1/qf2. Thus in our simula-
creased. Reasonable agreement is found with the predictiafpns we can only expect to see the logarithmic slowing
of Eq. (57) for the largest patch of 101 spins. This indicatesyown for times much less thap~N2. So, in order to make
that Eq.(57) is likely to be correct, but only after a large {hjs time window as large as possible it is important to per-
degree of coarse graining. _ form as many batch averages as possible, at the expense of

Finally we turn to the predictions of Sec. V B, which con- 4yeraging over BA histories within a given batch. To make a
cern the system with symmetric quenched random rates. Wgyantitative comparison to theory, we have calculated the
investigated this situation numerically ¢h=1 by measuring  exact form of the logarithmic slowing down from the lattice

. (67)

the global magnetization and the magnetization density. Weheory, using the methods described in Sec. Il A. After av-
perform the averaging in batches; that is, we use the same Sgfaging over a uniform distribution of the rates, from the
of quenched rates for a batch of 1000 systems, which ar¢,yperian theorem we have the exact asymptotic result
then averaged over their different BA histories. Then we

repeat this forN, batches(with N,~10°), thus averaging In(n) 1

over different realizations of the quenched rates. We choose <z @(O'R'nﬁt)> ~— o<_)

the quenched couplinds),} to be uncorrelated random vari- R s 2(2mn)*? Inn

ables drawn from a uniform distribution in the rarff@el]. In

Fig. 9 we show the average of the global magnetization in an Fig. 10 we plot the average magnetization density, and the
system with quenched rates, and compare it to the samabove asymptotic result. Good agreement is found, and the
quantity in a “pure” system. The two curves become iden-difference may be well fitted against the slow logarithmic
tical for late times(following a power law growth~ \/t) corrections. Note, for times longer than those shown on the
indicating that the average global magnetization is insensiplot, the data fail to agree with the predicted result due to
tive to the quenched rates, as predicted. Turning to the avecrossover into the regime>t; in which finite sampling ef-
age magnetization density, we found at first that our result§ects dominate.
could not be fitted to the theoretical predicti¢®d). How-

ever, a_closer analysis_ revealed thqt gr_eat care mus@ be taken VIl. CONCLUSIONS
in making the comparison. The point is that one wishes to
compare theory and simulation for long timgshen the This paper has been devoted to a continuation of our pre-

asymptotic form given in Eq:64) becomes valifl However,  vious study DCI[3] of the statistical properties of data cor-

it turns out that there is a new crossover titpewithin the  ruption due to a Brownian agerBA). In order to make
numerical simulations, beyond which the theoretical prediccloser contact to potential physical realizations of this pro-
tion is expected to break down. This crossover time emergesess, we have extended our original study in three directions:
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0.16 ——rrrr— for sufficiently small Re$) such that the apparent pole st
=e¥® may be disregardeda(andb are positive constants
m(0 tg"m T The inverse Laplace transform is given by the Bromwich
’ 0.12 i integral[16]
01 I H(t)= f ds e (A2)
(= c2mi sfa—blns]’
0.08 4
where the contou€C is to be taken up the imaginary axis
0.06 theory 4 . ) : o>
(note the integration around the simple pole at the origin
0.04 4 gives a contribution of zejoThe important singularity is the
simulation branch point at the origin. We take the cut along the negative
0.02 - real axis and deform the contour around this cut. Integrating
0 . . . MG across the cut then gives us
10 100 1000 10000 100000
t H(t ! f “dx e A3
FIG. 10. Plot of the magnetization density at the origaver- t)= bJo X|(Inx—alb)2+ #2| (A3)

aged over both BA histories and the quenched jategime. The
solid line is the asymptotic form of the theoretical predicti@y.  We are interested in the asymptotic form of this integral for
(67)] with no free parameters. larget. In this limit the integral is dominated by smallWe

. . . . . therefore expand the denominator to give
(i) a careful examination of two dimensions, which is the P g

critical dimension for the mode(ji) the competition induced 1 (=dx e Xt 2a 1

by more than one agent; ar(di) the case of generalized H(t)==| — 1+ +O( ) .
couplings between the BA and its environment. The reader is bJo X (Inx)? binx (Inx)?
referred to Sec. VI, which effectively summarizes our re- (Ad)
sults.

By splitting the range of integration into two piecég
€(0,1t) and xe (1f,=)], we systematically evaluate the
terms in the above expansion to find

The most important conclusion to emerge from this inves
tigation is the robustness of the phenomenological model
in accounting for the properties of the data corruption pro
cess under a wide range of conditions. The fact that this

process may be modeled by such a simple continuum theory H(t)= 1 _ (a+yb) +O( 1 ) (A5)
gives one confidence in applying similar phenomenological bint  (pint)2 (Int)3)’

models to more complicated physical situations involving

Brownian agents. wherey=0.5772 ... isEuler's constant. Using the appro-

As mentioned in Sec. |, the process of disordering of apriate form for the constant andb we arrive at Eq(28)
bistable medium by a Brownian agent has putative applicacorrect up toO(1/(Int)%).
tions to data corruption, homogeneous catalysis, and the ef-
fect of impurities in biatomic crystals. It remains to be seen APPENDIX B
whether one can find a solid application of the models stud- ) ) s .
ied in DCI and the present work. By having explored more In this appendix we indicate the steps leading from Eq.
challenging situations such as two dimensions, many agent§42) to Eq. (43). First we factorize the integrand to give
and asymmetric and quenched random couplings, we are

N—-1
able to seriously address the practical issues involved in _ B
making the connection between the rich statistical properties on(d)=dl(1~df2) ngo Jn(d), (B1)
of our model, and their potential existence in the real world.
where
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APPENDIX A r - rdf(r) e—r2
In this appendix we outline the procedure of taking the f duvr(w)= d  dr(1-d/) *const.
inverse Laplace transform of ER7). Consider the function (B3)

H(t), the Laplace transform of which has the form )
The resulting integral contains a factor id™ " which al-
fi(s)= 1 (A1) lows one to integrate by parts a second time, thus yielding,
sfa—blins]’ after some algebréor n>0),
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_ é\n,l
Jn(d)__m_l'Kn(d)_anl(d)a (B4)
with
K, (d)= 2nin+l) [ rri-de-2’m(r)n-t. (BS)

dr'(1—d/2)2Jo

Substitution of Eq(B4) into Eq.(B1) yields the result43),
as shown in the main text.

APPENDIX C

In this appendix we indicate the evaluation @f(1) as
given by Eq.(44) for N=3 and 4. FoiN=3 we require

12 (= 2
o3(1)= —mf dx e 2erf(x). (C1
s 0
We introduce the integral
1(B)= 771/2J dx e #erf(x). (C2
0

BINARY DATA CORRUPTION DUE ... . 1. ...
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[(B)= ! fwd ! ! —isin*1 —1
B _231/2 P B ,3'1/2(1+/3”)_51/2 (1+B)1(/é4)

Using this result, along with the fact thatr3(1)
=(12/m)1(2), we have the leftmost result of Eq45) as
shown in the main text.

The evaluation otr,(1) proceeds along similar grounds.
We define a function

L(,B)Eq-rl’ZJ:dx efﬁxzerf(x)z, (C5)

which may be shown to satisfy the differential equation
2
(1+B)(2+p)"

This equation may be integrated, and the resulting integral
may be calculated by elementary methods to yield

dL
2655+ (C6)

1

L(B)=——sin* . (C7)
B

1/2

148

Using integration by parts, it is straightforward to show thatUsing this result, along with the fact thatr,(1)

[ (B) satisfies the differential equation

(C3

This differential equation may then be integrafeding the
boundary conditiori («2)=0] to give

=(24/7)L(2), we have the rightmost result of E¢45) as
shown in the main text.

A similar method may be used to simplify the integrals
for higher N, but we have been unable to evaluate these
integrals in closed form. Naturally, the integral in Eg4)
may be evaluated numerically for a givéhto any desired
precision.
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