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Binary data corruption due to a Brownian agent. II. Two dimensions, competing agents,
and generalized couplings

Wannapong Triampo* and T. J. Newman†

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
~Received 19 March 1999!

This work is a continuation of our previous investigation of binary data corruption due to a Brownian agent
@Phys. Rev. E59, 5172~1999!#. We extend our study in three main directions which allow us to make closer
contact with real bistable systems. These are~i! a detailed analysis of two dimensions,~ii ! the case of
competing agents, and~iii ! the cases of asymmetric and quenched random couplings. Most of our results are
obtained by extending our original phenomenological model, and are supported by extensive numerical simu-
lations.@S1063-651X~99!07208-6#

PACS number~s!: 05.40.2a, 66.30.Jt, 82.30.Vy
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I. INTRODUCTION

This paper is the second part of a two-stage investiga
into the statistics of an active random walker~Brownian
agent! in a bistable medium. This is but one example of t
myriad of systems in which a random walker interacts
some way with its environment@1,2#. We consider system
in which the Brownian agent~BA! performs a pure, unbiase
random walk in a medium composed of elements which m
take one of two values. On visiting a given element, the
has a certain probability of switching the value of that e
ment. In our first paper@3# @hereafter referred to as da
corruption I~DCI!# we motivated our investigation into suc
processes using the example of data corruption caused
Brownian agent~i.e., the elements were taken to be bits
binary data!, and we outlined the possible applications of o
results to describing soft error production in small-sc
memory devices@4,5#. The disturbance of a bistable mediu
by a BA is also related to reversible chemical kinetics by
high mobility catalyst, and disordering of biatomic structur
by a wandering agent@6,7#, such as an anion or cation va
cancy in NaCl, or an impurity in a semiconductor compou
~e.g., Zn in GaAs!. One may also view this process as
nonconserved cousin of magnetic disordering via spin
change with a wandering vacancy@8–10#. Last, but not least,
the analysis of this process yields a deeper understandin
the statistics of random walks.

In DCI we studied the simplest possible process, nam
a single BA disordering a bistable system, with a switch
probability which is independent of the value of the eleme
One of our main concerns in DCI was to construct a p
nomenological continuum model of the process. This
abled us to find results independent of microscopic deta
and also to study coarse-grained quantities, such as the p
ability distribution for the local ‘‘density of disorder’’ which
is less easily defined on a lattice. Our results were deri
mostly for the case of one spatial dimension.

In order to make contact with a wider range of proces
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it is necessary to consider a more general model. This is
aim of the present work. We shall extend our original inve
tigation in three directions. First, we shall present a care
analysis of two spatial dimensions. We find that the pheno
enological model predicts the correct asymptotic behav
despite the need to introduce some form of regularizati

We present results for the mean density of disorderr̄, and
using some special properties of the continuum descript
we shall also derive an approximate form for the probabi
distribution of the density of disorder. Second, we shall co
sider a system containing more than one BA, thereby ind
ing ‘‘competition’’ as each BA interferes with the disorde
created by the others. The main result here is that the di
dering efficacy~i.e., the global amount of disorder due toN
agents as compared to one agent! is massively reduced fo
dimensions less than two, whereas in precisely two dim
sions, each BA eventually becomes independent~in that the
disorder it creates is not reordered by other BA’s!. We shall
present calculations based on the continuum model to m
these statements quantitative. Third, we shall consider
kinds of generalized couplings between the BA and
bistable medium: asymmetric switching probabilities, a
quenched random switching probabilities. We shall arg
that these generalized couplings may be modeled within
continuum limit by simple generalizations of our origin
model, and we shall derive some basic consequences, w
for the case of quenched randomness are particularly in
esting~see the outline below!. In all cases, we shall suppo
our results by numerical simulations of the underlying latt
model.

A more detailed outline follows: In Sec. II we present
recapitulation of the results of DCI. We shall briefly descri
the lattice model in general spatial dimensiond, and present
it in the form of a master equation. We then describe
associated continuum theory, and we state without deriva
some pertinent results previously derived from this co
tinuum model in DCI. In Sec. III we concentrate on calc
lating r̄ in two spatial dimensions. Given that two is th
critical dimension of the process, the results are modula
by logarithmic corrections. Therefore, great care is neede
compare different theoretical predictions and numerical
sults. We shall present~briefly! four alternative methods o
1450 © 1999 The American Physical Society
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PRE 60 1451BINARY DATA CORRUPTION DUE . . . . II. . . .
calculation, and show that they all predict the sa
asymptotic behavior, and agree with the numerical simu
tions once the strong corrections to scaling are included.
ing these results, we are also able to reconstruct the prob
ity distribution for the density of disorder approximately.
Sec. IV we study the case of more than one BA in the c
text of a generalized version of our continuum model. W
shall derive an exact integral expression~for asymptotically
large times! for the disordering efficacysN(d) for arbitrary
N. First we concentrate ond51. We evaluatesN(1) for N
52,3, and 4, and also extract its functional form forN@1.
We then extend our study to arbitrary spatial dimensiond
,2, and evaluates2(d) and sN(d) for large N. We use
these results to analytically continue to two dimensio
thereby avoiding the use of a microscopic regularization
Sec. V we consider the system ind51 with generalized
couplings. First we study asymmetric rates, so, for exam
in the data corruption process the BA will have differe
probabilities to switch 0̃ 1 and 1̃ 0. We propose to
model this using a simple extension of the original co
tinuum theory, based on the idea that relative to the nonz
‘‘background disorder’’ the dynamics of the system are
same as the symmetric case. Second, we consider quen

random couplings. In this case we argue thatr̄ picks up
logarithmic corrections in time, while the global amount
disorder remains unaffected. We shall also discuss
quenched average of the distribution function of disor
density, and show that it is very sensitive to the distribut
of the couplings. We shall support our results by numeri
simulations which are described in detail in Sec. VI. We e
the paper with a summary of our results and our conclusio

II. RECAPITULATION

In this section we give a very brief review of the ma
ideas and some of the results contained in DCI in orde
place the present work in a proper context. The process
BA in a bistable medium is first modeled on a hypercu
lattice of dimensiond. The position of the BA is denoted b
a lattice vectorR. In a time stepdt the BA has a probability
p to move to one of its 2d nearest neighbor sites. In makin
such a jump, there is a probabilityq that the element on the
site departed from is switched. The elements are descr
by spin variabless r ~wherer denotes a discrete lattice ve
tor! which may take the values61. The spin variables en
code the information about the disordering process. For
ample in the data corruption process we label uncorrup
bits ~of value 1! by spin11 and corrupted bits~of value 0!
by 21. @Thus, we shall often use the terms ‘‘magnetizati
density’’ and ‘‘global magnetization’’ which may be simpl
translated as ‘‘density of disorder’’ and ‘‘total amount
disorder.’’# This process is illustrated in Fig. 1 ford52 and
p5q51. We can define the dynamics via the probabil
distribution P(R,$s r%,t), which is the probability that a
time t, the BA is at positionR and the spins have value
given by$s r%. This distribution evolves according to a ma
ter equation@11# which takes the form
e
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P~R,$s r%,t1dt !

5~12p!P~R,$s r%,t !1
p~12q!

2d (
l

P~R1 l,$s r%,t !

1
pq

2d(l
P~R1 l, . . . ,2sR1 l , . . . ,t !, ~1!

where$ l% represents the 2d orthogonal lattice vectors~which
have magnitudel ).

The most direct quantities to extract from the mas
equation are marginal averages, the simplest of which is
magnetization density given by

Q~r1 ,R,t ![Trss r1
P~R,$s r%,t !. ~2!

Averaging the master equation over the spin variables g

Q~r ,R,t1dt !2Q~r ,R,t !

5
p

2d(l
@Q~r ,R1 l,t !2Q~r ,R,t !#

2
pq

d
Q~r ,r ,t !(

l
d r ,R1 l . ~3!

At this stage a continuum limit~in both space and time!
may be taken of the above equation, which yields

] tQ~r ,R,t !5
D

2
¹R

2Q~r ,R,t !2lQ~r ,R,t !D l~r2R!. ~4!

Two parameters have appeared: the effective diffusion c
stant of the BA given byD52l 2p/dt, and an effective cou-
pling between the BA and the spins given byl}pqld/dt.
This continuum equation forQ has the form of a diffusion
equation with a sink potentialD l(r ) which is a strongly lo-
calized function with lateral extentl and normalized to unity.
In the naive continuum limit, this function may be taken
be a d-dimensional Dirac delta function. However, ford
>2, it is necessary to smear this function in order to reg
larize the theory.

In DCI an alternative continuum description was obtain
by viewing the process as a stochastic cellular automa
The process is then defined in terms of the positionR(t) of
the BA ~which is now an independent stochastic proces!,
and the coarse-grained density of disorder~or magnetization
density! which is defined in a small region of space at

FIG. 1. Illustration of the data corruption process ford52, with
p5q51. The initial uncorrupted state is shown on the left, with t
BA represented by the filled circle. On the right we show a typi
walk of ;20 steps. The BA switches a bit with each visit, so tho
bits visited an even number of times are restored to their orig
value.
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1452 PRE 60WANNAPONG TRIAMPO AND T. J. NEWMAN
specific time, and is a functional ofR(t). In some sense, on
may view this in the same spirit as a Langevin description
a stochastic process described at a more fundamental
by a master equation. Taking the continuum limit of th
description yields first a simple Langevin equation for t
position of the BA,

dR

dt
5j~ t !, ~5!

wherej(t) is a noise term, each component of which is
uncorrelated Gaussian random variable with zero mean,@i.e.,
j i(t) is a white noise process#. The correlator ofj is given
by

^j i~ t !j j~ t8!&5D8d i , jd~ t2t8!. ~6!

Here and henceforth, angled brackets indicate an ave
over the noise~or equivalently the paths of the BA!. The BA
is chosen to reside initially at the origin:R(0)50.

The evolution of the magnetization densityf is described
by

] tf~r ,t !52l8f~r ,t !D l„r2R~ t !…. ~7!

This equation may be integrated to give the explicit fun
tional solution

f~r ,t !5expF2l8E
0

t

dt8D l„r2R~ t8!…G . ~8!

The above solution is obtained for an initial conditio
f(r ,0)51, which we shall use exclusively. In terms of th
original lattice model it corresponds to choosing all the sp
to have the initial value of11, so that we measure the su
sequent disorder of the system by counting the numbe
minus spins in the system.@Although of no relevance to the
coarse-grained description, we mention here that it is o
convenient to choose the spin at the origin~i.e., the initial
BA position! to be 21, so that forp5q51 all spins have
value11 after the first jump of the BA.#

In DCI we showed that the continuum descriptions~4!
and ~7! are indeed equivalent with the identificationsD
5D8 and l5l8. @This was proven by considering th
former as an imaginary time Schro¨dinger equation@12#, and
writing the solution of the latter as an imaginary time Fey
man path integral@13##. This ends our review of the mode
ization of the process—the reader is referred to DCI for f
ther details and discussions.

In DCI we exclusively used the continuum description~8!
to generate results for various average quantities. The
plest quantity to consider is the mean magnetization den
given bym(r ,t)5^f(r ,t)& @which is equivalent to the sum
of Q(r ,R,t) over the BA positionR#. For d,2 there is no
necessity for regularization, and we replaced the sink fu
tion D l by thed-dimensional Diracd function. The~tempo-
ral! Laplace transform form(r ,t) was found to have the
exact form

m̂~r ,s!5
1

s F12
lĝ~r ,s!

11lĝ~0,s!
G , ~9!
f
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whereĝ(r ,s) is the Laplace transform of the diffusion equ
tion Green function

g~r ,t !5~2pDt !2d/2 exp~2r 2/2Dt !. ~10!

This exact result allows one to extract a great deal
statistical information about the process. First one may s
ply invert the Laplace transform to find the average mag
tization density~or average density of disorder relative to1

2 )
as a function ofr and t. Explicit forms are given in DCI for
d51. We note here that the average magnetization densi
the origin decays for long times ind51 as

m~0,t !5S 2D

pl2t
D 1/2F11OS D

l2t
D G . ~11!

The continuum solution has the important property th
^f(r ,t;l)n&5^f(r ,t;nl)&. This allows us to utilize the ex-
act solution~9! to reconstruct the probability density for th
magnetization density. We defineP via

P~f,r ,t !5^d„f2fR~r ,t !…&, ~12!

wherefR(r ,t) is the stochastic field solution given in Eq
~8!. As explained in DCI, one may solve for this distributio
exactly. In particular, ford51 the probability distribution
for the magnetization density at the origin takes the form

P~f,0,t !5
1

~pt !1/2

1

l̂f
expF2

„ln~f!…2

4l̂2t
G , ~13!

which is a log-normal distribution@and where we have de
fined l̂5l/(2D)1/2#. This is interesting, as it indicates th
extreme nature of the fluctuations in this system. For
stance, the typical value of the magnetization density can
found from the above expression to decay exponentially,
f typ;exp(2l̂2t/2), whereas the mean density decays
1/l̂At as given in Eq.~11!.

Another interesting quantity which may be extracted fro
m(0,t) is the average global magnetization defined~relative
to its initial value! as

M ~ t !5E ddr @^f~r ,0!&2^f~r ,t !&#. ~14!

As shown in DCI, ford,2 this quantity obeys the exac
relation

dM~ t !

dt
5lm~0,t !. ~15!

Thus, for large times in one dimension we haveM (t)
;(Dt)1/2 independent of the couplingl. In other words, the
total amount of disorder created by a single BA on avera
increases as (Dt)1/2, and is~rather surprisingly! independent
of the coupling between the BA and the spins~for times
larger thanD/l2).
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III. TWO-DIMENSIONAL SYSTEMS

In this section we shall present a careful analysis of
case of two dimensions. The simple random walk is rec
rent for dimensionsd<2, whereas ford.2 the walker has a
probability less than unity for ever returning to its starti
point @1#. This basic fact from the theory of random walk
has an immediate implication for our data corruption pro
lem. The nonrecurrent nature of random walks ford.2 im-
plies that the BA will continually corrupt new regions of th
system, and rarely revisit sites which it has previously c
rupted. Thus the relative density of disorder~or average mag-
netization density! at the originm(0,t) will decay to a non-
zero ~and nonuniversal! value, and the total amount o
disorder ~or average global magnetization! M (t) will in-
crease linearly in time, with a nonuniversal prefactor. F
practical applications, in which one wishes to limit the d
ordering capabilities of the BA, the first requirement is
restrict the geometry of the system to a dimensiond<2. So
d52 is the critical dimension of the problem, and because
this we can expect logarithmic corrections to modulate
leading order results, and also to cause long crossover ti
thus making numerical results more difficult to interpret.

In DCI we studied some general properties of higher
mensional systems, and we also derived an approxim
form for m(0,t) in d52 using a crude form of regulariza
tion. Rough agreement was found between this result
simulations, but no quantitative data analysis was perform
In this section we shall rederive the form ofm(0,t) more
carefully. The reasons for this are threefold: first, so that
can have confidence in the leading order result, and
obtain some idea of the subleading corrections; second
provide insight into the relation between the discrete a
continuum approaches in two dimensions~which is impor-
tant given that the latter must be regularized ford52); and
third, to allow us to construct the form of the probabili
distribution of the magnetization density@for which we need
as much information aboutm(0,t) as possible#. We shall use
four different methods~which will each be described with
brevity! to derive the form ofm(0,t). Each has its strong an
weak points, as we shall see.

A. Lattice calculation from Eq. „3…

Referring to the equation of motion~3! for the marginal
average, we setd52, and for convenience we set the ho
ping probabilityp51, giving

Q~r ,R,t1dt !5
1

4 (
l

Q~r ,R1 l,t !2
q

2
Q~r ,r ,t !(

l
d r ,R1 l .

~16!

As an initial condition we take the BA to be located at t
origin, and all spins to be11, except the spin at the origi
which is taken to be21. @This convention is useful forq
51, so that all spins have value11 after one time step
However, if q!1, it is more convenient to take the spin
the origin to be initially11, as the chance of it flipping afte
one time step is small. We stress that these different cho
for the initial value of the spin at the origin have no effect
the asymptotic properties of the system, and only serve
smooth the magnetization density in the immediate vicin
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of the origin.# ThusQ(r ,R,0)5dR,0(122d r ,0). The solution
of Eq. ~16! may be attained by discrete Fourier and Lapla
transform. Defining the former via

Q̃~r ,k,t !5(
R

Q~r ,R,t !eik•R ~17!

and the latter via

Q̂~r ,R,z!5 (
n50

`

Q~r ,R,ndt !zn, ~18!

it is fairly straightforward to diagonalize Eq.~16! to the form

Q̃
ˆ

~r ,k,z!5
~122d r ,0!22qz f~k!eik•rQ̂~r ,r ,z!

12z f~k!
, ~19!

where f (k)5@cosk1l 1cosk2l #/2. One may now solve the
above equation self-consistently forQ̂(r ,r ,z) by inverting
the discrete Fourier transform. One has

Q̂~r ,r ,z!5

~122d r ,0!E dk e2 ik•rD~k,z!

112qzE dk f ~k!D~k,z!

, ~20!

where D(k)5@12z f(k)#21 and the momentum integral
are over the two-dimensional Brillouin zone. The avera
magnetization density at the origin is given by summi
Q(0,R,t) over R, which is equivalent to the zero Fourie

mode Q̃(0,0,t). Thus, substituting Eq.~20! into Eq. ~19!,
after some rearrangement we have

(
R

Q̂~0,R,z!5
21

~12z! F 11q8~12z!E dk D~k,z!

11q8E dk D~k,z!
G ,

~21!

whereq8[2q/(122q). @The function*dk D(k,z) is very
well known in the theory of random walks@1#, and is the
discrete Laplace transform of the probability of a rando
walker to return to its starting point aftern steps.# Finally we
must inverse Laplace transform the above equation. For la
n we can extract the asymptotic form of the average mag
tization by invoking the Tauberian theorem@1#. In this case
we need the form of the Laplace transform asz˜1. Using
@1#

E dkD~k,z!;
1

p
lnS 8

12zD @11O~12z!#, ~22!

from the Tauberian theorem we have the asymptotic res

(
R

Q~0,R,ndt !5
21

~q8/p!ln n1C~q!
. ~23!

The constantC(q) is not accessible from the Tauberian the
rem, although it could in principle be calculated from a ca
ful inverse Laplace transform of Eq.~21!.
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In our simulations we generally take the switching pro
ability q to be unity, which impliesq8522 and thus

(
R

Q~0,R,ndt !5
1

~2/p!ln n2C~1!
. ~24!

In Sec. VI we shall make a direct comparison of this res
with numerical simulations in two dimensions. It is also i
teresting to note from Eq.~21! that setting the switching
probability q51/2 gives (RQ(0,R,ndt)52dn,0 . In other
words, the average value of the spin at the origin remain
zero after one jump of the agent. This ‘‘maximal unce
tainty’’ for q5 1

2 only holds at the origin, and spins at oth
lattice sites will have a positive mean for all times. As a fin
note, ifq!1 it is more convenient to choose the initial valu
of the spin at the origin to be11 in which case we find, from
the foregoing analysis,

(
R

Q~0,R,ndt !5
1

~2q/p!ln n1C~q!
. ~25!

B. Diffusion equation „4… with smeared sink function

We now wish to solve for the coarse-grained magneti
tion density m(0,t) within some continuum limit. In this
subsection we accomplish this by solving the diffusion eq
tion ~4! with a smeared sink function. This calculation is t
closest in spirit to the lattice calculation since~4! is the direct
continuum analog of the discrete equation~3! solved in Sec.
III A. Setting r50, Eq. ~4! takes the form

] tQ~0,R,t !5
D

2
¹R

2Q~0,R,t !2lQ~0,R,t !D l~R!. ~26!

The simplest finite range form to take for the sink functi
D l is a radial function which is zero outside a radiusl, and
~through normalization! equal to (1/p l 2) within this radius.
It is also convenient to smear the initial condition ofQ in the
same way.

The above equation may be solved by standard boun
value techniques. For the sake of brevity, we shall presen
calculational details. The Laplace transform of the magn
zation density at the origin is found to be~in the limit of l
˜0)

m̂~0,s!5
1

s F 1

w~ l̃ !2l̃ ln~sl82!
G , ~27!

where l̃5l/2pD, l 85 l (2/D)1/2, and w(x)
5AxI0(2Ax)/I 1(2Ax), which approaches unity for smallx
(I n(z) is the modified Bessel function@14#!. It is important
to mention that this expression is not valid for Re(s).1/l 8,
and thus the apparent pole is an artifact of the limitl˜0. We
refer the reader to Appendix A, in which this Laplace tran
form is inverted. For larget the result takes the form

m~0,t !5
1

w~ l̃ !1l̃ ln~ t/t!
, ~28!

wheret5 l 82e2g, andg50.57721 . . . isEuler’s constant.
-

lt
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Thus we have arrived at our result, and indeed the lead
order behavior has the same functional form as Eq.~25! de-
rived in Sec. III A. A closer comparison of the leading term
indicates that l}q for q!1 as expected on physica
grounds. In the present continuum calculation, we have a
extracted an explicit form for the subleading term@i.e.,
w(l̃)#, which is nonuniversal and depends on the prec
form of the smeared sink function.

C. Infinite order perturbation theory of Eq. „8…

In DCI all results were obtained from an infinite ord
perturbation expansion of Eq.~8!. In two dimensions each
term in the expansion is divergent. Using the time cut
regularization scheme allows one to extract the domin
contribution from each term, and to resume the series.
result is

m~0,t !5
1

11l̃ ln~ t/t0!
. ~29!

It is interesting to compare this with Eq.~28! obtained in
Sec. III B. They are seen to agree@for smalll, in which case
w(l̃)'1# if we make the identificationt05t(52l 2e2g/D).
This indeed supports the role oft0 as a microscopic correla
tion time of the noise, since it is seen to correspond to
time taken for the diffusion process to correlate a mic
scopic region of size; l 2.

D. Analytic continuation from Eq. „9…

As a fourth method of extracting the form ofm(0,t) for
d52 we briefly mention analytic continuation fromd,2.
As discussed in Sec. II, no regularization is required in
perturbation expansion method ford,2, and one retrieves
the exact result

m̂~0,s!5
1

s F 1

11lĝ~0,s!
G , ~30!

where

ĝ~0,s!5
G~12d/2!

~2pD !d/2s12d/2
, ~31!

and G(z) is the gamma function@14#. Using the result
G(z);1/z for z˜0, for e[22d˜0 we have

m̂~0,s!5
1

s F 1

12l̃ ln~s/s0!
G , ~32!

wheres05e22/e.
On comparing this result with Eq.~27! obtained in Sec.

III B, we see that they are equivalent@for small l, in which
casew(l̃)'1# if we make the identification 1/e5 ln(1/l 8).
This relation has only a formal meaning, as there is no ph
cal sense in continuing dimensionality. However, it is i
structive to learn that the leading order result may be
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trieved intact from analytic continuation. Indeed, we sh
use this tool in Sec. IV to study competing agents in t
dimensions.

E. Calculation of the probability distribution

To complete this section, we shall briefly discuss t
probability distribution of the magnetization density at t
origin. As mentioned in Sec. II, the continuum theory~8! has
the propertŷ f(0,t;l)n&5^f(0,t;nl)&. Thus knowledge of
the l dependence of the first moment allows one to rec
struct all the moments of the magnetization density, and t
the probability densityP(f,0,t) for this quantity. The
method for retrievingP from the moments is given in deta
in DCI for the case ofd51. A similar calculation suffices
for d52, so long as one has an ‘‘accurate’’ form for th
mean magnetization density. In the present section we h
attacked this problem from four different directions, a
have arrived at agreement for the asymptotically domin
term form(0,t). However, as noted in DCI, it is necessary
have more information than this in order to constructP cor-
rectly. If one tries to calculateP using m(0,t;l);1/l̃ ln t
one obtains a distributionP;m(0,t)/f which is singular at
f50. The subleading correction tom(0,t;l) is crucial to
determine the distribution correctly. Our results from Se
III A–III D are in agreement with regard to the time depe
dence, but differ in the way in whichl appears in the sub
leading term. We prefer Eq.~28!, in that an explicit form
w(l̃) appears. However, we have been unable so far to
constructP using this form due to the complicated nature
w. For smalll, w(l̃)'1, and Eq.~28! then coincides with
the less controlled results~29! and ~32! of Secs. III C and
III D, respectively. The reconstruction ofP is possible from
these forms, and one finds

P~f,0,t !5b~ t !fb(t)21, ~33!

with b(t)51/l̃ ln(t/t0). As t˜` this distribution approache
the formm(0,t)/f, but is never singular for finite times. I
Sec. VI we shall describe our attempts to measureP for
two-dimensional systems. Our numerical results are in s
prisingly good agreement with Eq.~33! above.

IV. COMPETING AGENTS

In this section we shall analyze the effects of many BA
within the system. We shall assume the BA’s to be nonin
acting, in the sense that they are unaware of each oth
immediate presence. The nontrivial statistics reside in
fact that the disordering effects of the BA’s statistically i
teract via the overlap of the BA histories. As we have alrea
seen, a single BA interferes with the previous disorder it
created, such that the amount of disorder does not sim
increase linearly in time. This effect is more severe wh
more than one BA is present, as each BA can disturb
disorder that another BA has previously created.

We measure the strength of this interference via a qu
tity called the ‘‘disordering efficacy’’ of the agents, define
as
l
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sN~d![ lim
t˜`

M (N)~ t !

M (1)~ t !
, ~34!

where MN(t) is the average global disorder created byN
agents. If the BA’s were truly independent~in terms of the
disorder they create!, then we would expectsN5N. As we
shall see, ford,2 the value ofsN is strongly reduced below
this value. However, ford52 this value is recovered, bu
only in the deep asymptotic regime (t@eN).

The extension to many BA’s is easily modeled within t
continuum theory. We introduceN random walkers, each o
which is described by a position vectorRa(t), a
51,2, . . . ,N. Since the BA’s are independent, we have

dRa

dt
5ja~ t !, ~35!

whereja(t) are independent Gaussian white noise sour
with zero mean. The equation of motion for the coars
grained magnetization densityf (N) takes the form

] tf
(N)~r ,t !52lf (N)~r ,t ! (

a51

N

D l„r2Ra~ t !…, ~36!

with solution

f (N)~r ,t !5 )
a51

N

expF2lE
0

t

dt8D l„r2Ra~ t8!…G . ~37!

On averaging over the paths of theN agents, we have the
particularly simple result

m(N)~r ,t ![^f (N)~r ,t !&5m(1)~r ,t !N. ~38!

Thus the average global magnetization is given by

M (N)~r ,t ![E ddr @m(N)~r ,0!2m(N)~r ,t !#5E ddr

3@12m(1)~r ,t !N#. ~39!

Scaling the spatial coordinate by the diffusion length sc
(2Dt)d/2, from Eqs.~34! and ~39! we have

sN~d!5 lim
t˜`

E ddr @12m(1)
„r /~2Dt !1/2,t…N#

E ddr @12m(1)
„r /~2Dt !1/2,t…#

. ~40!

To proceed with the calculation it is convenient to fir
perform the large-t limit. We concentrate ond,2, and
therefore replaceD l(r ) by the Diracd-function. From Eqs.
~9! and~10! it is a fairly straightforward matter to show tha

m~r ![ lim
t˜`

m(1)
„r /~2Dt !1/2,t…5

2

G~12d/2!
E

0

r

du u12de2u2
.

~41!

We may use this result to explicitly evaluate the denomina
of Eq. ~40!, giving us
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sN~d!5dG~12d/2!E
0

`

dr r d21
„12m~r !N

…. ~42!

We refer the reader to Appendix B, where it is demonstra
that the above expression may be recast in the more us
form

sN~d!5
2N~N21!

G~12d/2!
E

0

`

dr r 12de22r 2
m~r !N22 ~43!

for N.1. We note that the result for two agents follow
immediately from this expression, and we haves252d/2.
This result is striking. For the case ofd51, we see that two
agents create onlyA2 as much disorder as one agent. Als
assuming we may continue this result to exactly two dim
sions, we find thats2(2)52, i.e., two agents create disord
independently. In the remainder of this section we shall
Eq. ~43! for two purposes. First, we shall concentrate ond
51 and evaluate the exact values ofs3(1) and s4(1),
which may be used to compare with numerical simulatio
Second, we shall evaluate the integral for largeN for arbi-
trary dP@0,2# using a saddle point method. This calculati
will make clear the tremendous difference in the largeN
behavior ofsN(d) for d,2 andd52. We end the section
with a simple scaling argument which helps us to underst
these analytic results.

For d51, expression~41! is simply m(x)5erf(x), where
erf(z) is the error function@14#. Thus from Eq.~43! we have

sN~1!5
2N~N21!

p1/2 E
0

`

dx e22x2
erf~x!N22. ~44!

We are able to evaluate these integrals forN53 and 4. The
details may be found in Appendix C. The results are

s2~1!5A2, s3~1!5
6A2

p
sin21S 1

A3
D ,

s4~1!5
12A2

p
sin21S 1

3D . ~45!

The numerical values of these expressions are presente
Table I along with the results from our computer simulatio
~the details of which may be found in Sec. VI!. Excellent
agreement is found.

We now return to the case of arbitrarydP@0,2# and con-
sider the limit of largeN. For the sake of generality, w
study the integral

TABLE I. The predicted values ofsN(1) for N52,3, and 4,
from Eq. ~45!, compared with our numerical simulations.

N sN(1)theory sN(1)simul

2 1.414 . . . 1.42~1!

3 1.662 . . . 1.66~1!

4 1.835 . . . 1.84~2!
d
ful

,
-

e

.

d
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s

QN~b,d!5E
0

`

dr r 12de2br 2
m~r !N, ~46!

with m(r ) as given above in Eq.~41!. We can recover the
disordering efficacy via

sN~d!5
2N~N21!

G~12d/2!
QN22~2,d!. ~47!

We wish to implement a saddle point calculation, so we
write Eq. ~46! as

QN~b,d!5E
0

`

dr r 12de2FN(r ), ~48!

where

FN~r ;b,d!5br 22N ln„m~r !…. ~49!

The saddle point is defined viadFN /drur 5r 0
50, which for

r 0 yields the transcendental equation

br 0
d5

Ne2r 0
2

m~r 0!G~12d/2!
. ~50!

For N@1, it is easy to see thatr 0;(ln N)1/2@1, so that
F(r 0)@1 and the saddle point method is self-consisten
justified.

For the sake of brevity we give no details of the sad
point calculation. The result is

QN~b,d!5
G~b!G~12d/2!b

2

~ ln N!(b21)d/2

Nb

3F12
~b21!d2

4

ln~ ln N!

ln N
1OS 1

ln ND G .
~51!

Combining Eqs.~47! and~51! then gives us the final large-N
result

sN~d!5G~12d/2!~ ln N!d/2F12
d2

4

ln~ ln N!

ln N
1OS 1

ln ND G .
~52!

In particular, ford51 the disordering efficacy increases
(ln N)1/2 with strong logarithmic corrections. We also no
that for real-valuedd,2, the disordering efficacy increase
as (lnN)d/2. In other words, the BA’s overlap very strongly i
their disordering for alld,2.

The main reason for calculatingsN(d) for real-valuedd
,2 was to attempt to analytically continue the result tod
52, which is otherwise difficult to calculate due to the pre
ence of an explicit regulator. However, if we simply setd
52 in our expression forsN(d) above, we find that the
apparent behaviorsN(2); ln N is multiplied by the infinite
constant. This gives us the hint that the large-N behavior for
d52 is stronger than lnN, but offers no more information
than that. We can, however, trace the failure of the sad
point calculation ford52 back to the saddle point equatio
~50! for r 0. For largeN andd,2 we have the leading resu
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r 0;@ ln eN#1/2, where e522d @and we have obtained thi
result from Eq.~50! by taking the small-e and large-r limit
of m(r )#. Thus for fixede.0 we may always takeN large
enough to create a saddle point at a large value ofr 0, in
which case the result~52! is valid. However for fixedN ~no
matter how large!, taking e˜0 squeezes the saddle poi
back into the origin, in which case the saddle point metho
of no use.

Therefore we cannot use Eq.~52! to continue tod52
analytically. However, a simpler method may be used to
tract the result. We refer the reader to the original expr
sions forsN(d) and m(r ) as given in Eqs.~43! and ~41!,
respectively. Takinge!1 and N@1, these equations tak
the forms

sN~d!5eN2E
0

`

dr r e21e22r 2
m~r !N ~53!

and

m~r !5eE
0

r

du ue21e2u2
. ~54!

On studying Eq.~53! we see that ase˜0 the integral is
dominated by smallr. Thus we require the small-r form for
m(r ) which is easily extracted from Eq.~54! to be m(r )
.r e. We now break the integral in Eq.~53! into two pieces.
The first piece encompasses the ranger P(0,1) so that we
can neglect the Gaussian factor and substitute the smr
form of m(r ) to find the leading order result

sN
I ~d!5eN2E

0

1

dr r Ne215N. ~55!

The second piece encompasses the ranger P(1,̀ ), and for
large enoughN will have the asymptotic formsN

II (d)
;(ln N)/e. To summarize, the contributionsN

I (d) dominates
for N!1/e, and the contributionsN

II (d) dominates forN
@1/e. Thus ford52 we have the resultsN(2)5N for all N.
This is consistent with the analytic continuation tod52 of
the exact results2(d)52d/2 found earlier.

These results may be understood in the following w
ConsiderN agents in a system ofd dimensions. Since eac
agent performs a random walk, the amount of availa
space in which we can expect to find the agents has a vol
;td/2. Also, we know from our previous results that th
amount of disorder created by a single agent increases atd/2

for d,2, but ast/ ln t for d52. Thus ford,2 the available
space forN agents and the amount of disorder created b
single agent both scale astd/2, which means that there i
certain to be interference between the agents, which will
come severe for largeN as we have seen. However ford
52 the amount of available space forN agents scales loga
rithmically faster with t than does the amount of disord
created by a single agent. Thus for times large enough s
that N! ln t, we expect the disorder created by the agent
become statistically independent and thussN(2)5N. Note
that the ‘‘independence time’’ grows exponentially with th
number of agents, making a numerical observation diffic
for even moderate values ofN. Similar arguments have bee
made in the context of ‘‘the number of distinct sites visit
is
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by N random walkers’’@15#. In Sec. VI we shall presen
results forN52,3, and 4 in two dimensions. The disorderin
efficacy is seen to approach its expected value slowly.

V. GENERALIZED COUPLINGS

In all of our work so far we have taken the couplin
between the BA and the spins to be symmetric and spati
homogeneous. At least one of these properties is likely to
absent in a practical application of our model. Asymmetry
the switching probability is likely in data corruption since th
states of a bit are not physically encoded in a symme
way. Also, in chemical kinetic applications, the reaction ra
between two chemical species are unlikely to be symme
Spatial homogeneity of the couplings is also an idealiz
situation. Generally there will be quenched random fluct
tions in the switching rates of different sites, and it is impo
tant to quantify the effect of this randomness on the res
obtained so far. In the next two subsections we shall cons
these important generalizations in turn.

A. Asymmetric rates

Consider the lattice model described in Sec. II with t
additional property that the probability of flipping a spin d
pends on the value of the spin. If the BA leaves a site w
spin11, we flip that spin with probabilityq1, whereas if the
BA leaves a site with spin21 we flip that spin with prob-
ability q2. At a microscopic level the model is now consid
erably more complicated as the transition rates for flipp
depend explicitly on the values of the spins. We shall n
construct the master equation for this case. Rather, we s
try to construct an analog of the continuum model~7! using
a simple physical idea.

The main effect of the asymmetric couplings is to fav
one type of spin over the other. We make the approximat
that in a coarse-grained model the dynamics of relaxation
this ‘‘background magnetization’’ are the same as the rel
ation to zero magnetization in the symmetric model. W
therefore write the analog of Eq.~7! for asymmetric rates in
the form

] tf~r ,t !52l@f~r ,t !2meq#D l„r2R~ t !…, ~56!

wheremeq5(q22q1)/(q21q1). From this simple model
it is easy to show that

fA~r ,t !5meq2~12meq!fS~r ,t !, ~57!

where the subscriptsA and S indicate ‘‘asymmetric’’ and
‘‘symmetric’’ respectively. Integrating this equation ove
space, and using definition~14! of the average global mag
netization, we find

MA~ t !5~12meq!MS~ t !5
2

~11q2/q1!
MS~ t !, ~58!

which is an intuitively acceptable result.

B. Quenched random rates

We now consider an alternative generalization in wh
the rates are symmetric, but spatially inhomogeneous. At
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microscopic level, this is modeled by attaching to each
tice positionr a quenched random variableqrP(0,1) drawn
from some distributionS($qr%). The random variableqr
gives the probability of switching in the event that the B
visits the siter . In the continuum theory, we model thes
quenched random couplings by a simple extension of Eq.~7!.
We generalize the coupling parameterl to a spatially inho-
mogeneous random functionl(r ), with a distributionS@l#.
This does not affect the solvability of the model due to t
locality of the continuum theory, so that we have the expl
solution

f~r ,t;l!5expF2l~r !E
0

t

dt8D l„r2R~ t8!…G , ~59!

where we have emphasized the dependence off on l.
There is an enormous variety in the forms of the quenc

disorder distributionS that one may study. A comprehensiv
analysis is beyond the scope of the present work. In
simulations~to be described in Sec. IV!, we have chosen to
study switching ratesqrP(0,1) which are independent ran
dom variables drawn from a uniform distribution. There
more than one way in which such a distribution can manif
itself at the continuum level. Depending on the extent
which one coarse grains the lattice model, the continu
theory will have a distribution of couplings which is eith
very similar to the lattice distribution~i.e., uncorrelated and
uniform!, or more Gaussian in nature~due to the central limit
theorem!. We expect different physics according to the b
havior of the distributionS@l# asl˜0. Roughly speaking
if S has zero weight for smalll, we expect the quenche
disorder to be irrelevant to the system for large times. C
versely, ifS has nonzero weight for smalll, then the disor-
der will play a role for arbitrarily late times. In order t
exemplify this latter case, we consider as an example
distribution

S@l#5)
r

Sloc„l~r !…, ~60!

where Sloc is a local ~or ‘‘on-site’’ ! distribution function
which we take to be uniform:

Sloc~l!5~1/lm!H~lm2l!H~l!, ~61!

whereH(x) is the Heaviside step function@16#. Henceforth
we shall concentrate ond51 for simplicity.

Due to the way in which the quenched random couplin
enter the continuum theory, we can easily generalize
earlier exact results. Let us first concentrate on the magn
zation density at the origin, averaged over both the BA t
jectories, and the distribution ofl. The first average is per
formed in the usual way using Laplace transforms~see DCI!
and we have the analog of Eq.~9!

m̂~0,s;l!5
1

s F 1

11l~0!ĝ~0,s!
G . ~62!

On averaging this density over the distribution of rando
couplings~61!, we have
t-

t

d

r

t
o
m

-

-

e

s
ur
ti-
-

^m̂~0,s;l!&S5S 2D

lm
2 s

D 1/2

lnF11S lm
2

2DsD
1/2G . ~63!

Inverse Laplace transforming yields the asymptotic resul

^m~0,t;l!&S5S D

2plm
2 t

D 1/2

lnS lm
2 t

2D D . ~64!

Therefore, the decay in the homogeneous case~of 1/At be-
havior! for the average magnetization density is slowed b
logarithmic factor due to the presence of the quenched
dom couplings. It is interesting that this logarithmic slowin
down does not affect the average of the global magnet
tion. This quantity may be explicitly calculated using th
method of infinite order perturbation theory described
DCI. The result is that the leading order term for large tim
is independent of the coupling, and is unaffected by the
erage overS. Thus the average over the random couplin
will in no way affect the leading order behavior ofM (t)
;(Dt)1/2. The average of the global magnetization is a ve
robust quantity, and is unaffected by scalings of the hom
geneous couplings~as seen in Sec. II!, and by making the
couplings, quenched random variables. We have perform
numerical simulations for systems with quenched rand
couplings and report our findings toward the end of Sec.

Finally, we briefly discuss the changes that can occu
the probability distributionP of the local magnetization den
sity at the origin, when quenched random couplings are
troduced. From Sec. II we have the exact result~13! for this
function in d51: it is a log-normal distribution. The sam
form will hold in the present case, but now the parametel
is to be averaged overS@l#. We average over the uncorre
lated uniform distribution given above in Eq.~61!. Simple
integration gives

^P&S5
1

2~pt !1/2l̂mf
E1S ~ ln f!2

4l̂m
2 t

D , ~65!

where l̂m5lm /(2D)1/2, and E1(z) is the exponential inte-
gral @14# . This distribution behaves very much like the pu
log-normal distribution forf!1. However, we have the in
teresting result that the distribution is singular atf51. Ex-
plicitly, for c[12f!1 we have

^P&S;
ln@c2/4l̂m

2 t#

2~pt !1/2l̂m

. ~66!

This logarithmic singularity stems from the fact that ifS@l#
has a nonzero weight for arbitrarily smalll, there will be a
nonvanishing subset of systems for which almost no corr
tion occurs. For large times, this subset will appear a
pronounced ‘‘peak’’ in the distribution̂P&S for f˜1.

VI. NUMERICAL SIMULATIONS

In this section we describe the details of our numeri
simulations, and present figures of our data to support
various theoretical claims made in the preceding sectio
The simulations are performed on ad-dimensional lattice
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~with d either 1 or 2! and follow the lattice rules described i
Sec. II. We set the hopping probabilityp51, so that in each
time step the BA is moved randomly to one of its 2d nearest
neighbor sites. In doing so, the spin it leaves behind
flipped with probabilityq ~which is set to unity unless oth
erwise stated!. Systems are taken large enough so that
BA never touches the boundary during the lifetime of t
simulation. We generally average over between 105 and 107

realizations, depending on the desired precision of the si
lation.

In Sec. III we calculated the asymptotic form of the ave
age magnetization density at the origin from an exact lat
calculation. As noted, the subleading term is not obtaina
from the Tauberian theorem. However, it is clear from t
various calculations in Sec. III that the corrections decay
1/(ln t)2. We have checked this in the following way. Fro
our simulations we measurem(0,t)@5(RQ(0,R,ndt)#. We
take its inverse and subtract the predicted asymptotic re
of (2/p)ln n @in order to compare with Eq.~24!#. The result-
ing data is plotted against 1/lnn, which should yield a
straight line, they intercept of which fixesC(1). As seen in
the inset of Fig. 2, the data indeed confirm this expectat
and we findC(1).20.742. In Fig. 2, we plot the inverse o
the data against lnt, along with the predicted asymptotic re
sult. The large difference between the curves indicates
strong role of the corrections~which are of order 10% even
for t;106).

We have also attempted to measure the probability dis
butionP(f,0,t) in d52, as calculated in Sec. III E. In DC
we attempted to measure this quantity ind51, and met with
limited success. The difficulty lies in the fact that the dist
bution only makes sense for a coarse-grained magnetiza
density ~since a single spin always has a bimodal distrib
tion!. Thus to constructP numerically we must measure th
magnetization density for a patch of spins. If the patch is

FIG. 2. Plot of 1/m(0,t) ~the inverse of the average magnetiz
tion density at the origin!, as a function of lnt for d52. The lower
solid line is the asymptotic prediction, while the upper solid li
~which is partially obscured by the data! is the prediction with cor-
rections to scaling included. The inset shows the difference betw
1/m(0,t) and its asymptotic form, plotted against 1/lnt. The data
may be fitted to a straight line, thereby yielding the corrections
scaling explicitly.
s
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small, the resulting histogram will have too few bins to ha
any smooth structure, but if the patch is too large, the ti
scales required to allow the agent to wander far away fr
the patch and return many times become numerically p
hibitive. Thus we must compromise, and we use a squ
patch of 121 spins. The agent is started on the boundar
the patch to avoid the patch being internally decimated
the transient motion of the agent. The predicted result foP
is given in Eq.~33!. It shows three types of behavior set b
a crossover timet* defined byb(t* )51. For t!t* the dis-
tribution has most weight nearf51, and then fort;t* the
distribution becomes uniform over the entire interval off.
For late timest@t* , the distribution approaches the form
;1/f. Our numerical measurement ofP is shown in Fig. 3
for these three time regimes. Good qualitative agreemen
found. @Note that the measured distribution has nonz
weight for negativef due to the modest patch size, and
also suppressed nearf51 due to internal decimation of th
patch magnetization.#

In Sec. IV we presented an analysis of the continu
theory withN agents. We described the interference betwe
the agents by a number termed the ‘‘disordering efficac
sN(d). In particular we calculated the exact value forsN(1)
for N52,3, and 4, as given in Eq.~45!. We also predicted the
large-N form of sN(1), along with the exact form of the
strong logarithmic corrections, as shown in Eq.~52!. In two
dimensions we argued thatsN(2)5N for all N, but only for
times t@eN. We have performed numerical simulations
the many agent system in order to test these results.
microscopic rule we use is that there is no hard-core ex
sion between the agents, and that for each time step thN
agents are in turn moved to a randomly chosen nea
neighbor site. A spin which is occupied by two agents, s
will thus ~for q51) be flipped twice in that time step. In Fig
4 we show the evolution of the ratio of the average glo
magnetization forN agents as compared to one agent, fod
51. Asymptotically this ratio is the disordering efficacy b
definition. Results are shown forN52,3, and 4. The curves
asymptote to constants as expected, the values of which

en

o

FIG. 3. Plot of the probability distributionP as a function off
for d52, for times t5103 ~diamonds!, t5104 ~plusses!, and t
5105 ~squares!. Note the qualitative similarity~as time proceeds!
between these different histograms, and the theoretical predic
@Eq. ~33!#.
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compared to the theoretical predictions. Excellent agreem
~to within less than 2%! is found. The numerical values ar
also given in Table I in section IV. We have measured
disordering efficacy for higher values ofN in d51, and plot
our results on a logarithmic scale in Fig. 5. Also shown is
theoretical prediction~52! for large N ~where we have in-
cluded both the leading and sub-leading terms!. Again, ex-
cellent agreement is found. As argued in Sec. IV, the cro
over times in the two-dimensional many agent system
very large, growing exponentially withN. We have at-
tempted to measuresN(2) numerically, but we have bee
unable to reach large enough times to see the ratio of
average global magnetizations reach a constant value. H
ever, we may still compare our results to the theoretical p
diction, by plotting the predicted value of the asympto
(5N) minus the measured ratio, against 1/lnt. If the pre-
dicted asymptote is correct, the data so plotted should c
verge to the origin. In Fig. 6 we present such a plot forN

FIG. 4. Plot of the ratio of the average global magnetization
N agents as compared to a single agent, for~in ascending order!
N52, 3, and 4, ind51. The solid lines are the theoretical predi
tions @Eq. ~45!# for the disordering efficacies, which are the asym
totes of this ratio.

FIG. 5. Plot of the disordering efficacysN as a function ofN in
d51. The solid line is the theoretical prediction~52! ~including the
strong logarithmic corrections!.
nt

e

e

s-
re

e
w-
-

n-

52,3, and 4. The resulting curves appear to be heading
the origin, and therefore constitute numerical support for
predictionsN(2)5N.

In the first part of Sec. V we considered a system w
asymmetric switching rates, and argued for the very sim
phenomenological description given by the equation of m
tion ~56!. This equation may be solved and one obtains
simple relationship~57! between the magnetization densi
for asymmetric rates and that for symmetric rates. In parti
lar, this result may be used to derive the intuitive result~58!
for the proportionality of the average global magnetizati
for the asymmetric and symmetric cases@MA(t) andMS(t),
respectively#. We have performed simulations of the syste
with asymmetric rates ind51. In Fig. 7 we show the ratio o
MA(t)/MS(t) for different choices of the ratesq1 andq2. It
is seen that the ratio gradually tends to a constant, and
the constant is in agreement with the theoretical predict
~58!. We have also tried to test Eq.~57! at the level of the
average magnetization density. We have found that the r

r

-

FIG. 6. Plot of the ratio of the average global magnetization
N agents as compared to a single agent, subtracted fromN, as a
function of 1/lnt for ~in ascending order! N52, 3, and 4, ind52.
The data in each case are apparently heading for the origin,
supporting the theoretical predictionsN5N.

FIG. 7. Plot of the ratioMA(t)/MS(t) vs time for systems in
d51 with asymmetric rates. In ascending order, the values of
rates are (q2,q1)5(0.5,0.2),~0.5,0.4!, ~0.4,0.5!, and~0.2,0.5!. The
solid lines are the theoretical predictions obtained from Eq.~58!.



e
o

th
s
an
t
e

te
is
ti

es
e

n-
W

W
e
a

w

o
i-

in
am
n

ns
ve
ul

ak
t

ic
g

ion

e-
s
g
n
o

ng

er-
se of

a
the
e
v-

he

the
the
ic
the
to

re-
r-

ro-
ns:

s

h
h for

PRE 60 1461BINARY DATA CORRUPTION DUE . . . . II. . . .
of the densities is constant for all but the shortest tim
which already indicates that the form of the time decay
m(0,t) ~relative to its equilibrium value! is insensitive to the
asymmetry in the rates. However, we have found that
constant is sensitive to whether we measure the densitie
an individual spin, or for a patch. The value of the const
decreases as we increase the patch size. In Fig. 8 we plo
ratio of magnetization densities for asymmetric and symm
ric systems, for various patch sizes with the ratesq150.8
andq250.2. As we see, the ratio seems to be approxima
constant, and the value decreases as the patch size
creased. Reasonable agreement is found with the predic
of Eq. ~57! for the largest patch of 101 spins. This indicat
that Eq. ~57! is likely to be correct, but only after a larg
degree of coarse graining.

Finally we turn to the predictions of Sec. V B, which co
cern the system with symmetric quenched random rates.
investigated this situation numerically ind51 by measuring
the global magnetization and the magnetization density.
perform the averaging in batches; that is, we use the sam
of quenched rates for a batch of 1000 systems, which
then averaged over their different BA histories. Then
repeat this forNb batches~with Nb;103), thus averaging
over different realizations of the quenched rates. We cho
the quenched couplings$qr% to be uncorrelated random var
ables drawn from a uniform distribution in the range@0,1#. In
Fig. 9 we show the average of the global magnetization
system with quenched rates, and compare it to the s
quantity in a ‘‘pure’’ system. The two curves become ide
tical for late times~following a power law growth;At)
indicating that the average global magnetization is inse
tive to the quenched rates, as predicted. Turning to the a
age magnetization density, we found at first that our res
could not be fitted to the theoretical prediction~64!. How-
ever, a closer analysis revealed that great care must be t
in making the comparison. The point is that one wishes
compare theory and simulation for long times@when the
asymptotic form given in Eq.~64! becomes valid#. However,
it turns out that there is a new crossover timet f within the
numerical simulations, beyond which the theoretical pred
tion is expected to break down. This crossover time emer

FIG. 8. Plot of the ratio of magnetization densitie
mA(0,t)/mS(0,t) for d51 with asymmetric ratesq250.2 andq1

50.8. The ratio is measured for different patch sizes, the patc
having 9, 19, and 101 spins, respectively, from top to bottom. T
solid line is the theoretical prediction from Eq.~57!.
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due to insufficient averaging over batches. In the simulat
we average overNb batches, and thus selectNb couplings
from the uniform distribution. There will be a smallest s
lected valueqf;1/Nb of the coupling, and thus, from thi
finite sampling ofS, we cannot discern if we are really usin
a uniform distribution with nonzero weight all the way dow
to q50, or a distribution with nonzero weight only down t
q5qf . In the latter case, one can shown~from either the
lattice or continuum theories! that the logarithmic slowing
down will vanish after a timet f;1/qf

2 . Thus in our simula-
tions we can only expect to see the logarithmic slowi
down for times much less thant f;Nb

2 . So, in order to make
this time window as large as possible it is important to p
form as many batch averages as possible, at the expen
averaging over BA histories within a given batch. To make
quantitative comparison to theory, we have calculated
exact form of the logarithmic slowing down from the lattic
theory, using the methods described in Sec. III A. After a
eraging over a uniform distribution of the rates, from t
Tauberian theorem we have the exact asymptotic result

K (
R

Q~0,R,ndt !L
S

;
ln~n!

2~2pn!1/2F11OS 1

ln nD G . ~67!

In Fig. 10 we plot the average magnetization density, and
above asymptotic result. Good agreement is found, and
difference may be well fitted against the slow logarithm
corrections. Note, for times longer than those shown on
plot, the data fail to agree with the predicted result due
crossover into the regimet@t f in which finite sampling ef-
fects dominate.

VII. CONCLUSIONS

This paper has been devoted to a continuation of our p
vious study DCI@3# of the statistical properties of data co
ruption due to a Brownian agent~BA!. In order to make
closer contact to potential physical realizations of this p
cess, we have extended our original study in three directio

es
e FIG. 9. Plot of the average global magnetization vs time
systems with quenched and pure~homogeneous! switching rates.
For long times the functions become identical, growing;At.
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~i! a careful examination of two dimensions, which is t
critical dimension for the model,~ii ! the competition induced
by more than one agent; and~iii ! the case of generalize
couplings between the BA and its environment. The reade
referred to Sec. VI, which effectively summarizes our
sults.

The most important conclusion to emerge from this inv
tigation is the robustness of the phenomenological mode~7!
in accounting for the properties of the data corruption p
cess under a wide range of conditions. The fact that
process may be modeled by such a simple continuum th
gives one confidence in applying similar phenomenolog
models to more complicated physical situations involvi
Brownian agents.

As mentioned in Sec. I, the process of disordering o
bistable medium by a Brownian agent has putative appl
tions to data corruption, homogeneous catalysis, and the
fect of impurities in biatomic crystals. It remains to be se
whether one can find a solid application of the models st
ied in DCI and the present work. By having explored mo
challenging situations such as two dimensions, many age
and asymmetric and quenched random couplings, we
able to seriously address the practical issues involved
making the connection between the rich statistical proper
of our model, and their potential existence in the real wo
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APPENDIX A

In this appendix we outline the procedure of taking t
inverse Laplace transform of Eq.~27!. Consider the function
H(t), the Laplace transform of which has the form

Ĥ~s!5
1

s@a2b ln s#
, ~A1!

FIG. 10. Plot of the magnetization density at the origin~aver-
aged over both BA histories and the quenched rates! vs time. The
solid line is the asymptotic form of the theoretical prediction@Eq.
~67!# with no free parameters.
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for sufficiently small Re(s) such that the apparent pole ats
5ea/b may be disregarded (a andb are positive constants!.
The inverse Laplace transform is given by the Bromwi
integral @16#

H~ t !5E
C

ds

2p i

est

s@a2b ln s#
, ~A2!

where the contourC is to be taken up the imaginary ax
~note the integration around the simple pole at the ori
gives a contribution of zero!. The important singularity is the
branch point at the origin. We take the cut along the nega
real axis and deform the contour around this cut. Integrat
across the cut then gives us

H~ t !5
1

bE0

`dx

x F e2xt

~ ln x2a/b!21p2G . ~A3!

We are interested in the asymptotic form of this integral
larget. In this limit the integral is dominated by smallx. We
therefore expand the denominator to give

H~ t !5
1

bE0

`dx

x

e2xt

~ ln x!2 F11
2a

b ln x
1OS 1

~ ln x!2D G .

~A4!

By splitting the range of integration into two pieces@x
P(0,1/t) and xP(1/t,`)], we systematically evaluate th
terms in the above expansion to find

H~ t !5
1

b ln t
2

~a1gb!

~b ln t !2
1OS 1

~ ln t !3D , ~A5!

whereg50.57721 . . . isEuler’s constant. Using the appro
priate form for the constantsa and b we arrive at Eq.~28!
correct up toO„1/(ln t)3

….

APPENDIX B

In this appendix we indicate the steps leading from E
~42! to Eq. ~43!. First we factorize the integrand to give

sN~d!5dG~12d/2! (
n50

N21

Jn~d!, ~B1!

where

Jn~d!5E
0

`

dr r d21f ~r !m~r !n, ~B2!

with f (r )[12m(r ). We then integrate the above expressi
by parts using

E r

du ud21f ~u!5
r df ~r !

d
2

e2r 2

dG~12d/2!
1const .

~B3!

The resulting integral contains a factor ofre2r 2
which al-

lows one to integrate by parts a second time, thus yield
after some algebra~for n.0),
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Jn~d!52
dn,1

dG~12d/2!
1Kn~d!2Kn21~d!, ~B4!

with

Kn~d!5
2n~n11!

dG~12d/2!2E0

`

dr r 12de22r 2
m~r !n21. ~B5!

Substitution of Eq.~B4! into Eq. ~B1! yields the result~43!,
as shown in the main text.

APPENDIX C

In this appendix we indicate the evaluation ofsN(1) as
given by Eq.~44! for N53 and 4. ForN53 we require

s3~1!5
12

p1/2E0

`

dx e22x2
erf~x!. ~C1!

We introduce the integral

I ~b![p1/2E
0

`

dx e2bx2
erf~x!. ~C2!

Using integration by parts, it is straightforward to show th
I (b) satisfies the differential equation

2b
dI

db
1I 52

1

~11b!
. ~C3!

This differential equation may then be integrated@using the
boundary conditionI (`)50# to give
nts

-

.

t

I ~b!5
1

2b1/2Eb

`

db8
1

b81/2~11b8!
5

1

b1/2
sin21S 1

~11b!1/2D .

~C4!

Using this result, along with the fact thats3(1)
5(12/p)I (2), we have the leftmost result of Eq.~45! as
shown in the main text.

The evaluation ofs4(1) proceeds along similar ground
We define a function

L~b![p1/2E
0

`

dx e2bx2
erf~x!2, ~C5!

which may be shown to satisfy the differential equation

2b
dL

db
1L52

2

~11b!~21b!1/2
. ~C6!

This equation may be integrated, and the resulting integ
may be calculated by elementary methods to yield

L~b!5
1

b1/2
sin21S 1

11b D . ~C7!

Using this result, along with the fact thats4(1)
5(24/p)L(2), we have the rightmost result of Eq.~45! as
shown in the main text.

A similar method may be used to simplify the integra
for higher N, but we have been unable to evaluate the
integrals in closed form. Naturally, the integral in Eq.~44!
may be evaluated numerically for a givenN to any desired
precision.
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