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Microscopic analysis of currency and stock exchange markets
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Recently it was shown that distributions of short-term price fluctuations in foreign-currency exchange
exhibit striking similarities to those of velocity differences in turbulent flows. Similar profiles represent the
spectral-diffusion behavior of impurity molecules in disordered solids at low temperatures. It is demonstrated
that a microscopic statistical theory of the spectroscopic line shapes can be applied to the other two phenom-
ena. The theory interprets the financial data in terms of information which becomes available to the traders and
their reactions as a function of time. The analysis shows that there is no characteristic time scale in financial
markets, but that instead stretched-exponential or algebraic memory functions yield good agreement with the
price data. For an algebraic function, the theory yields truncategt destributions which are often observed
in stock exchange marketsS1063-651X99)07008-7

PACS numbg(s): 05.40.Fb, 78.40.Pg, 89.98n

[. INTRODUCTION the log-normal variance for increasing time intervals or spa-
tial distances. The authors explained the similarity in the
Distributions of price fluctuations in currency and stock behavior as being due to turbulent cascades in both phenom-
exchange markets have been the subject of interdisciplinafgna: Turbulent flows are characterized éyergy cascades
studies for several years. In particular the fact that they arérom larger to smaller vortices, and for the financial data a
usually of non-Gaussian shape with distinctly more pro-transfer ofinformationfrom long- to short-term traders was
nounced wings has attracted much interest. The long, slowlinvoked[10] (see also Ref.11]).
decaying tails are the origin of frequent turbulences or even Although the stochastic nature of turbulent flows and fi-
crashes of the markets, because extreme price fluctuatioméncial data was shown to be quantitatively diffefer, 13,
occur with much higher probability as compared to Gaussiahe analogy in the behavior of the respective distribution
statistics. The leptokurtic shapes can often be empiricalljunctions is striking. Similar statistical distributions are also
desribed by Ley distributions[1,2] or truncated Ley distri-  known in a completely different field of physics, namely,
butions[3,4]. An analysis of a very large data base whichinhomogeneous spectroscopic line shapes of impurity mol-
comprised all stock transactions in three major U.S. stoclecules in solids. It will be shown in the following that a

markets during a two-year period yielded an inverse-powermiCrOSCOpiC statistical theory of the line shapes can be used
law distribution with an exponent close to3 [5]. These to describe the financial and turbulent-flow data as well, and

distributions are mainly valid for short-term price fluctua- that the similarities between the three phenomena have a
tions with time intervals of some minutes. Similar histo- very fundamental statistical origin. For the case of the finan-
grams of price changes were also obtained from the numerkial data, the distribution of price fluctuations is obtained as
cal study of a prototype model of a self-organized stockthe functional of a memory function, according to which the
market, although in this case they exhibited a sharp tip at th#fluence of new information on the decisions of the traders
center[6]. The influence of interactions between the traderglecreases with time. All observed distributions of real mar-
on non-Gaussian shapes of price distributions was investket data can be reproduced with different forms of the
gated by several autho{§_8]_ A different approach was memory function. Algebraic functions, for example, yleld
based on the Langevin equatif@. the analytical result of truncated \og profiles. The paper is
Recently it was found that the short-term price fluctua-organized as follows. Section Il contains a brief review of
tions (from 10 min up to two daysin currency exchange the spectroscopic line shape theory. In Sec. Il the theory is
between U.S.$ and German marks show a remarkably simfransformed to describe financial data, and in Sec. IV the
lar behavior as velocity differences in turbulent flofd<]. resulting distributions for some specific memory functions
In both fields, the distributions change their shapes in a chai@re discussed. The scaling behavior of these distributions is
acteristic manner between very short time differen@s-  €xamined in Sec. V. Finally, the conclusions are given in
rency exchangeor spatial distance@urbulence and longer  Sec. VI.
periods: The wings become less and less pronounced, and
finally Gaussian profiles are approached. The histograms
could be well reproduced with superpositions of Gaussians
whose variances obey a log-normal distribution. The conver-
gence toward a Gaussian shape corresponds to a decrease ofNVe consider a transparent solid matrix containing an en-
semble of dye molecules at low concentration such that in-
teractions between the dye molecules can be neglected and
*Electronic address: lothar.kador@uni-bayreuth.de only the coupling to the surrounding matrix units plays a

Il. MARKOFF-STONEHAM THEORY OF
INHOMOGENEOUS SPECTRAL LINE SHAPES
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role. The dopant molecules are assumed to have an isolated R
optical absorption(or emission line whose homogeneous J(X):QJV dRg(R)(1—e ""(RX), (6)
linewidth is negligibly narrow at low temperatures. In any N

real solid there are imperfections such as point defects andhere p=N/V is the number density of the matrix mol-
dislocations, so that the dye molecules are located in envisgyles, Details of the calculation can be found in Refs.
ronments which differ from molecule to molecule to some(14 19|, The distribution of absorption frequencies is given
extent. We are interested in the resulting inhomogeneous dl:B—y the negative exponential of a characteristic functiox)

tribution of the molecular transition frequencies. A compre-\yhich is a functional of the dye-matrix interaction potential
hensive review article on inhomogeneous-broadening effects

. ) o 7(R).
V,\\/Ilsz%l;fbl[llsg]ed by Stonehgi]; the basic ideas date back to In order to evaluate Eqg5) and (6), it is necessary to

According to the Markoff-Stoneham theory, the inhomo- SPecify the functiongi(R) and »(R). For the two-molecule
geneous line shagee., the distribution of molecular absorp- distribution function we use the simple step form

tion frequenciescan be expressed by the ansatz . 1 forR=R, ,
1 9(R)= 0 forR<Rq, 0
I(V):_N def dRNP(Rl, ""RN)
Vi m V) which states that matrix units can be found anywhere outside
% a spherical cavity of radiuR, around a dye molecule but not
X8| v—, ;(Rn)> ) (1)  Within this cavity. For the interaction potential, we insert the
n=1 dipole-dipole form

v is the shift of the absorption frequency with respect to the ~ |3
value when the molecule is in vacuum, and the function v(R)=—Acost| = ®

V(R,) describes the interaction with a matrix molecule at _ . .
position R, when the dopant is located at the coordinatewith 6 being the polar angle of the coordinate frame, and the
origin. The contributions of the matrix units to the line shift constantA depending on the dipole moments of the solute

are assumed to be additie(R;, ... Ry) is the combined and the solvent moleculg19,20. In weakly polar organic
probability of finding matrix molecula at positionR,, for systems, electrostatic interactions are usually not the main
n=1,... N. Itis normalized as origin of the solvent shift of dopant molecules; instead, the

dispersive forces yield the main contributifil]. Neverthe-
N less, the dipole-dipole interaction plays an important role in a
dRy--- f(v)dRNP(Rl’ Ry =VE 2 special kind of inhomogeneous broadening, namely, spectral
diffusion [22,23 of hole-burning[24] spectra in glasses or

with N being the total number of constituents of the solid Polymers. Spectral diffusion consists in an increasing spread-

V)

sample of volumeV. 1 () is then normalized to unity, ing of an ensemble of originally degenerate molecular ab-
sorption lines with time; it is due to the coupling of the dye
+oo molecules to the tunneling systent$LS’s) of the glass
f_m I(v)dv=1. (3 [25,26. Hence in this case the parametein Eq. (6) is not
the density of the matrix molecules but the density of the
SinceP(Ry, ... Ry) is a very complicated function which TLS’S which is much lowef20]. This has important conse-
is usually not known, it is often factorized indd equal two- ~ guences for the line shapg¢v), as will be discussed below.
particle solute-solvent distribution functions: After inserting Eqs(7) and (8) into Eq. (6), the angular

part of theR integration can be carried out analytically. The

N expression for the characteristic function then reads
P(Ry, .. Rw =11 g(Ry. @
n=1 41 Alx] sinu\du
J<x>=—FA|x|f 1-—| =, )
This simplification is based on the assumption that the posi- 3 0 u ju

tions of the matrix molecules are statistically independent, 3 o .

which means that the nonzero volume of the molecules i¥ith F=@R:. The remainingu integral must be evaluated
neglected. The inder can then be omitted. It is possible to nNumerically. Equatiort9) together with Eq(5) describes the
introduce correction terms to avoid this probldas—1g,  shape of the inhomogeneous line profi(e’) for the case of
but since we want to summarize only the basic ideas of thélipole-dipole interaction. The important parameter which de-
line shape theory we will not use them here. With approxi-termines the shape I, whereas the interaction strength

mation(4), the expression for the inhomogeneous line profileinfluences the scaling of the frequency axis. Fer, only
(1) can be cast in the form a narrow region aroung=0 contributes significantly to the

Fourier integral in Eq(5). Since the Taylor expansion of Eq.

1 (+= ) (9) yields, for the lowest-order term,
I(V):Ej dx e ), (5)

) 2
lim J(x)= —F(Ax)?, (10)
with X—0 9
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lished by Zumofen and Klafter for the spectral-diffusion

(@) (b) propagator of single molecules in a sof@i7].
Experimental hole-burning data show that the spectral-
80009%%0 O O O diffusion kernel is nearly always of Lorentzian shape
O OO R [20,23. Clear deviations from this shape were observed only
O O &0 O @ in very few case$28,29. Hence, it can be concluded that the
OQ OO O TLS density in a glass at low temperatures is much smaller
O O \-/OO O10 O than the reciprocal volume of typical organic dye molecules
0e3%)%) o0 00O O [20] and that the above approximation of neglecting correla-
O OOOO OO O O tions between the TLS'EEq. (4)] is justified.

IIl. APPLICATION TO FINANCIAL MARKETS

FIG. 1. Schematic representation of the two limiting cases thata 1 Ne basic ideas of the Markoff-Stoneham theory of inho-

dye molecule(central squarein a solid is surrounded by closely Mogeneous spectral line shapes can be applied to distribu-

packed(part(a)] or dilute[part (b)] perturbers which determine the tions of price changes in financial markets. Here we must
solvent shift of its absorption line. No perturbers can be locatedind @ model to describe the impact on the traders to change

within a sphere of radiuR, around the dye molecule. the bid and ask prices. This influence can certainly not be a
function of spatial coordinates, but will instead depend on

the resulting line shapk(v) is Gaussian in this case. In the the time which has elapsed since new information on the

opposite limitF—0, on the other hand, the Fourier integral market has become available. Hence we are interested in a

is largely determined by the asymptotic behaviod@f) for ~ memory function or temporal impact functi@f(t—t’) de-

|x| =0 which reads scribing the influence of a piece of information which has
become available at timg on the decision of a trader to

) T propose or accept a price change at a later tia¢’. The

lim J(x)= ?FA|X|- (1) prefactora denotes the magnitude of the influence for fixed

IX|—ee time delay; it will depend on the type of information and

L ' . . will, therefore, itself be subject to a distribution. Also the

The corresponding line profilg v) is then of Lorentziarfor time functionf(t—t') will probably depend on the informa-

Cauchy shape. For intermediate values 6f I(v) can be . ) !

characterized as a Lorentzian profile with cutoff wings, ast'.On a_nq the persona_thty of the trader; however, we make_ the

was discussed in Ref20]. S|mpllfy|ng assumption that one general effective function
Figure 1 contains a schematic representation of the physfc—(t_.t ) can k_)e L.jsed FO desc_:rlbe the _market. Conseguences

cal situations corresponding to the two limiting casegFof qf this simplification will be .dlscuss.ed in Sec;VI. The func-

>1 [part(a)] andF<1 [part (b)]. In the first case, a large, tionaf(t—t’) replaces the interaction potentie{R) in the

bulky dye molecule is surrounded by much smaller matrixspectroscoplc problem. The distribution of price changes can

units so that there are many interaction partners already ifen be written as

the first few solvent shells. Hence the central limit theorem

applies and the inhomogeneous line shape is Gaussian, irrep, ) if”dal ! dtl- .- f+mdath

spective of the form of the interaction potentiglR). This TN = t=T —a t=T

situation is usually(approximately given for regular inho-

mogeneous absorption profiles. It also holds true for the

Brownian motion of small dust particles in a liquid due to

collisions with the(even smallermolecules of the liquid. If

the perturbers are very dilute, on the other hand, there are

only a few nearest neighbors which yield the predominan

contributions to the line shift so that the wings of the inho-

mogeneous profile decay much more slowly as compared

a normal distribution. The truncation of the wings which is

obtained for any nonzero value 6f=QR§ has the conse-

guence that all moments of the distribution are finite, as N

should be the case for physical systems. n(agty; .. cant=11 g*(an.t)), (14
The Lorentz distribution is a special case of the more n=1

general Ley distribution which corresponds to

2

N
xdtyn(ag,ty; ... ;aN,tﬁ,)é(s— > anf(t—t,’]))
n=1

(13

ch. Eqg. (1)], whereT is a very long period of time. In the
tfollowing we will consider the limitT—c. The “multi-

Bvent” distribution n(ag,ty; ... ;ay.ty) is again approxi-
mated by the product dfl equal “one-event” distributions,

which denote the probability that a piece of information hav-
lim J(x)=|x|%, (12) ing an impact of magnitude, becomes available at tim¢.
x| o0 With these assumptions we obtain the following expression
for the distribution of price changes during an elementary
with 0<a<2 [cf. Eq.(11)] and is obtained when the inter- time stepAt,:
action potentialv(R) varies asR™%. Also a general [ey .
profile_ would be truncated in its w.ings due to the quadratic Po(S) = if dx dS*e 1o, (15)
variation of J(x) aroundx=0. A similar model was pub- 2 ) -
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with

t +oo
0= | av[ “dagar)
X{1l—exd —iaf(t—t")x]}. (16)

e=Ilim{_,. N/T is now the average temporal density of new
information. We do not discriminate between different types
of information. News coming from the market itself is in-
cluded as well as news of other origins such as, for example,
the collapse of a large company or political changes in a
country. Also, possible temporal variations of the informa-
tion density (for instance with periods of one day or one finding in financial markets. A trader makes a price decision at time
week are neglected. . X : ) . )
. L . .t (thick bap, based upon information which was received earlier at
The price change of a special item during a longer time

. - . statistical timeg’ (thin solid lineg. The decaying curves indicate
interval AT is the sum of the individual elementary changes,, . memory functiorf (t—t') which describes the relative impact

in the intervalsAt,. Under the assumption that the changesof a piece of information that depends on the time differehce

from one stepAt, to the next are statistically independent, s {_ At_ is the latest moment at which information must be
the distributionP(s) during AT is given by repeated convo- optained in order to contribute to the price decision. The distribu-

lutions of py(s) with itself [30]. Applying the convolution  tion of the impact strengta [Eq. (19)] has been omitted for clarity.
theorem leads to the result

7
/4

t-Mt, t ot

FIG. 2. Schematic representation of the proposed model of price

After inserting Egs.(19) and (20) into Eq. (18), the a

1 [+ i - isti
_ - sxa—J(%) integral can be solved analytically. The characteristic func-
P(s) 27 ) —w dx e™e ’ 17 tion J(x) then reads
1 AT t—Atg
with Re[J(x)]=EQJ :1—cos{bxf(t—t’)]
AT [t e o
J(X)=—ef dt’f dag*(at’) 1
Ato™ e J oo Xexp{—iazxzfz(t—t')ndt’, (21)
X{1l—exd —iaf(t—t")x]}. (18
AT thtc
Equations(17) and (18) describe the distribution of price Im[J(x)]=EQJ simbxf(t—t')]
0 —

changes for an ensemble of independently acting traders,
when also successive changes are statistically independent of 1
each other. Both assumptions are approximations. In particu- X ex;{ - —azxzfz(t—t’)}dt’. (22)
lar the temporal independence is at odds with the presence of 2
a memory functiorf(t—t") in the system. The consequences
of these approximations are discussed in Sec. VI.

In order to evaluate the integrals in E(L8), we must

Equations(17), (21), and (22) are the general result of the
theory. According to these equations, the distributi®(s)

specify the functiongg* (a,t’) and f(t—t'). For g*(a,t’) of price changes is a functional of the memory functigh

we choose a Gaussian distributionaoénd a step functionin  _t')- In Sec. IV,P(s) will be evaluated for several forms of
t! the memory function. Since the drift in high-frequency finan-

cial data is much smaller than the statistical fluctuat{@,
(a—b)? we will always setb=0 so that IfiJ(x)]=0 andP(s) is
_ symmetrical. The calculation fdy# 0 would be straightfor-

1
*(a,t’)= ex t—t’), (19
@t V2ma? ;{ 207 ]g( 19 ward, however.

with IV. SPECIFIC FORMS OF THE MEMORY FUNCTION
1 fort’'st—At, A. Exponential function
g(t—t")= , (20 . .
0 fort’'>t—At,. As the first example we consider the case of an exponen-

tial impact function,
The shape oP(s) does not depend very sensitively on the .
form of g* (a,t"), however. The basic ideas of the model are f(t—t') =exp( _ -t ) 23)
sketched in Fig. 2. The decision of a trader for a price change T )
at timet (thick bay is influenced by information obtained at
earlier timest’ <t with the thin curves indicating its relative which means that the whole market has a characteristic
impact at timet. t— At is the latest moment at which a new memory timer. With Eq. (23) andb=0, Eg. (21) can be
piece of information can contribute to the price change. transformed to
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FIG. 3. Distribution of price changes for an exponential memory ~ FIG. 4. Same as Fig. 3, for a stretched-exponential memory
function and different values of the paramekein a semilogarith- ~ function with exponeng=0.2.
mic representation.

t—t’
) f(t—t’)zex;{—(—
J(x):Ffel '(1—efu2)£ (24) T

0 u

B

: (25

with 0<B<1. This yields for the characteristic function

Glx| 2 | [Ate
J(x)zFf0 (1—e™) (T 0

Eo AT G o At
_A—tOQT, —ﬁex —T. (26)

Here the parameters are

with £ GIx|]A"1du
+ln—— —

Figure 3 shows the distributidR(s) for different values of

in a semilogarithmic representation. For each curve the co- AT o7 o At.\ A
ordinate axes were rescaled with the respective half-width F= AL B G=—ex;{—<—c)
[full width at half maximum(FWHM)]; hence,P* (s*) are to B V2 T

normalized dimensionless distributions with a FWHM of l'W il onl ider the lmitAt.<r | hich the first
As was discussed in Sec. Il for the spectroscopic problemt, e wi tr?ny con5|ber K ? Imit hc TTIE whic € d|.r3
the shape ofP(s) depends solely off, whereasG deter- erm in the square brackets vanishes. The corresponding pro-

mines the scaling of the axis. Therefore, the normalized 11€S Of P(S) are shown in Fig. 4 fo3=0.2. Since there is
form P* (s*) ist not influenced bys. For F—0 the shape is now a broad distribution of time constants in the system, the

distinctly non-Gaussian, but it tends toward Gaussiarf as gzlrg;?;t?é'kfuE‘/easb?:gtvz\lfgsf%;ﬁ&r?n;alIr\gilil;ﬁ:igrhg 01
increases, corresponding to the quadratic behavia¥(®jy PP y .

. o ...~ . and 0.3 are very similar to the distributions of foreign-
aroundx=0. In the non-Gaussian limit, the distribution is : .
characterized by a shar@like spike ats=0. WhenF be- (ngf r[‘%] e)léti:hag)geHcélitcae aas sptlrjegléﬁ:e?j(?egyoﬁggzglgimtaew?ﬁor
comes sufficiently large so that the spike disappeB(s) : 19 Y. P Y

. R . _function with an exponent around 0.2 seems to yield an ap-
quickly approaches a normal distribution. A central spike . L X ; .
was observed in a numerical prototype model of stock eX_proprlate description for this type of financial market. A

change marketf8], but it does not occur in real market data simple mathematical description of the asymptotic behavior

[3,5,10. Hence we can conclude that real stock and foreignpf P(s) does not seem to be possible in this caseontrast

currency exchange markets are not characterized by one c tP— lthe case of an algebraic memory function to be discussed
tain memory time—a result which appears reasonable, give elow.
the diversity of the involved people and of the information
determining their behavior.

Mathematically, the spike is due to the fact that for an  The last example that we consider explicitly fit —t")
exponential memory function only information which be- is an inverse-power-law function
comes available at timg$>t— 7 has a noticeable influence
on the decisions of the traders. If the information dengitg T\
so low thatF is much smaller than 1, there is a sizable f(t_t,):(:) : (27)
fraction of the traders who receive no impact for a price

change at all during the memory time Consequently, a jth exponenty>0. The characteristic function then reads
large number of price changes of amount zero will occur.

C. Algebraic function

o, du
B. Stretched-exponential function J(X)ZF(G|X|)1/’/J (1—e"") =75, (28)
0 u-r

Now we use a stretched-exponenti@r Kohlrausch-
Williams-Wattg memory function of the form with the parameters
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FIG. 5. Same as Fig. 3, for an algebraic memory function with

exponenty=1.0. FIG. 6. Distribution of price changes for an algebraic memory

function with exponenty=0.7 andF=0.02 in a semilogarithmic

representation.
Y

F= At , G=—7 7(b) has a slope of-2.77; it yields a good fit to the calcu-

o 7 V2 lated distribution over at least 1.5 orders of magnitude in the

_ _ ) ) price changes.

Whereas in the first two cases the cutoff tlme; IS not Very- ) At present there is no “microscopic” argument for a spe-
important and can be set equal to zero, it plays a decisivgific choice of the memory functiofstretched exponential or
role in the algebraic model due to the divergencetfert.  azigebraig. These two functions were empirically found to
Both F andG depend critically omt.. As discussed in Sec. yjeld the best description for different types of financial mar-
II, the upper integration bound in E(8) can be shifted to  kets. Possible interpretatiorie.g., in the framework of hu-

AT pAt, o T
At

infinity for large [x|, so that man psychologyrequire further studies.
lim J(x) o |x| 7. (29) Tr
= 107"
In the opposite limitx—0, the function depends quadrati- —~ 1072k
cally onx. Hence fory>0.5 the distributiorP(s) is again a *n 3 F
Lévy profile with cutoff wings. Its index is now given by Pt 1077k
1/y. Truncated Ley distributions are not stable with respect o 104
to convolution, but tend toward Gaussid4,32. This is in 3
contrast to true [ey distributions without cutoff(“Le vy 1075
stable distributions). Typical curves ofP(s) are plotted in 3
Fig. 5 for the casey=1.0. The agreement with the foreign- 107°
currency exchange data of REf0] is fair but is not as good
as for the stretched-exponential memory function. s*
The short-term price changes of the New York Stock Ex-
changd 3], on the other hand, are very well represented by a e
truncated Ley distribution. Figure 6 shows the distribution 1 £
for y=0.7 andF =0.02; cf. Fig. 2 of Ref[3]. y=0.7 corre- 107k
sponds to the [wy index 1/=1.40+0.05 within the error _of
margins which was obtained from a fit to the central part of 10 3
the distribution of the stock exchange d&8i. The narrow L 103k
central part, the shoulders in the intermediate region, and *D_ 10_41
also the fast decay for lards| are well reproduced by the 3
model, although the shoulders are somewhat less pronounced 107° 2
than in the market data. 10-6k

For a very large data base of stock price fluctuations e
which was compiled from three major U.S. stock markets, an
inverse-power-law distribution with an exponent close to *
— 3 was recently founfl5]. The statistical model in conjunc-

tion with an algebraic memory function is also able to repro- G, 7. Distribution of price changes for an algebraic memory
duce such a behavior, as Fig. 7 shows. The curves corrggnction with exponenty=0.61 andF=0.0003 in semilogarithmic
spond toy=0.61 andF=0.0003; they represent the same [part (a)] and double-logarithmidpart (b)] representations. The
distribution in a semilogarithmic plgpart(a)] and a double-  dashed straight line itb) indicates a power-law behavior with ex-
logarithmic plot[part (b)]. The dashed straight line in Fig. ponent—2.77.
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FIG. 8. Characteristic functiod(Gx) (divided by F) for the FIG. 9. Probability of return to the origiRP(s=0) (multiplied
three cases of exponent{alart(a)], stretched-exponentigbart (b); by G) as a function of the dimensionless paramétdor the three
B=0.2], and algebrai¢part (c); y=1.0] memory functions. cases of exponentidpart (a)], stretched-exponentigpart (b); 8

) o ] =0.2], and algebrai¢part(c); y=1.0] memory functions. The data

At the end of this section it is illustrative to compare the points were obtained from Eqé&L7) and(21) for discrete values of
chargcterlstlp functiod(x) for the threg cases of an expo- F. The straight lines represent linear fits to the last three points
nential function, a stretched-exponential function, and an aland—in(b) and (c)—the first three points in each part; their slopes
gebraic memory functiofi(t—t"). This is done in Fig. 8. For are indicated.
the latter two cases the same parameters as above have been
use_d, i.e.,5=0.2 (stretched exponentjaiind y=1.0 (alge- tuations often shows clear non-Gaussian scaling as a func-
braig). In each paril/F has been plotted vers@x. J, F, and . . . . S

. : " -, tion of the time intervalAT, i.e., thatP(0)o(AT) “ with

Gx are dimensionless quantities. The general quadratic be,2>o 5[3,12,13. The scaling behavior of the above theoret-
havior aroundx=0 is very visible, which leads to the trun- ical distributions is depicted in Fig. 9, wheR{0) has been

cation(i.e., Gaussian decapf P(s) at large|s| values. plotted versug- in a double-logarithmic fashion. Parta),
(b), and (c) again represent the three cases of exponential,
V. SCALING BEHAVIOR stretched-exponentidivith 8=0.2), and algebrai¢with y

Mantegna and Stanley pointed out that the maximun¥ 1.0) memory functions. The dimensionless parameter
P(0) of the probability distribution of short-term price fluc- proportional to the time intervahT (see above P(0) has
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been multiplied byG, so that the data are independent of theis immanent to human psychology or whether different types
absolute volatility of the market. of information (and different types of peoplare connected

Each part of Fig. 9 contains linear-regression lines for thewith very different time constants so that the superposition of
data points with the three largest and—except for f@rt-  exponential functions leads to the slow decay. The latter case
three smallesk values. In the limit of largé~, the maximum  would be analogous, for instance, to the algebraic decay of
of the distribution shows Gaussian scaling for all memorytransient photocurrents in disordered photoconductors after
functionsf(t—t’), i.e., the slope of the regression lines tendspy|sed optical excitatiofd4]. This question can perhaps be
to —0._5. In the opposite limiE—0, on the other hand, the 54gressed by comparing large sets of financial fltavith
behavior depends on the memory function. For the exponensmajier subsets which belong to shorter time intervals or
tial function, the slope becomes very large due 10 th&grain pranches of a stock market. Such a “site-selective”
6-functionlike spike around=0 (@). In this case it does not ,na\vsis of financial data might be similarly successful as
make sense to investigate the scaling behavior and, corgye_gelective spectroscopic meth¢@s]. The latter yield in-
spondingly, a linear fit has not been performed. With theomation about dye-matrix interactions which is otherwise
stretched-exponential functiorP(0) shows approximate ohscyred by the large inhomogeneous ensemble of dopant
scaling for F values between 810 * and 3x10°3, al- [ olecules in a solid.
though the data points are not perfectly located on the regres- The ahove statistical model is related to continuous-time
sion line (b). In the algebraic case, however, the scaling iSangom walk theories which are used to describe transport
perfect forF—0 (c), as can also be shown analytical8].  phenomena in disordered and in nonlinear systems, and
For a Levy distribution with index 14 the regression line has \ynich also yield probability distributions with long tails
a slope of—y. _ _ [35-37. Similar ideas can be applied to model velocity dis-

It should be emphasized that the calculations presented ifipytions in turbulent flow$38,39. In this case the perturb-
this paper are solely based on a statistical ensemble mod@s that yield additive contributions to the velocity compo-
The temporal evolution of specific prices is not consideredpent of a volume element along a given direction are the
Hence it is not possible to calculate the autocorrelation of thgqtices in the liquid or gas which are assumed to be statis-
price changes or of their absolute values. The price chang§g|ly independent. If the velocity in an individual vortex
in real markets were found to have very short correlationjecreases algebraically from the core toward the periphery,
times on the order of a few minutes, but their absolute valuegé\,y laws are obtained. Truncated \yelaws result if the
(or squarepsexhibit long correlations with slow algebraic de- \ortex cores are smooth rather than having a singularity
cay[30,33. This is in accordance with the slowly decaying [38 39. The similarity of the velocity distributions with
memory functions which were discussed in the context of thgngge of price changes in foreign-currency exchafi@
present theory. suggests that the radial velocity dependence in turbulent vor-
tices may be better described by stretched-exponential
laws—perhaps due to the presence of vortices of different
sizes.

It was shown that a microscopic statistical theory, which  Very recently, distributions of flow velocities and flow
has long been used in optical spectroscopy to model inhomaorelocity gradients of ocean currents were calculated from
geneous spectral line shapes, can be applied to describe digatellite data[40]. In this example of large-scale, two-
tributions of price changes in financial markets. In thisdimensional turbulence the distributions were either Gauss-
model, the behavior of a set of independently acting trader&n or they had similar leptokurtic shapes as the distributions
is analyzed in terms of information which has become availthat were obtained in the laboratory experiment with water
able in the past, and whose impact on current decisions iflowing through a nozzIg10]. Leptokurtic distributions were
described by a memory function of the elapsed time. Thdound in particular in those parts of the oceans in which the
distribution of price changes is obtained as a functional ofeddy activity is high{40].
the memory function. For a variety of memory functions the There is an important quantitative difference between the
distributions are distinctly non-Gaussian with long tdils.,  price changes in financial markets and the theoretical calcu-
leptokurtig. This results from the fact that a comparatively lations, which was not discussed so far. In the real market
small number of most recent pieces of information have thelata of Ref.[10], the transition from the strongest non-
strongest impact on the price decisions so that the centr&aussian to almost Gaussian shape stretches over more than
limit theorem is not applicable. Far out in the wings, how-2.5 orders of magnitude in the time differenad (from
ever, the distributions do exhibit a Gaussian-like decay andAT=640 s to beyond T=163 840 s). According to the the-
hence, all their moments and in particular the variance areretical profiles of Fig. 4, however, this change should not
finite. For the special case of algebraic memory functionscover more than about 1.5 orders of magnitude; the distribu-
f(t—t")oc(t—t") "7 with exponenty>0.5, truncated ey  tions corresponding to the data of R¢LO] are approxi-
distributions are obtained. Recently published data of reafmately those betweefi=0.01 and 0.3. The slow change can
stock[3,5,13 and foreign-currency exchange markgi®¥] be ascribed to “coherence” or “herding effects[7,8]
can be reproduced very well with algebraic or stretchedwhich are not taken into account in the model: In reality, the
exponential memory functions. traders in financial markets do not act completely indepen-

The finding that there is no characteristic time scale in thedently of each other, and their actions during successive time
judgement of information by the traders corresponds to theteps will also be correlated to a certain degi@@respond-
often observed scaling behavior of financial d&42,13. It ing to the presence of a memory functioSome events or
is not clear whether an algebraic or stretched-exponential lawieces of information give rise to similar reactions of a large

VI. SUMMARY AND CONCLUSIONS
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number of traders, thereby stretching the time span duringistribution whose width increases as the square root of time

which the shape of the distribution changes. This seems to He1]. In this way he found a description of Brownian motion

true in particular for very short time intervals. For fluctua- five years before Einstein published his famous paper on

tions of stock prices ranging from 1 to 1000 min, no signifi- particle diffusion[42]. Starting in the 1960s, it was empiri-

cant change of the shape of the distributions was observegally discovered that actual market data do not obey Gauss-

although they can be well described by truncatesyLeis-  jan statistics, but usually follow leptokurtic distributions with

tributions [3] It should be emphasized that in the presentrnuch |0nger ta”il,z:l The present work Suggests that fi-

mOde| the |ept0kurtiC diStributionS are not intrinsica”y due to nancial markets probab'y have a closer ana'ogy with Spectra|

coherence effects but coherence effects are only assumed d@usion of dye molecules in disordered solids than with

be responsible for the slow transition to Gaussians. In thearticle diffusion.

case of the turbulent-flow data, the transition from non-

Gaussian to Gaussian shape occurs between 818 138;

(in the units of Ref[10]); i.e., it really covers about 1.5 ACKNOWLEDGMENTS
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