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Functional integration approach to hysteresis
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A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a
generating functiog(x) is associated with an individual system, and a hysteresis evolution operator is defined
by an appropriate envelope construction appliedjt®), inspired by the overdamped dynamics of systems
evolving in multistable free-energy landscapes. Second, the average hysteresis response of an ensemble of such
systems is expressed as a functional integral over the $padall admissible generating functions, under the
assumption that an appropriate measureas been introduced i8. The consequences of the formulation are
analyzed in detail in the case where the meaguigenerated by a continuous, Markovian stochastic process.
The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing
problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant
(homogeneoysthe ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis,
and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion
parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the
interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder and the interpretation
of critical state models of superconducting hysterd$4063-651X99)06308-4

PACS numbeps): 02.50.Ga, 75.60.Ej, 05.40a

[. INTRODUCTION applying to increasing and decreasidgrespectively. From
the physical viewpoint, this construction amounts to assum-
The study of hysteresis has been a challenge to physicisigg that the system, once made unstable by the action of the
and mathematicians for a long time. In physics, hysteresigxternal field, jumps to the nearest available energy mini-
brings all the conceptual difficulties of out-of-equilibrium mum, which means that one excludes the presence of inertial
thermodynamicg1-5], first of all the fact that we do not effects, which could aid the system to reach more distant
know the general principles controlling the balance betweeminima.
stored and dissipated energy in hysteretic transformations The method discussed in Sec. Il translates this picture into
[6,7]. In mathematics, on the other hand, the central issue i8 well-defined mathematical formulation, based on the fol-
the formulation of sufficiently general mathematical descrip-lowing two steps.
tions grasping the essence of hysteresis beyond the limited (i) Given the time-dependent inpbt and the continuous
interest ofad hocmodels[8-11]. functiong(x), analogous to the free-energy gradieft 9X
In this paper, we introduce and discuss a formulation of
hysteresis of some generality, inspired by the following situ-
ation, often encountered in physical systems. We know that
in physics, hysteresis is the consequence of the existence of
multiple metastable states in the system free enér()y) F(X)
(the temperature dependence is tacitly undergtoadd of
the fact that the system may be trapped in individual meta-
stable states for long times. Let us consider the simple case /_/\
where the state variabl¥ is a scalar quantity and the rel-
evant free energy in the presence of the external fitld
G(X;H)=F(X)—HX. The metastable states available to the
system are represented B/minima with respect toX, for
which 9G/9X=0, 9°G/dX?>>0. WhenH is changed over
time, the number and the properties of these minima are B
modified by the variation of the term-HX. The conse- /
guence is that previously stable states are made unstable by ‘
the field action and the system moves to other metastable
states through a sequence of Barkhausen jumps. Because the
condition dG/dX=0 is equivalent toH=dF/JX, one can
analyze the problem by using the field representation shown F|G. 1. Free energy(X) with multiple minima and corre-
in Fig. 1. The response of the system, expressed in terms @ponding gradientF/9X. The dashed line represents the hysteretic
H(X), is obtained by traversing the upper and lower envepehavior of H(X) obtained from the stability conditiorH
lopes todF/dX shown in the figure, the former and the latter = gF/oX.
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of Fig. 1, one associates with them a certain evolution h
operator 7;4)(h;), which expresses in mathematical terms h
the envelope construction of Fig.(Sec. Il A). The function -
g will be called thegenerating functionof 74(h;). The
evolution operator acts on a given initial stadg associ- [g](x
ated with the initial inputh, and transforms it into the final X g(hix;) B
states;= 7 41(hy) So- h AN
(i) Let G represent the functional space of all admissible ©
generating functions. Then one constructs a general hyster-
esis operator as the parallel connection of the collection of | |/occc..ld
operators/;4;(h,) obtained by varying overG, with appro- h
priate weights described by some measuren G. Hence,
one arrives at the following formulation, in which the overall X, X, Xy

stateS,; describing the collection is expressed in terms of the
functional integral, FIG. 2. Generating functiog(x) with illustration of the enve-

lope construction (broken ling associated with the function
hrg1(X;Xg) and its inversexq;(h;xo).

S fG,]Eg](ht)SO du(9). @ Il. MATHEMATICAL DESCRIPTION OF THE MODEL

In this section, we will discuss in more detail the various
wheres, may depend itself og (Sec. 11 B. ingredients defining the structure of the model: input histo-

The generality of the formulation comes from the generakies, generating functions, admissible states, input-output re-
nature of the spac& as well as from general ways of as- |ationships, stability properties, and finally the functional in-
signing a measure on this space. We will show that severakgration overG.
known mathematical descriptions of hysteresis, like the Prei-
sach model[9,12], are particular cases of E@l), and we o
will discuss some new connections that emerge from the A. Hysteresis in individual systems
broader perspective offered by the functional integral formu- et us consider an individual system characterized by a
lation. A case of particular interest to physics is when®&%.  particular functiorg(x). The system is acted on by the scalar
is interpreted as the average hysteresis response of a statigtine-dependent input, and generates the scalar outgutn
cal ensemble of independent systems, each evolving in & way dependent on the functigrix).
different free-energy landscape. The sp&acts then as a (a) Input histories We shall consider input historidgt),
probability space and the measiedescribes the probabil- =0, such that, at any timé, <h(t)<h,,, whereh, andhy,
ity that an individual system of the ensemble is characterizedre fixed given fields, delimiting the input range of interest.
by a particular generating functiane G. In this case, there They will be termediower and upper saturation fieldre-
are situations that can be analytically investigated to a congpectively. The functiorn(t) will be assumed to be piece-
siderable degree of detail, first of all the one where the gengyise monotone.
erating functiongy(x) are interpreted as sample functions of  (b) Generating functionsLet us consider a given output
a continuous Markovian stochastic procé€Ssc. Il). In par- interval[x, ,x,]. The functiong(x) is an admissiblgener-

ticular, we will show that homogeneous processes give risgting functionassociated with the intervak, ,x,] if it sat-
to Preisach-type hysteresis, and we will derive explicit anajsfies the following propertietsee Fig. 2

lytical expressions for the Preisach distribution as a function
of the parameters governing the statistics of the Markoviarii) gis continuous i x, ,xy];

process.
The results obtained in this paper can be important in _ L
applications to physics, where randomness due to structur&f) 9(x0) =hi,9(xy)=hy; @

disorder often plays a key role in the appearance of hyster-

esis effgcts. The equivalen_ce_ beMeen Markovian disorde(riii) h,<g(x)<h, for anyx in the rangex, <x<xy, .

and Preisach-type hysteresis implies that the average system

response under small fields is parabolic, a result well known

in magnetism under the name of Rayleigh 1512]. In su- (c) States Any ordered input-output pag=(h,x) is an
perconducting hysteres[d3], the same equivalence might admissible state for the system. We will be mainly interested
be of help in the interpretation of critical state modelsin equilibrium states defined as the states of the forsn
[14,15 in terms of the statistics of the pinning sources acting= (9(X),x) with X, <x=<Xy . In other words, an equilibrium
on Abrikosov vortices, given the equivalence between thisstate is represented by a point on the generating function. All
class of models and the Preisach mo{i¢/16,17. Con-  other states will be generically termgdnp statesGiven the
versely, a limitation of our formulation is the fact that it is generating functiorg(x), an equilibrium state is fully de-
based on independent single-degree-of-freedom subsystenssribed by its outpuk. In this sense, we will often identify
and is thus expected to yield an incomplete description ofin equilibrium state(h=g(x),x) simply by its x value.
hysteresis effects arising in systems with more complex inWhen the inputh is given, the possible equilibrium states
ternal structure$7,18,19. under that input are obtained by solving the equation
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St= (e, X)) = T1g)(h) T (g1 (hy) =T (h1)Sp. 6)
In particular, the outpuk; can be expressed in the form
Xt:X[g] (ht;xn(hnl---uhl;xo))u (6)

where x,—the output value at the last reversal point—
depends in general on all past reversal inputs. Note that the
evolution is rate-independent, because the statdepends
only on the current value of the input and on the sequence of
past reversal inputs, regardless of the input rate of change.
A relevant aspect of the evolution described by E.is
L that it exhibitsreturn-point memoryalso called wiping-out
2 ! 1 property [19-21. By this we mean that, given the initial
equilibrium statesy=(hg,Xg) and the input extrema se-
_ _ ) _ quence hg,hi,hy,hy,  with hy;>hg,hg<h,<h;, then
' FIG. 3. Action of evolution operatorqg]_(h) assoc_lated with a Tiq1(N1) Tigy(h2) T (M) So=Trgy(1)so  (identical conclu-
given sequence of input reversals. The initial state is lower saturasjong apply to the casé;<hg, hy>h,>h,). In other
tion s =(h,.x). Reversals take place a&i=7ig())S.  \ords, when the input returns back to the first reversal value
= (1. X(g)(N1X0)), $2=T1g)(N2)$1= (M2, X(q)(h2x4)), @nd so on. h,, the system returns back to the exact same state it occu-
pied when the input first reached the valug and the effect
' Y of the intermediate input extrema is wiped out. To prove the
the states, =(h,,x,) andsy = (hy ,xy) are unique by defi-  gyistence of return-point memory, we begin by remarking
nition. They will be t_ermedower andupper saturation state ¢ return-point memory is a property of any system whose
respectively. We will assume that the state of the systenyne eyolution satisfies the following propertigs9,12: (i)
before any action is made on it is always an equilibriumya avolution is rate-independettii) there exists dpartial
state. . _ _ _ _ordering relation among the states of the systéii); order-
(d) Auxiliary functions Given the generating function g is preserved during the evolution of the system under the
g(x) and the equilibrium state,, let us introduce the func-  5ction of ordered input histories.
tion hyg)(X;xo), defined agsee Fig. 2 Property(i) is the direct consequence of the definition of
the evolution operatof4;(h). For what concerns property

g(x)=h. In general, more than one solution will exist. Only

ming if X <X<Xq (i) there exists a natural ordering relation deriving from the
oy ] [oxol fact that an equilibrium state is identified by its output value.
hig1(X;Xo) if XXX’ 3 . >
[ma>]<g IT Xo=X=Xy In fact, given the equilibrium states;=(h;,x;) and s,
XQ,X

=(h,,X,), we can simply state tha<s, if x;=<X, in the
) o _ . usual sense. Finally, propertyi) is the consequence of the
where the symbols “min” and “max” indicate the mini- theorems of Appendix B, which show that the ordering just
mum and the maximum of(x) in the specified interval.  gefined is preserved by E¢) under the application of or-
Functionh(4; has the character of a nondecreasing envelopgered input histories. Therefore, return-point memory is in-
to g(x), more precisely, of an upper envelope fe¢ X, and  deed a property of Eq5).
a lower envelope fok<x,. The inverse ohq;(X;Xo) will As discussed ifi[9], p. 13|, return-point memory has the
be denoted by q)(h;Xo). The mathematical aspects of the consequence that the final statedefined by Eq(5) is con-
connection betweehq; andx;q) are discussed in AppendiX trolled (assuming, for simplicity, that the system is initially
A. in the lower saturation statdy the alternating sequence of
(e) System evolutiorLet us introduce the following@vo-  dominant extremany 1, N1, Wz, Nm, ... contained in the
lution operator 7)(h), defined in terms of the function fy)| reversal sequench,,h,,....h,. By this we mean that
Xg)(N;Xo): given the equilibrium state,=(No,Xo), With  h  is the global input maximum in the time interv t],
ho=9g(xo), and the input valué, the states obtained by p__ s the global input minimum in the time intervigthy; ,t],

applying the inpuh to s, is given by the expression wherety; is the time at whicthy,; is reached, and so on.
() Stability properties They can be conveniently de-
s=Tq1 (N)so=(h,X g7 (h;Xo)). (4)  scribed by introducing the concepts of strong and weak sta-

bility. Given the equilibrium statesp=(ha,x,) and sg
The evolution of the system is constructed by applying=(hg,Xg), with Xxa<xg, we will say thatx, andxg belong
T1g1(h) many times in sequence, once for each input reverto the same strongly stable interval if ha<hg and
sal, as shown in Fig. 3. More precisely, let us suppose that ak,;(h)sa= 7;4;(h)sg for any inputh. This definition gener-
the initial timet=0 the system is in the equilibrium state ates a partition of the intervék, ,x] into disjoint strongly
so=(hg,Xp) and let us apply the piecewise monotone inputstable subintervals, separated by unstable parts. Conversely,
history h(t). Let us denote by, ,h,,...,h, the sequence of given the equilibrium states,=(ha,Xa) andsg=(hg,Xg),
input values at which the input is reversed in the time interwith x,<xg and hy<hg we will say that the segment
val [0t], and finally leth; be the current input at the tinte  [xa,Xg] is weakly stableif g(xa)=ha, 9(Xg)=hg, and
Then, the stats; of the system at the same time is given by h,<g(x) <hg for anyx in the rangex,<x<Xxg. Notice that
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ensemble to the common inplat and, roughly speaking, we
sum up their responses. The formalism whereby we will
v i carry out this sum in precise mathematical terms is the fol-

/‘i/(:\ / lowing. Let us suppose that the response of each individual

/ system is described by some quantity;, dependent on the

| A / generating functiong. The ensemble value of that same
\\ //‘ D'\ / quantity, sayQ (we will use capital letters to denote en-

N L \ / semble propertigswill be expressed as a functional integral

/ j | / of the form

X Q= fGQ[g] du(g). (7)

L u

FIG. 4. IIIustratiorj of intervals with different kinds of stability. Equation(7) is to be interpreted in the following way. The
é?b‘,"’egr‘g] Sltaslr?s;?atﬁe’ strongly stable,CD, weakly unstable; oy 6| G denotes the functional space of all generating
’ gy : functions satisfying Eq(2) for somex, andxy . In general,
X, andxy will be different for eaclg e G. One introduces a
the interval[x_,xy] is always weakly stable by definition. convenient seta so-calledr algebra of subsetsAC G and a
When the equilibrium states,= (ha,xa) andsg=(hg,Xs)  positive measure defined over that algehrdA)=0. Then
are such thaka<xg andh,>hg, we will call the segment one assumes that there exist elements of the algebra giving
[Xa,xg] weakly unstableif g(xa)=ha, 9(xs)=hg, and rise to values ofy; inside any arbitrarily small neighbor-
ha>g(x)>hg for anyx in the rangex,<x<xg. A weakly  hood of a given valuey=x, and uses the measure of these
unstable interval will contain in general some strongly stablespsets to calculate the Lebesgue integrabygf over G,
subintervals. If it contains none, it will be termetiongly represented by Eq7). To make this loose description math-
unstable The various pOSSibilitieS are shown in Flg 4. Oneematica”y rigorOUS, one should resort to the |anguage and
can verify from Fig. 3 that, given any two subsequent reverthe methods of measure thedig3,24. However, it is not
sal points fic,Xy) and (. 1,Xk+1) associated with a certain  the purpose of this paper to go deeper into these mathemati-
input history, the output intervak, ,x. 1] is always weakly  cal aspects. In the following analysis, it will be sufficient to
stable. In a sense, the evolution operalgfi(h) provides a  assume that Eq7) does have a precise meaning as a func-
mechanism to select the weakly stable portions of the givefjonal integral, and that one knows how to assign the mea-
generating function. This feature will play an important role sure i in specific cases. In Sec. Ill, we will discuss a par-
in the general formulation of Sec. I1B and in the particularticular case where one explicitly constructs the meagure
cases discussed in Sec. IIl. and expresses the result of the functional integration in a
Stability considerations are important, because the evoluclosed analytic form.
tion of the system under varyingis reversible inside each As a first step, let us apply Eq7) to the definition of
strongly stable subinterval, so that its hysteresis propertiesnsemble equilibrium states. The main difference with re-
are essentially governed by the sequence of jumps occurringpect to Sec. Il A is that we can no longer identify an equi-
from one stable subinterval to another. A system initiallyjibrium state by its output value. In fact, given the individual
Occupying a state inside a Weakly unstable interval will nevel’output X, the corresponding inpug(x) may not exist for
be able to come back to this interval if it ever leaves it.certain g functions (if x is outside the function domain
Therefore, only the strongly stable subintervals that do nofx x,]), or may be different from function to function,
belong to any weakly unstable portion[od_ ,x,] control the  which is not compatible with the assumption that the entire
permanent hysteresis properties of the system. Two generainsemble is driven by a common input history. In fact, in
ing functions possessing the same set of weakly unstablgrder to construct a meaningful equilibrium state, we must
subintervals and differing Only in their values inside these(i) Specify the input Va|ué'|0; (||) determine, for each gen-
intervals will give rise to identical hysteresis properties. Con-grating functiong e G, the set of solutions of the equation
siderations of this kind permit one to recognize certain qualiy(x)=h,; (iii) for eachg, select one of these solutions, say
tative aspects of hysteresis independent of the detaity of &4)(ho), according to some rule, and build the state

For example, Preisach-type hysteresis, briefly discussed i‘ﬂg](ho)Z(hof[g](ho)); (iv) construct the ensemble st&g
the next subsection, arises from generating functions coryg

taining two strongly stable intervals separated by a weakly
unstable parf22].
)

80: fGS[g](ho)dM(g): ( hO! feg[g] (hO)le’(g)
B. Hysteresis in system ensembles

Let us now consider an ensemble of systems of the typ&quation(8) shows that a great number of possible equilib-
discussed in the preceding subsection. Each system is iderium states are associated with a given inpgit as a conse-
tified by a particular generating functig{x) whose domain quence of the various possible choicesdgyi(ho). Only the
[x_,xy] will be in general different from system to system. lower and upper saturation states are unique, because the
We wish to investigate the global hysteresis properties thag¢quationsg(x)=h, and g(x)=hy admit just one solution,
we obtain when we subject the individual systems of thex; andxy, for eachg.
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The ensemble evolution is obtained by applying & to h
Egs.(4)—(6), that is,
hU
5= [ Tgmsighodu() L
= ( h, Lx[g](h;é[g](ho))dn(g) , 9
bk
Si= (X0 = | Tig(h) Tig () TSy (o) du(o), h, N
(10 -1 +1

FIG. 5. Typical generating function associated with the Preisach
Xt:f Xig1(he;Xn(n s 015 €g1(ho)))du(g). (1) model (solid line), and corresponding envelope construction
G (dashed line, see also Fig).3rhe dotted lines give examples of
different weakly unstable behaviors giving rise to the same hyster-
Because return-point memory is a property of each indi£sis properties.
vidual system, it will also be a property of the ensemble
evolution. The interest of Eq(13) lies in the fact, discussed in Sec. Il
The formulation summarized by Eq&)—(11) is rather that the probability densitp can be explicitly calcuIaFed in
general and powerful, but it is also quite abstract. It is nothe case where the measyres generated by a continuous
obvious how one could possibly determine the meagure Markovian stochastic process. _
associated with particular cases and carry out the functional We conclude this section by showing, as an example,
integrals. In this connection, a situation of interest is whenvhen Egs(9)—(11) can contain and reproduce other known
one is dealing with a statistical ensemble of independent sydlysteresis models. We will discuss the Preisach model
tems, and one wishes to calculate statistical averages over th&12]. To this end, let us consider the case where the integral
ensemble. In that case, E) translates into mathematical Of Ed.(7) is restricted to the subspaGCG containing the
terms the physical idea th& represents the sum of all the generating functions of the type shown in Fig. 5. The domain
individual contributionsyy;, each weighed by its probabil- [XL,Xy] is equal to[—1, 1] for all functions. Each function
ity du(g) to occur. Accordingly G must be endowed with 1S made up of two strongly stable, vertlca_l branch2s],
the structure of a probability space: the elements the & separatgd by a central, weakly unstable interval. The left
algebra represent the admissible events that may occur franch increases from=h, toh=a atx=x =—1, and the
experiments, the measugesatisfies the postulates of prob- fght one increases froh=b to h=hy atx=xy=1. One
ability, and w(A) represents the probability of the evet ~ Must assume>b if the central part is to be weakly un-
Probability considerations permit one to express [js-  Stable. Then, let us decompose the spagento the equiva-
(11) in the following useful form. Let us consider for sim- lence classes\,, containing all the generating functions
plicity the case where the ensemble is initially in the lowercharacterized by the sanzeandb, and let us express Eq.
saturation state. This eliminates from all equations the com(12) as an integral over those equivalence classes, that is,
plicated dependence on the initial statg,(ho) of the indi-

vidual systems. In particular, E¢L1) can be written as thf f (I Xcg1(he: Xn(Py ... 01 x))de(g) | da db.
a>b\ JA,p

(14

ijx h:x,(h,,...,hy;x))d . 12
e ta1 (e Xa(n 1x0))dp(Q) 12 As discussed at the end of Sec. Il A all generating functions

characterized by the same set of weakly unstable intervals
At the end of the preceding section, we mentioned the facgnd differing only in the values they take inside these inter-
that the input reversal sequenbg,h,,... ), selects a se- vals give rise to identical hysteresis properties. This means
quence of weakly stable portions of the generating functionthat the functionxq; appearing in Eq(14) takes the same
Let us denote byp(x;,h;:h,,....,n;)dx, the probability of values fqr anyg e A ,p, SO it can be taken out of the integral.
having a functiorg e G such thag(u) = h, for someuin the e obtain
interval[ x;,x;+ dx;] and such that there exists a sequence of
x values, Xi,Xs,...X,, for which g(x;)=hy,g(x,) xt:f f yaulhlu(a,b)da db, (15)
:th---ag(Xn):hn and [XL,X]_],[Xl,Xz],...,[anl,xn], a>b
[Xn,X;] are all weakly stable subintervals. Then one can for-

mallv write Ea.(12) in the equivalent form where vy, ] expresses in simplified operator form the de-
ywn a.(12)1 quv pendence okp4; 0n a, b, and input history, wheregs(a,b)

represents the measure of the clasg. It is easy to check

Xt:fm % P(X,he:hn .. hy)dx . (13) through'Figs. 3 and 5 thayab[ht]=t1.'ln ot.her.words,
% vabl ht] is a rectangular-loop operator with switching inputs
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a andb. The hysteresis model is a weighted superposition o

these operators, which means that it is precisely the Preisac h h

model. a .
In the next section, we will show that the Preisach mode

can also emerge in a completely different context, when th

generating functiong(x) are interpreted as sample functions

of a Markovian stochastic process. h

IIl. MEASURES GENERATED .
BY STOCHASTIC PROCESSES

The main difficulty of the formulation discussed in the
preceding section lies in its abstract nature. One needs son
tools to generate and manipulate the meaguteefore one Xs X, X,
can apply the approach to specific situations of interest. In
this section, we discuss the case where this issue is addressedFIG. 6. Left: example of stochastic process sample functions
by interpreting the generating functiogéx) as sample func- involved in the study of level crossing through the boundarya
tions of some stochastic process. We will show that, quitéthick line) or h=_b (thin line), starting from the ir_]itial condition
remarkably, the calculation of EGL3) can then be reduced X=Xy ath=h,. nghti same as before_, in the_ particular case where
to the solution of thdevel-crossing problertalso called exit Mo—b and crossing through=a only is considered.

problem or first-passage-time problefi26,27 for the sto-  passage-time problem for the stochastic pro¢2627). Let
chastic process considered. This will create a direct bridggs restrict the level-crossing analysis to the sample functions
between two such distant fields as the theory of hysteresigat reach the upper boundany=a first, and let us take the
and the theory of stochastic processes, and will permit us thmit h,—b as shown in Fig. @). If we interpret the func-
exploit the machinery of level-crossing analysis to derivetion shown in Fig. €b) as a portion of some generating func-
analytical results on hysteresis. In particular, we will showtion extending outside the intervgk, ,x,], we immediately
that homogeneous continuous Markovian processes give rigecognize that the intervaky ,x,] is weakly stabldsee Sec.
to Preisach-type hysteresis and we will derive explicit anadl A, paragraph (f)] becauseg(x,)=b, g(x,)=a, and b
lytical expressions for the associated Preisach distributior<g(x)<<a for any x in the rangex,<<x<x,. Thereforex,
n(a,b). andx, are admissible reversal outputs that may be encoun-
tered under input histories with input reversalshata and
] ) ) ] h=Db, and the solution of the particular level-crossing prob-
A. Markovian processes with continuous sample functions lem shown in Fig. &) is accordingly expected to give direct
Let us consider the stochastic procegss To avoid con- information about the probability distribution of those rever-

fusion, we point out that the independent variableas noth- ~ sal outputs. _ o
ing to do with the real time: it will play the role of a To analyze in detail the consequences of this idea, let us

fictitious time to be eventually identified with the system @ssume that the particular level-crossing problem of Fig. 6
output. We assume that the process is Markovian, that is, ité@S been solved, so that we know the conditional probability
evolution under given initial conditions, say &tx,, de-  densityT(a,xa|b,x,) of having a level-crossing event at
pends on these conditions only and not on the behavior of the Xa [that is, of havingg(x.) =a] conditioned by the fact
process fox<x, . In addition, we assume that the process isthat g(x,) =b. The functionT is defined fora=b and is
a diffusion one, which means théalmosi all its sample nonanticipating, that is;T(a,Xa|b,x,)=0 for x,<x,. It
functionsg(x) are continuous functions af We will use the ~ obeys the normalization condition
letter h, with appropriate subscripts, to denote values taken -
by these sample functions. _ f T(a,Xa/b,x,)dx,= 1. (16)

In Sec. Il A, paragraph(f), we discussed the fact that, Xp
given the generating functiog(x), any arbitrary input re-
versal sequench,,h,,...,h, selects a sequence of weakly
stable portions of that function. We will show now that
wheng(x) is interpreted as a sample functiongyf, weakly
stable intervals are naturally and intimately related to th
solution of the level-crossing problem fog,. To this pur-
pose, let us consider the intenjdd,a] of the h axis and let pa(Xa):J
us select in it the poinh,, with b<<hy<a. Let us imagine
that we generate a sample functigfx) of the process start- Notice that, because of the Markovian character of the pro-
ing from (hg,Xg), and that we follow it until it reaches one cess, Eq.(17) is fully independent of the behavior of the
of the two boundariey=b or h=a, for the first time[Fig.  process outside the interviat, ,x,]. Let us define the space
6(a)]. The value ofx at whichg(x) reaches the boundary is G of Sec. || B as the space containing all those sample func-
a random variable. The problem of determining the statistications of the given Markovian process which satisfy the re-
properties of this random variable is known in the literaturequirements of Eq(2) for somex, andxy, that is,g(x,)
as the level-crossing problem or exit problem or first-=h,, g(xy)=hy, andh <g(x)<hy for anyxin the range

X | . X

The quantitiex, andx,, are in general random variables. Let
us denote byp,(x,) and py(X,) their probability distribu-

' tions. These distributions are not independent, because they
emust satisfy the equation

" T(a,Xa/0,Xp) Po(Xp) A% - (17)
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h Equation(18) can be also used to calculate the probability
h, distribution p;(x4;h;) of the reversal outpux; at h;. We
find
X1
h /\NM A pl(Xlih1)=J T(hy, Xalhe xO)pL(x)dx
t A -
"o i
L<h;<hy.
h — | X
X X X Similar considerations apply to the second, decreasing input
- ' ! branch, wherén, decreases frorh, to h, andx, accordingly
h decreases from, to x, [see Fig. Tb)]. The weakly stable
! interval to consider is noyx,,x;]. By applying Eq.(17) to
A this interval, one obtains
ol N/ .
t //\/\N W\// pl(xl;hl):f_ T(hy,xqhe, x)p(x¢,heshy)dxg,
h (21
Lt \ X ha<h,<h;.

X
L X, X
t ! The main difference with respect to E@.8) is that the un-

FIG. 7. Level-crossing problems to be solved to calculate hysknown distributionp(x;,hy;h;) is now inside the integral on
teresis in the Markovian process. Tdfield increasing fromh,  the right-hand side of Eq21), so Eq.(21) is actually an
toward h,): the level crossing must be considered in the intervalintegral equation fop(x;,h;h;). Itis this difference in the
[h. ,h,], with known distributionp,(x,) at thelower hboundary  structure of Eqs(18) and (21) that is responsible for the
h, . Bottom (field decreases frorh, toward h,, not shown: the  onset of hysteresis in the average output. The comparison of
level crossing must be considered in the interfa),h;], with Fig. 7(a) with Fig. 7(b) gives a pictorial illustration of this
known distributionp;(x;;h;) at theupper hboundaryh; . difference. Although the probability distributions &f and

X, are the same, the level-crossing problems to solve under
X <x<Xy. In generalx_ andxy will be random variables, increasing or decreasing input are different, and therefore
taking different values for eaalpe G. Then, let us study the give rise to different probability distributions and different
evolution of the ensemble described by Ef)2), assuming average outputs.
that the ensemble is initially in the lower saturation state The procedure that we have described can be continued to
[i.e.,h(0)=h_]. Let us denote by,h,,...,h, the alternat- calculate the distributiop,(x,;h,,h;) of the second rever-
ing sequence of dominant input extrema controlling the evosal output, given by the solution of the integral equation
lution of the ensembldthis sequence was indicated as
hy1,Dm1:Nwz,hme,... in Sec. Il A, paragraphe)]. Let us P )
analyze in some detail what happens when the ipub- Pa(xg;hy)= f_wT(hl’Xllhz’XZ)pZ(XZ’hZ'hl)dxz’
creases fronh, up to h; along the first hysteresis branch, (22)
and then decreases from to h, along the second one. We h <h,<h;
denote byx; the output value associated with for a given
generating functiofsee Fig. 7a]. The interval[x, ,x] is and  then  the  distributions p(x;,h;;hy,hy),
weakly stable for eace G, so we can apply Eq17), with  Ps(X3;hs,hy,h;), and so on up to the distribution
b=h., xp=x_, a=h;, Xa=Xg(h;X)=X;, Pu(Xp) Pn(X,:hy,...,h;) of the last reversal output. At this point,
=pL(X), Pa(Xa)=p(X;,hy): the probability densityp(x;,h;;h,,...,h;) of the current out-
put at timet is given—depending on whether the current

X input is increasing or decreasing—»by one of the following
o= [ Tl xOpLOGX . B=hEhe o equations

(18) p(Xt,ht;hn,---yhl)

The probability distributionp, (x.) of the lower saturation Xt
outputx, can be chosen at will; it is part of the characteriza- :f T(he.xd[hy . X0)Pa(Xn s hy .. ohp)d X,
tion of the initial state of the ensemble. After that, E48) o
permits one to calculate the unknown distributipfx, ,h;)

on the basis of the known functiong,(x,) and
T(h;,xh,,x.). The distribution p(x;,h;) is exactly the
function needed in EJ13) to calculate the average response
of the system, according to the expression

h,<h:=<h,_,

(23
pn(xn vhn yree 1h1)

Xn
= [ T ol x0p0x iy A,
Xt(ht):f_ Xep(X¢,he)dX; . (19
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and the corresponding average output is branchegEq. (29)]. The importance of this result lies in the
fact that it implies the validity of the so-called congruency
) I ) property[9]. It is known that return-point memonpuilt in
Xi(heihn,oohy) = f_mxtp(xt’ht o,y dx. - (24) the description from the beginning, see Sec. Il A, paragraph
(e)] and congruency represent the necessary and sufficient
By the analysis just concluded, we have reduced the originalonditions for the description of a given hysteretic system by
functional integral oveG [Eq. (12)] to a chain of integrals the Preisach moddl28,9,13. Therefore, we conclude that
and integral equationgEgs. (18), (20), (22), and(23)], de-  the hysteresis generated by a homogeneous, diffusion Mar-
pendent on the saturation distributign (x,_) (arbitrarily  kovian process is of Preisach type. The process is fully de-
chosen and the transition densiffi(a,x,|b,x,). The central  scribed by the functioX(a|b) [Eq. (27)], which is nothing
problem is then the calculation df(a,x,|b,x;) for a given  but the Everett function associated with the Preisach descrip-
process. tion. The functionX(a|b) represents the average valuexof
at which the generating function crosses the ldvela for
B. Homogeneous processes the first time, starting at=0 from the initial levelh=Db [see

Particularly simple and interesting results are obtalned: 'QIJ t'G(b)].fIr:]'e de?_crnlatioln Ofl hyste_resis isblredt;ce(ilhto tthe
when the statistical properties of the process considered aﬁﬁ u It(')n or this particular level-crossing probiem for the sto-
translatiqnally invariant With respect tg that is.’ when the ??Seﬁglgggl‘:‘/&this solution can be worked out in closed
ﬁr?geiztls : ggggzryeotzs (\;V;er;?ﬁ s O:;t: fgg:],ﬂlllor;etth;s fCuanS(; onanalytlcal form. To this end, let us start from the description
T(a,X4/b,x,) in order to predict the hysteresis properties of :‘);c]h[ezg]rocess in terms of its lto stochastic differential equa-
the ensemble. To clarify this point, let us come back to theI
first of Eqs.(23). Because of the assumed homogeneity of dh=A(h)dx+B(h)dW,, (30)
the processT(a,X,|b,xp) =T(a,Xx4— Xp|b,0). Therefore,

where dW, represents the infinitesimal increment of the

p(x,h;hy,....hy) Wiener proces¥V(x), A andB are independent of because
« of the assumed homogeneity of the process,xapthys the
:f T(h,X—Xq|hn,0)pn(Xn:hy, ... np)dX,, role of time. The statistics of the process are fully described

by the transition density?(h,x|hg,X,), giving the probabil-
(25) ity density that a sample function of the process takes the
valueh at the positiorx, conditioned to the fact that it takes
where we have dropped for simplicity theubscriptinxand  the valuehy at x=Xx,. The Fokker-Planck equation for the
h. According to Eq.(24), the average system response istransition density associated with Eq30), P(h,x|hg)
obtained by multiplying both members of E@5) by xand  =P(h,x|h,,0), is
by integrating overx. By expressingx as x=(X—X,)+X,
and by rearranging the appropriate integrals on the right-

hand side, we obtain _P(h X|ho) + - o [A(h P(h,x|hg)]

X(h;hy,...h) =X+ X:(h|hy), h=h,, (26 14

where

As discussed before, the situation of interest is the one de-
a=b 27) picted in Fig. 6. The process starts, yat xo=0, from h

=hy. We wish to determine the statistics of thevalue at

which the process reaches the lelred a for the first time, in
and the limit hp—b. This is obtained by solving Eq31) under

" the initial conditionP(h,0hy) = 8(h—hy), together with the

X“:f XnPrn(Xn:hn,....h)dX, . (29 assumption of absorbing boundary conditionshata and

o h=Db, and then by taking the limhy—b. The mathematical
details of the analysis are discussed in Appendix C. The
solution forX;(alb), expressed in terms of the function

Xr(alb)= J:un ,

When the second of Eq$23) is the relevant equation, by
perfectly similar considerations one obtains

u A(u’
X(h;hy,...,h)=X,=Xs(hy|h), h<h,. (29 l/f(u):exp[—zf BZ((u’)) du’|, (32

0

We see that the hysteresis properties of the system are fully

controlled by the first moment of only, given by Eq(27).  feads

Equation(26) shows that the shape of a generic ascending
hysteresis branch starting from the reversal fieldis the XT(a|b)— f {f (u)du’
same regardless of the past input history. The influence of Kib,a]

past history is summarized in the valueXyf[Eq. (28)], and
the branches generated by different histories differ by a mere
shift along theX axis. The same is true for descending

J } du @3
v B (u)y(u)’
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where 8

Kib,a1= f:lﬂ(u)du. (34) . /

C. Preisach distribution associated
with a given homogeneous process x 0 =

The quantityX(a|b) given by Eq.(33) coincides with
the Everett function of the Preisach model associated with
the homogeneous stochastic process. Therefore, as discuss¢ -4
in [9], the Preisach distributiop.(a,b) is given by

1 #*X+(alb)
m@ab)==5—2"0

(35) ‘8- v _I

By deriving Eq.(33), one finds h

5 _Zt/f(a)d/(b) Ja Ju Ny
m(a,b)= U b{ bww) u

[b.a]

FIG. 8. Typical hysteresis curves for the Wiener process, calcu-
lated from Eq.(39).

The Preisach distribution depends on the differerece f)

a o, du only, and tends to the valugwhen @—b)—0, in agreement
x f g(u")du }2— (36 it Eq. (39). Typical hysteresis branches calculated from
u B(u) ¢ (u) R
Eq. (41) are shown in Fig. 9.
that is, taking into account E@33), (c) Ornstein-Uhlenbeck procesdn this case, A(h)
=—h/¢, B(h)=1, with £>0. We find
p(a)y(b)
p(a,b)=——>——Xq(alb). (37) Y(u)=exp(u?/§),
[b,a] (42
Let us calculate the Preisach distribution associated with Ko =ad } §a_2 —b(I)(E §b_2)
some typical stochastic processes. [b.a] 22 & 2'2" &)

(a) Wiener processThe Wiener process is described by
A(h)=0,B(h)=1 [see Eq(30)]. Therefore, we obtain from Wwhere ®(a,c;x) is the confluent hypergeometric function.
Egs.(32) and(34), The Preisach distribution an¥(alb) are obtained by in-
W serting these expressions into E¢33), (36), and(37).
p(u)=1,

(39 IV. CONCLUSIONS
K[b,a] =a— b

. _ o The formulation developed in the previous sections is
By inserting these expressions into E(&3), (36), and(37),  general enough to offer various possibilities for further stud-

we find ies and applications. From the mathematical viewpoint, the
w(ab)=3, 6
(39
Xr(alb)=3(a—b).
The Preisach distribution is simply a constant and all hyster 4
esis branches are parabo(fg. 8).
(b) Wiener process with drifBy this, we mean the case ] /
where byA(h)=1/(2¢), B(h)=1, with £>0. We have =< 0
p(u)=exp(—u/¢),
(40) ol
Kib,aj=exp(—b/§) —exp(—alé).

The Preisach distribution and(a|b) are given by

x cothx—1 -4 -2 0 2 4
n@b)= sinffx h
(41)
X;(a|b)=4(x cothx—1), x= a;b FIG. 9. Typical hysteresis curves for the Wiener process with

2¢ drift, calculated from Eq(41).
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basic issue is the role of return-point memory in the func-
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Upg1(h,Xo) ={X € [Xo,Xul:g(x)=h}. (A1)

tional integration approach developed in Sec. Il. We know

that return-point memory is inherent in the formulation, andBecause of the continuity @, U, is closed and will there-
it is natural to ask under what additional conditions, if any,fore contain its minimumx,,. This is the smallestx

an arbitrary scalar hysteretic system exhibiting return-pointe [Xo,Xy] for which g(x)=h. Becauseg(xy)<h, then

memory can be described through E@)—(13), by choos-
ing appropriately the spacé and the measurg. For the

g(x)<h for any xe[Xg,Xy), i.e., maxg(u):ue[xyXnl}
=g(xm=h. Therefore, the equilibrium state, is such that

moment, we do not have a general answer to this basic quebq;(Xy;Xo) =h. The proof of the casé <h<g(x,) is

tion.

analogous. The only difference is that one must consider the

From the physical viewpoint, the results obtained in themaximumx,, of the set
case where the measure is associated with a stochastic pro-

cess are of direct interest to all those situations where some

dominant degree of freedom, sa§ evolves in a random

free-energy landscape, and the associated dynamics are ov:

damped. By this we mean that obeys an equation of the
form

(43

whereH(t) is the time-dependent driving fiel&,(X) is the
free energy of the system, and>0 is some typical friction

Ligi(h,xo) ={xe[X_,Xo]:9(X)=h}. (A2)

grqllowing the results of theorem 1, let us introduce the func-
Ion Xp41(h;%o) defined as follows:

maxL4;(h,Xp)
minU4;(h,Xp)

if h,<h=g(xp)
if g(xg)<hshy’
(A3)

Xg1(h5Xo) =

The functionxpg4;(h;Xo) is the inverse oh;q(x;Xp). In fact,
according to theorem Iy q(x;3(h;X0);X0)=h (see Fig. 2
It monotonically increases with and, as a rule, it is not

constant. Under small enough field rates, the solutions of Eczontinuous inh. However, it is continuous ixq, because

(43—once expressed in terms di as a function of
X—precisely approach the behavior shown in Fig12,29,

both maxg; and minUq; are continuous i, as a conse-
quence of the continuity of. Notice that the graph of;g;

so that our formulation can be directly applied, if one knowsconsists uniquely of equilibrium states, that is, of points of

the statistical properties of the free-energy gradi#ftoX.

A particularly important example is the motion of magnetic

domain walls in ferromagnets, where E43) often provides

the generating functiog(x).

APPENDIX B: ORDERING PROPERTIES OF T4 (h)

a good physical description, and various forms of structural

disorder(point defects, dislocations, grain boundaries,)etc.

are responsible for the random charactergbf 9X. There
are a series of classical papers in the literaf8631], where

As discussed in Sec. Il A, given the equilibrium states
s;=(hy,Xq) ands,=(h,,X,) we say that;<s, if X;=<X, in
the usual sense. The set of equilibrium states is totally or-

the domain wall picture has been applied to the prediction oflered with respect to this relation. Before considering the
coercivity and magnetization curve shapes, starting frontheorems deriving from the existence of this ordering rela-

some assumption about the propertiesF¢iX). Equations

tion, let us prove the following four lemmas, involving the

(33) and (36) provide a general solution for the case whereS€tsUq) andLq) defined by Eqs(Al) and(A2).

the processF/dX is Markovian, continuous, and homoge-

Lemma 1 Given xa<xg and h; <h=min{g(xa),9(%g)},

neous. In particular, the proven equivalence of Markoviarfen max g(hxy)<=maxLig(hxg). In fact, Lg (h,xg)
disorder to the Preisach model gives a sound statistical inter= Lig(N:Xa)ULag, Where Lag={xe (xa,Xg] :g(X)=h}.
pretation of the latter in terms of stochastic dynamics inkas iS €mpty or contains elements that are all greater than
quenched-in disorder. In this respect, the extension of th@ny element ofL 4;(h,x). In both cases, the lemma is
analysis of Sec. lll to non-Markovian and/or nonhomoge-Proven.

neous processes would be of definite interest, as a way to Lemma 2 Given xa<xg and hy=h=maxg(x,),9(xg)},

provide quantitative predictions of hysteresis features undeifen minUg(h,xa)<minUg(hXg).

In fact, Upg(h,Xa)

more realistic conditions and to indicate in what direction=Ujg)(N.Xg)UUag, Where U,g={xe[Xa,Xg):g(X)=h}.
one should generalize the Preisach model in order to improvk ag iS @mpty or contains elements that are all smaller than
the macroscopic description of hysteresis generated by vargny element ofU;q,(h,xg). In both cases, the lemma is

ous forms of structural disorder.

APPENDIX A: PROPERTIES OF hpgj(X;Xo) AND X[gj(h;Xo)

The functionh4;(X;Xo) defined by Eq(3) is continuous
and nondecreasing with respectttand it is continuous with
respect taxy. Its main properties derive from the following
theorem.

Theorem 1 Given anyhe[h,,hy], there exists at least
one equilibrium statex e [x, ,Xy], such thath;q;(x;Xo) =h.

Proof. The theorem holds by definition fdr=g(xg), h
=h,, andh=hy. Then, let us consider the cagéx,)<h
<hy . Let us introduce the set

proven.

Lemma 3 Given xa<xg and g(x,)=h=g(xg), then
maxLig(hx)<minUg(hxg). In fact, given any x
€ Lig1(h,xa) andx’ € Upgy(h,Xg), X<xa<xg=x'. This will
hold in particular for x=maxLyg(hx,) and x’
=minUg(hXg), which proves the lemma.

Lemma 4 Given xa<Xxg and g(xp)<h=g(xg), then
minUpg(hxg)<maxLg(hxg). In fact, the setZxg={x
€[Xa,Xgl:g(x)=h} is not empty, which means that
minUg(hx)=minZag and max g (h,Xg)=maxZ,g. Be-
cause mirZyg<maxZ,g, the lemma is proven.

Theorem 2 Given the equilibrium states, andsg, Sp
<sg, then7q(h)sa<T[4i(h)sg for anyhe[h,,hy].
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Proof. Let us express the states gs= (ha=9(Xa),Xa)
and sg=(hg=9(Xg),Xg), With x,<xg. According to Eq.
(4), the application of7;4(h) changesx, and xg into
Xg1(h;Xa) andx;q;(h;xg). By applying lemmas 1-4 to the
definition of x;q(h;Xo) [EQ. (A3)], one finds that
Xg1(h;Xa) <X;gj(h;xg) for anyhe[h ,hy].

Theorem 3 Given the equilibrium states, andsg, Sa
<sg, and the inputh, andhg, hy<hg, then7;5(ha)sa
<7iq(hg)se-

Proof. Let us express the states ss=(ha=9g(Xa),Xa)
andsg= (hg=g(Xg),Xg), With Xxa<Xxg. From theorem 2, we
have thatx;q;(ha;Xa)<X(g)(ha;Xg). On the other hand,
Xg1(NaXg) <X(q1(hg:Xg), because of the monotonicity of
Xrg1(h;Xo) with respect to h. Therefore, X q;(ha;Xa)
<Xrg)(hg:Xg).

Theorem 4 Let us consider the initial equilibrium states
sa(0) andsg(0), sa(0)=<sg(0), and let usapply to them the
two ordered input historieb(t)<hg(t). Then, at any sub-
sequent timeg>0, sp(t) <sg(t).
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The total probabilityr;, 5;(ho) that the process leave the
interval[ b,a] throughh=a is given by the expression

W[b,a](hO): JOOOJ(a,U|h0)dU. (C4)

By integrating Eq(C3) from x=0 to e, and by taking into
account that J(a,0lhg)=J(a,»|hg)=0, one finds that
mp,aj(ho) satisfies the differential equation

£B2(ho) dzg—h[gmA(ho) d%’f:o (C5)
with the boundary conditions
Tpa(@)=1,
Tp,ay(D)= (Co)

deriving from the fact that the process will certainly cross the

Proof. Let us consider the evolution of the two stateshoundaryh=a if it starts from that same level, that is, from

sa(t) andsg(t) first from t=0 up to the time of the first
reversal ofh(t) or hg(t), then from this time to the time of
the second reversal df;(t) or hg(t), and so on. By consid-
ering that initiallys,(0)<sg(0) and by applying theorem 3,

we find that order is preserved in the first interval and that
the states at the end of the interval are still ordered. This

ho—a, whereas it will never reach=a if it starts from
ho— b, because in that case it will certainly cross the bound-
ary h=b first. The solution of Eq(C5) is then

1 ho
W[b,a](ho):mjb Y(u)du, (C7)

permits one to conclude that order is preserved also in the

second interval, and so on.
APPENDIX C: SOLUTION OF LEVEL-CROSSING
PROBLEM
The probability current associated with E§1) is

J(h.xlho)=A(h)P(h.x|ho)— 5 —-

[Bz(h)P(h x|ho)]
(Cy

The rate at which the process leaves the intelrlogh] start-
ing from h=hy at x=0 is obtained by integrating E¢31)
overh. One obtains

X

f P(h,x|hg )dh} (a,x|hg) —J(b,x|hy).
(C2

Equation (C2) shows that the probability current at the .

where ¢(u) andKp, 5 are given by Eqs(32) and(34), re-
spectively.

The probability densitypp, 4)(X|hg) that the process
reaches the boundaty=a at the positiorx is given by

J(a, xlho)

Tp, a]( 0) €8

Pb.a)(X|No) =

and the mean valugy, 5;(ho) of the level-crossing position
is

X[b,a](ho) = fo Up[b,a](u|ho)du

uJ(a,ulhg)du.

g -
 Tbay(ho) Jo

By definition, the conditional probability densify(a,x|b,0)
of Eq. (27) is given by the limit of Eq(C8) for hg—b, that

boundaries is just proportional to the probability density thatI
a level-crossing event takes place at the positioAs men-
tioned before, we are interested in level crossing through the
upper boundanh=a, described by the probability current and the functiorX;(a|b) defined by Eq(27) is accordingly
J(a,x|hg). According to Eq(C1), the functional dependence given by
of J(a,x|hg) on x andh, is the same as that ¢¥(a,x|hg)
=P(a,x|hy,0)=P(a,0/hy,—x). This means thaf(a,x|hg)

obeys the backward equati¢d4]

T(arx|blo):p[b,a](x|b)a (ClO)

Xr(alb) =X p,)(b). (C11)
By multiplying Eq.(C3) by x, by integrating it fromx=0 to
o, by taking into account thaf(a,0/hg)=J(a,*|hg)=0,
and by making use of EQC4), one finds that the function

J
—J(a,x|hg) —A(hg) m\](ay)d ho)

Ix

92 frb,a1(No) = 7pb,a1(ho) X [b,a1(ho) (C12
—1B?(hg) = J(a,x|hg)=0. (C3 . . .
dhg obeys the differential equation
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1B2(h )—dzf[b‘a]JrA(h )—df“"a]+ (he)=0
= 77' =
2 0 th 0 dho [b,a](No
(C13
with the boundary conditions
fip,aj(@)=fpa(0)=0 (C149

deriving from the fact thatxp, ,;(@)=0 by definition,
whereasm;, 5;(b) =0 because of EqC6). Equation(C13) is

a linear, nonhomogeneous first-order differential equation for

dfpp,a;/dhg. The solution reads

ho p,a)(U)
C_sz B2 ()

where mp;, 43(u) and ¢(u) are given by Eq(C7) and Eq.
(32), respectively. The constant of integrati@hcan be ex-
pressed as

dho

=y(hy)

u}, (C1H

1 [df
{ Lb.a] (C16)

" y(b)| dhy

ho=b

By deriving Eq.(C12 with respect toh,, by taking into
account that mpp, 5)(b)=0 and [dmy, o/dhgly=#(b)/
Kib,a1» @and by making use of EqC11), we obtain
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df[b,a]} #(b) W(b)
- = 7 X«(alb).
[ an | Kipa X[b,a](0) Kioa] 7(alb)

(C17

Equations(C16) and(C17) permit one to write Eq(C15) in
the form

f[b,a]_w(h ) XT(a|b)_ ho 7r[p,a1(U) }
dh Y1 Kip,ag b BEWy(u) |

(C19

By integrating Eq.(C18) from b to hy and by inverting the
order of integration in the double integral, one obtains

f1p.a)(ho) =X+(alb) 7 a1(ho)

B K[Zb,a] fbho[ Jbuzﬁ(u’)du’

Lhot/x(u’)du’

X (C19

du
B2(u)y(u)’

where use has been made of EG7). Taking into account
that fp ,(2)=0 and @, 5(2)=1, one concludes that
X+(alb) must be equal to Eq33).
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