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We introduce a mechanism for generating power law distributions, referredhiglag optimized tolerance
(HOT), which is motivated by biological organisms and advanced engineering technologies. Our focus is on
systems which are optimized, either through natural selection or engineering design, to provide robust perfor-
mance despite uncertain environments. We suggest that power laws in these systems are due to tradeoffs
between yield, cost of resources, and tolerance to risks. These tradeoffs lead to highly optimized designs that
allow for occasional large events. We investigate the mechanism in the context of percolation and sand pile
models in order to emphasize the sharp contrasts between HOT and self-organized c(i@cltywhich has
been widely suggested as the origin for power laws in complex systems. Like SOC, HOT produces power laws.
However, compared to SOC, HOT states exist for densities which are higher than the critical density, and the
power laws are not restricted to special values of the density. The characteristic features of HOT systems
include: (1) high efficiency, performance, and robustness to designed-for uncertai@id¢ypersensitivity to
design flaws and unanticipated perturbatiof8; nongeneric, specialized, structured configurations; @nd
power laws. The first three of these are in contrast to the traditional hallmarks of criticality, and are obtained
by simply adding the element of design to percolation and sand pile models, which completely changes their
characteristicg.51063-651%99)05908-5

PACS numbgs): 05.40-a, 64.60.Ht, 05.65:b, 87.17.Aa

[. INTRODUCTION of the interdisciplinary work on complex systems developed
at the Santa Fe Institute and elsewhere. These theories begin
One of the most pressing scientific and technologicalwith the idea that many complex systems naturally reside at
challenges we currently face is to develop a more completa boundary between order and disorder, analogous to a bi-
and rigorous understanding of the behaviors that can be eXurcation point separating a simple predictable state from
pected of complex, interconnected systems. While in manyully developed chaos, or a critical point in equilibrium sta-
cases properties of individual components can be well chattistical physics. In these scenarios, there is a key state param-
acterized in a laboratory, these isolated measurements aeter, or density, which characterizes the otherwise generic,
typically of relatively little use in predicting the behavior of random, underlying system. In model systems, the density
large scale interconnected systems or mitigating the cascadvolves self-consistently and without feedback to the specific
ing spread of damage due to the seemingly innocuous breakalue associated with the transition. Once at this point, large
down of individual parts. These failures are of particular con-fluctuations inevitably emerge and recede as expected in the
cern due to the enormous economic, environmental, and/areighborhood of a second-order transition. This gives rise to
social costs that often accompany them. This has motivatesklf-similarity, power laws, universality classes, and other
an increasing intellectual investment in problems which fallfamiliar signatures of criticality. The widespread observa-
under the general heading of complex systems. tions of power laws in geophysical, astrophysical, biological,
However, what a physicist refers to as a complex systenengineered, and cultural systems has been widely promoted
is typically quite different from the complex systems which as evidence for SOC and EQ6-13|.
arise in engineering or biology. The complex systems studied However, while power laws are pervasive in complex in-
in physics[1] are typically homogeneous in their underlying terconnected systems, criticality is not the only possible ori-
physical properties or involve an ensemble average ovegin of power law distributions. Furthermore, there is little, if
qguenched disorder which is featureless on macroscopiany, compelling evidence which supports other aspects of
scales. Complexity is associated with the emergence of dighis picture. In engineering and biology, complex systems
sipative structures in driven nonequilibrium systgth Fora  are almost always intrinsicallgomplicated and involve a
physicist, complexity is most interesting when it is not put ingreat deal of built in or evolved structure and redundancy in
by hand, but rather arises as a consequence of bifurcations order to make them behave in a reasonably predictable fash-
dynamical instabilities, which lead to emergent phenomenéon in spite of uncertainties in their environment. Domain
on large length scales. experts in areas such as biology and epidemiology, aeronau-
This perspective is the driving force behind the conceptdical and automotive design, forestry and environmental
of self-organized criticality(SOQ), introduced by Bak and studies, the Internet, traffic, and power systems, tend to reject
co-workerq 3,4] and the edge of chadEOC) introduced by the concept of universality, and instead favor descriptions in
Kauffman[5], which have been the starting point for much which the detailed structure and external conditions are key
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factors in determining the performance and reliability of liability and justifying the attention given to it. The infamous
their systems. The complexity in designed systems oftery2K bug, though not necessarily a direct consequence of
leads to apparently simple, predictable, robust behavior. As aetwork connectivity, is nevertheless the best-known ex-
result, designed complexity becomes increasingly hidden, sample of the general risks of high connectivity for high per-
that its role in determining the sensitivities of the systemformance. There are many more less well-known examples,
tends to be underestimated by nonexperts, even those sciesd indeed most modern large-scale network crashes can be
tifically trained. traced to software problems, as can the failures of many
The Internet is one example of a system which may susystems and projectg.g., the Ariane 5 crash or the Denver
perficially appear to be a candidate for the self-organizingAirport baggage handling system fiagciVe will return to
theory of complexity, as power laws are ubiquitous in Inter-the Internet and other examples at the end of the paper.
net statistic§14,15. It certainly appears as though new us-  This “robust-yet-fragile” feature is characteristic of com-
ers, applications, workstations, PC’s, servers, routers, anplex systems throughout engineering and biology. If we ac-
whole subnetworks can be added and the entire system natcept the fact that most real complex systems are highly struc-
rally self-organizes into a new, robust configuration. Furthertured, dominated by design, and sensitive to details, it is fair
more, once on line, users act as individual agents, sending ask whether there can be any meaningful theory of com-
and receiving messages according to their needs. There is ptex systems. In other words, are there common features,
centralized control, and individual computers both adapbther than power laws, that the complicated systems in engi-
their transmission rates to the current level of congestionpeering and biology share that we might hope to capture
and recover from network failures, all without user interven-using simple models and general principles? If so, what role
tion or even awareness. It is thus tempting to imagine thatan physics play in the development of the theory?
Internet traffic patterns can be viewed as an emergent phe- In this paper we introduce an alternative mechanism for
nomena from a collection of independent agents who adapsomplexity and power laws in designed systems which cap-
tively self-organize into a complex state, balanced on thdures some of the fundamental contrasts between designed
edge between order and chaos, with ubiquitous power lawand random systems mentioned above in simple settings. Our
as the classic hallmarks of criticality. mechanism leads t¢l) high yields robust to designed-for
As appealing as this picture is, it has almost nothing to dauncertainty(2) hypersensitivity to design flaws and unantici-
with real networks. The reality is that modern internets usepated perturbations(3) stylized and structured configura-
sophisticated multilayer protocol46] to create the illusion tions, and4) power law distributions. These features arise as
of a robust and self-organizing network, despite substanticd consequence of optimizing a design objective in the pres-
uncertainty in the user-created environment as well as thence of uncertainty and specified constraints. Unlike SOC or
network itself. It is no accident that the Internet has suchEOC, where the external forces serve only to initiate events,
remarkable robustness properties, as the Internet protocahd the mechanism which gives rise to complexity is essen-
suite (TCP/IP in current use was the result of decades oftially self-contained, our mechanism takes into account the
research into building a nationwide computer network thafact that designs are developed and biological systems
could survive deliberate attack. The high throughput and exevolve in a manner which rewards successful strategies sub-
pandability of internets depend on these highly structuredect to a specific form of external stimulus. In our case un-
protocols, as well as the specialized hardw@ervers, rout- certainty plays the pivotal role in generating a broad distri-
ers, caches, and hierarchical physical links which they bution of outcomes. We somewhat whimsically refer to our
are implemented. Yet it is an important design objective thatmnechanism akighly optimized tolerancéHOT), a terminol-

this complexity be hidden. ogy intended to describe systems which are designed for
The core of the Internet, the Internet proto¢t®), pre-  high performance in an uncertain environment.
sents a carefully crafted illusion of a simplbut possibly The specific models we introduce are not intended as re-

unreliable datagram delivery service to the layer abovealistic representations of designed systems. Indeed, in spe-
(typically the transmission control protocol, or TCIBY hid-  cific domain applications at each level of increased model
ing an enormous amount of heterogeneity behind a simplesophistication, we expect to encounter a new structure which
very well engineered abstraction. The TCP in turn creates & crucial to the robustness and predictability of the system.
carefully crafted illusion to the applications and users of aOur goal is to take the first step toward more complicated
reliable and homogeneous network. The internal details arstructure in the context of familiar models to illustrate how
highly structured and nongeneric, creating apparent simpliceven a small amount of design leads to significant changes in
ity, exactly the opposite from SOC and EOC. Furthermorethe nature of an interconnected system. We hope that our
many power law statistics of the Internet are independent obasic results will open up new directions for the study of
density(congestion leve] which can vary enormously, sug- complexity and cascading failure in biological and engineer-
gesting that criticality may not be relevant. ing systems.

Interestingly and importantly, the increase in robustness, To describe our models, we will often use terminology
productivity, and throughput created by the enormous interassociated with a highly simplified model of a managed for-
nal complexity of the Internet and other complex systems iest which is designed to maximize timber yield in the pres-
accompanied by new hypersensitivities to perturbations thence of fire risk. Suppose that in order to attain this goal, the
system was not designed to handle. Thus while the networforester constructs firebreaks at a certain cost per unit length,
is robust to even large variations in traffic, or loss of routerssurrounding regions that are expected to be most vulnerable
and lines, it has become extremely sensitive to bugs in nefe.g., near roads and populated areas or tops of hills where
work software, underscoring the importance of software refightning strikes are likely At best, this is remotely con-
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nected to real strategies used in foregtty,18. Our moti- Il. POWER LAWS AND DESIGN
vation for using a “forest fire” example is the familiarity of
similar toy models in the study of phase transitions and SOGuig\s entirely unlike those in critical phenomena, then the
[19]. , ) ) , . Uubiquity of power laws needs a fresh look. If engineering

The optimal designed toy forest contains a highly stylizedg, stems could be constructed in a self-similar manner it
pattern Qf firebreaks separating high deqsity forested regiong,qid certainly simplify the design process. However, self-
The regions enclosed by breaks are tailored to the externa@imilar structures seldom satisfy sophisticated design objec-
environment and do not resemble the fractal percolationlikgjves. with the exception of distribution networks which are
clusters of the forest fire model which has been studied in thmherently treelike and often fractal, hierarchies of sub-
context of SOC. Furthermore, there is nothing in the desystems in complex biological and engineering systems have
signed forest resembling a critical point. Nonetheless, the self-dissimilar structure. For example, organisms, organs,
relationship between the frequency and size of fires in deeells, organelles, and macromolecules all have entirely dif-
signed systems is typically described by a power law. In arferent structure§20]. The hundreds of thousands of sub-
optimized design, firebreaks are concentrated in the regiornsystems in a modern commercial aircraft do not themselves
which are expected to be most vulnerable, leaving open thgesemble the full aircraft in form or function, nor do their
possibility of large events in less probable zones. subsystems, and so on. Thus if power laws arise in biological

The forest fire example illustrates the basic ingredients ohnd engineering systems, we would not necessarily expect
the mechanism for generating power laws which we describénhat they would be connected with self-similar structures,
in more detail below. If the trees were randomly situatedand our idealized designed systems in fact turn out to be
with a comparable density to that of the designed systemnself-dissimilar.
any fire, once initiated, would almost surely spread through- We begin our analysis with a general argument for the
out the forest generating a systemwide event. Designed copresence of heavy tails in the distribution of events which
figurations represent very special choices and comprise a sgpplies to a broad class of designed systems. Consider an
of measure zero within the space of all possible arrangeabstractd-dimensional space denoted Bywhich acts as a
ments at a given density. Systems are tuned to highly strugubstrate for events in our system. This can be thought of
tured and efficient operating states either by deliberate deconcretely as a forest, where the coordinates of the trees,
sign or evolution by natural selection. In contrast, in SOCfirebreaks, and sparks which initiate fires are define.in
large connected regions emerge and recede in the dynamiternately, X could correspond to an abstract map of inter-
cally evolving statistically steady state where no feedback igonnected events in which a failure at one node may trigger
incorporated to set the relative weights of different configu-failures at connected nodes. We assume there is some knowl-
rations. edge of the spatial distribution of probabilities of initiating

In the sections that follow, we use a variety of different events(sparks, and some resourdéirebreak$ which can be
model systems and optimization schemes to illustrate propdsed to limit the size of event§ires). There is some cost or
erties of the HOT state. These include a general argument f@onstraint associated with use of the resource, and an eco-
power laws in optimized systems based on variational methaomic gain(i.e., increased yieldassociated with limiting the
ods (Sec. I, as well as numerical and analytical studies ofsizes of events.
lattice models(Secs. 1lI-V). In an effort to clarify the dis- We definep(x) to be the probability distribution for ini-
tinctions between HOT and criticalittsummarized in Sec. tiating eventsvVxe X. Let A(x) denote the size of the region
V), we introduce variants of familiar models from statistical which experiences the event initiatedxatand let cosC(x)
physics(Sec. Il)—percolation with sparks and the original scale asA“(x). In general,a will be a positive number
sand pile model introduced by Bak, Tang, and Wiesenfeldvhich sets the relative weight of events of different sizes. If
[3]. Both models are modified to incorporate elementary dewe are simply interested in the area of the region then

sign concepts, and are optimized for yiéddn the presence =1. For cases in whicl is continuous, the expected cost of
of constraints. In percolation, yield is the number of occu-the avalanche is given by

pied sites which remain after a spark hits the lattice and

burns all sites in the associated connected cluster. In the

designed sand piles, yield is defined to be the sand untouched E(A%)= fxp(x)A“(x)dx. @)

by an avalanche after a single grain is added to the system.

When we introduce design, these two problems become es- Let R(x) denote the resource which restricts the sizes of
sentially identical, and optimizing yield leads us to constructthe events. Constraints d®(x) can take a variety of forms.
barriers which minimize the expected size of the event baseHere we consider the simplest case which corresponds to a
on a prescribed density for the spatial dependence of thimitation on the total quantity of the resource,

probability of triggering events. In this way we mimic engi-
neering and evolutionary processes which favor designs that
maximize yield in the presence of an uncertain environment.
We consider both a global optimization over a constrained
subclass of configurationSec. IV), as well as a local, in- wherex is a constant. Alternatively, the constraint B(x)
cremental algorithm which develops barriers through evolucould be posed in terms of a fixed total number of regions
tion (Sec. VI. We conclude with a summary of our results, within X, or a cost benefit functio® could be introduced
and a discussion of a few specific applications where weébalancing the benefit of a small expected digg. (1)] with
believe these ideas may apply. the cost associated with use of the resource.

If the power laws in designed systems arise due to mecha-

J R(x)dx= k, (2)
X
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We will assume that the local event size is inversely re- TABLE I. In the HOT state, power law distributions of the
lated to the local density or cost of the resource, so thategion sizesP,(A) are obtained for a broad class of probability
A(x)=R A(x), where typicallys is positive. This relation- distributions of the hitp(x), including power law, exponential, and
ship arises naturally in systems with spatial geomégrg.,  Gaussian distributions as shown here.
in the forest fire analogy where ind dimensions we can

think of R(x) as being ¢— 1)-dimensional separating barri- P() Peun(X) Peunr(A)
ers. In that casé(x)~R™9(x). In some systems the rela- x~(@+1) x~d A~ ¥(1- 1)
tionship betweenA(x) and R(x) is difficult to define g-x e X A7

uniquely, and in some cases reduces to a value judgemerét.xz
Here our spatially motivated assumption tha(x)
=R~ #(x) is important for obtaining power law distributions.
If we assume an exponential relationship between the size of N ] ] .
an event and its code.g., A~In(R)], we obtain a sharp Under_ what co_ndltlons does this relationship Iea_d to
cutoff in the distribution of events. In essence, this is becausBeavy tails? Certainly not ajp(x) lead to power laws in
it becomes extremely inexpensive to restrict large events be2(A) [equivalently,P,(A), which has power law tails if
cause the cost of resources decreases faster than the sizePdfA) has power law tails, with one power higher in the
the event to any power. Alternately, one could define a cosgxponenk For example, ifp(x) is concentrated within a fi-
function for cases in which there is a large social or ethicahite region, then the resource would optimally be concen-
premium(e.g., loss of lif¢ associated with large events. This trated within that region, and the distributié{A) would a
could lead to a cutoff in the distribution due to a rapid rise inPriori_have zero weight for events greater than the area as-
the total allocation of resources to prevent large events. Igociated with the mass concentrationpgk). Here the most
this case, the heavy tails would occur in the d@sind notin ~ €xtreme case is a point mass at a particular locafxgr)
the event sizé\. = §(x—x*), which could be enclosed by a high density of
To obtain the HOT state we simply minimize the ex- the resource, so that all activity is confined »b. Alter-
pected cosfEq. (1)] subject to the constraifiEq. (2)]. Sub-  nately, if p(x) is spatially uniform, thenR(x) and A(X)
stituting the relationshig\(x) =R~ #(x) into Eq.(1), we ob-  would be uniformly distributed, an&(A) would be a point
tain mass at a fixed area determined by the resource constraint
and the system size.
o W While counterexamples such as those we have just de-
E(A )—fxp(x)R POodx. ) scribed can be constructed, a broad class of distributions
p(x) leads to heavy tails if°(A). The case fod=1 with
Combining this with Eq(2), we minimizeE(A%) using the  monotonic p(x) and restrictingX to x>0 is particularly
variational principle by solving simple (and forms the basis for the more general gate
this special case, the change of variables fimx) to P(A)

x le¥ A~ Tlog(A)] 2

5f [P(X)R™“A(x) — AR(x)]dx=0. 4) is straightforward, and we obtain

X

Thus the optimal relationship between the local probability * A Ay

and constrained resource is given by Peum(A)= p,l<A,7)P(X)dX= PeurP (A7), (8)
p(X)R™*#~1(x)=const. (5)

where p,(X) is the tail of the cumulative distribution for
the probability of hits angh~ ! is the inverse function g, so
p(X)~RBHL(x)~ A~ (@ UB) (x) ~ A~ 7(x), (6) thatp~*(A~?) is the value ofx for which p(x)=A"7.

We can use EQ(8) to directly compute the tail of
where y=a+1/8. This relation should be viewed as the Pcur(A) for standardp(x), such as power laws, exponen-
local rule which sets the best placements of the resource. Aigals, and Gaussians. Table | summarizes the results, where
expected, greater resources are devoted to regions of higke look only at tails in the distributions ofandA, and drop
probability. constants. We obtain a power distribution Bg,(A) in

As function ofx, Eq. (6) shows thaip(x) andA(x) scale each case, with a logarithmic correction for the Gaussian.
as a power law. However, we want to obtain the distribution ~For higher dimensions, suppose that the tailpEf) can
P(A) as a function of the areA rather than the local coor- be bounded above and below by
dinatex. It is convenient to focus on cumulative distribution,

Pcum(A), which is the sum ofP(A) for regions of size
greater than or equal #. We express the tails ¢f.,{A) as pi(IX)=p(x)=<py(|x]), 9

From this we obtain

PeunlA)= |

A(X)>Ap(x)dx: fp(XKAyp(x)dx, (7) " where|x| denotes the magnitude af The specific form of

Eq. (9) effectively reduces the change of variables to quasi-
where the integral is evaluated over the subset iof which ~ one-dimensional computations. With this assumption,(&q.
the local valueA(x) is greater than the specified valfe can be bounded below by
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o1 b) p=0.85, ¥=0.75
Pcum(A)EDf pl(r)r dr (10) L s ==
P <A"? :
ZDJ __pi(r)dr, (11
p(x)<A™Y

whereD is a constant and the last inequality holds in the tails
wherer>1. Providedp, and p, are asymptotically of the
same order, this implies that the casedof1 simply adds
additional weight to the tail. More detailed computations can
be made to compute exactly what the-1 correction terms
are for various distributions.

While this analysis is fairly abstract, the underlying con-
cepts are highly intuitive, and the basic results should carry
over to a wide variety of spaces, resources, and constraints.
In essence we contend that optimizing yield will cause the
design to concentrate protective resources where the risk of
failures are high, and to allow for the possibility of large rare
events elsewhere.

L
d) p=0.91, Y=0.91

FFe

FIG. 1. Sample percolation configurations on ax&2 lattice
ll. LATTICE MODELS for (a) the random case near., (b) a HOT grid, and HOT states
. . . o . obtained by evolution atc) optimal yield, and(d) a somewhat
In this section we consider two familiar lattice models jo\ver density. Unoccupied sites are black, and clusters are gray,
from statistical physics, first as traditionally defined and thenyhere darker shades indicate larger clusters. The designed systems
incorporating design. These include percolati@i], the e generated for an asymmetric distribution of hitting probabilities
simplest model which exhibits a second order phase transisith Gaussian tails, peaked at the upper left corner of the lattice.
tion, and the original sand pile model introduced by Bak,
Tang, and Wiesenfelf8]. In the context of optimization and sjte, nothing burns. When the spark hits an occupied site the
design these two models become essentially identical, SO Wge spreads throughout the associated cluster, defined to be

consider them together. the connected set @ nearest-neighbor occupied sites.
We let P(A) denote the distribution of events of siZe
A. Percolation and letP.,(A) denote the cumulative distribution of events

We begin with site percolation on a two-dimensional 9réater than or equal té. The yield is thenY(p)=p
XN square lattice. In the random case, sites are occupied {P), Where the averagéP) is computed with respect to
with probability p and vacant with probability + p. For a bpth th_e _ensembles of conﬂguratlpns_and _the spatial distribu-
given densityp=p all configurations are equally likely. tion p(i,j) of sparks. By translation invariance, re.sult.s for
Typical configurations have a random, unstructured appeaf'® random case are independent of the distribution of
ance, as illustrated in Fig.(d). At low densities, nearest sparks_. ) . _—
neighbor occupied sites form isolated clusters. The distribu- In Fig. 2a) we plot y|eIdYas funct!on ,Of the-|n|t|al den-
tion of cluster sizes cuts off sharply at a characteristic siz&'ty » for @ variety of different scenarios including both ran-
which depends on density. The critical densitymarks the dom percolation and design. The maximum possible yield

divergence of the characteristic cluster size, angbathe correspopds to the diagonal I_in\é,=p, which is obtained if
cluster size distribution is given by a power law. Abgye a vanishing fraction of the sites are burned after the spark

there is an infinite cluster which corresponds to a finite frac-lands' The yield curve for the random case is depicted by the
tion of the system. Atp. the infinite cluster exists but is

sparse, with a nontrivial fractal dimension. The percolation a) 1 b) 1 randon]
order parameteP..(p) is the probability that any particular 08
site is connected to the infinite cluster. RoKp., P..(p) ' evolved—P + o1l
=0. At p=p;, P.(p) begins to increase monotonically 0.6 f P..
from zero to unity app=1. In the neighborhood of the tran- >, grid ool
sition, the critical ex%oner]tﬁ describes the onset of percola- 0.4 \ '
tion: P..(p)~(p—pc)*. An extensive discussion of percola- \ -
tion can be found in Ref21]. 02 randoﬁ h% 0.001
In order to introduce risk and compute yield, we define a Al 2
very primitive dynamics in which, for a given assignment of 0 02 04 p0.6 08 1 ! 10 A 100

vacant and occupied sites, a single spark is dropped on the

lattice initiating a fire. In the standard forest analogy, occu- F|G. 2. Comparison between HOT states and random systems at
pied sites correspond to trees, and risk is associated Wwitgiticality for the percolation modela) Yield vs density:Y(p). (b)
fires. The yieldY is defined to be the average density of treesCumulative distributions of eventB,(A) for cases(a)—(d) in

left unburnt after the spark hits. If a spark hits an unoccupiedig. 1.
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dashed line in Fig. @). At low densities the results coincide
with the maximum vyield. Neap=p, there is a crossover,
and Y(p) begins to decrease monotonically wiih ap-
proaching zero at high density.

The crossover becomes sharpMs> and is an imme-
diate consequence of the percolation transition. In the ther-
modynamic limit only events involving the infinite cluster
result in a macroscopic event. Yield is computed as the sum
of contributions associated with cases in whighthe spark
misses the infinite cluster and the full density is retained, and
(i) the spark hits the infinite cluster, so that compared with
the starting density the yield is reduced by the fraction asso-
ciated with the infinite cluster:

Y(p)=[1-P.(p)lp+P.(p)p—P(p)]=p—PZi(p).
(12

Thus yield is simply related to the percolation order param-
eter, and the exponent which describes the departure of yield
from the maximum vyield curve in the neighborhood of the
transition is . In random percolation, where the only tun-
able parameter is the density, the optimal yield coincides
with the critical point.

B. Sand piles

Now we turn to the sand pile model, which was intro-
duced by Bak, Tang, and WiesenfdlBTW) as the proto-
typical example of SOC. Unlike percolation, the sand pile
model is explicitly dynamical. It is an open driven system
which evolves to the critical density upon repeated iteration
of the local rules.

The model is defined on aN XN integer lattice. The
number of grains of “sand” on each site is given b{i,j).
The algorithm which defines the model consists of the indi-
vidual addition of grains to randomly selected sites,

h(i,j)—h(i,j)+1, (13

such that the sitéi,j) topples if the height exceeds a pre-
scribed thresholth. . As a resulh(i,j) is reduced by a fixed
amount which is subsequently redistributed among nearest

neighbor sited,,,,. We takeh,=4 and the toppling rule (©
h(i,j)=hs: h(i,j)—h(i,j)—4, FIG. 3. Typical SOC configuration vs the HOT state on a 64
(14) X 64 lattice. The gray scale ranges from bladér height O to
= oot 1. white (for height 3. The toppling threshold is taken to be(d) is a

snapshot of the height configuration of a BTW sand pile model,

Sand leaves the system when a toppling site is adjacent to tH@ere the instantaneous density=2.1, is near the critical den-

boundary. The toppling rule is iterated until all sites are beS!y of 2.125. The configuration has a "salt and pepper" appearance

low threshold, at which point the next grain is added with no obvious correlations between heights of neighboring sites

; X .. . . [25]. The average event involves 247 sités. illustrates(in white)
lDteszSt(e)g]e agp?remh.stl)r?p“ﬂté/ of thg alg_?r:nhg_]r’vt\?'s agdthe area swept out by a typical large event for the BTW sand pile.
relate models exnibit rich dynamics. 1he mo EI'I'he area has a fractal appearance. In this case the event involved

_does not eXhlb'F long range helght qurelatlr_ﬁﬂ§]_[F|g. _%"‘) 1132 sites of the lattice(c) illustrates the HOT state for a grid
illustrates a typical height configuratifrbut it still exhibits  gegign with four horizontal and vertical cuts, and a symmetric
power laws in the distribution of sizes of the avalanchesgayssian distribution of hitting probabilities, centered in the middle
Here size is defined to be the number of sites which topple &gt the lattice, with a standard deviation of ten sites. Here there is a
the result of the addition of a single grain to the fj8ee Fig.  very regular appearance to the pattern. The average dengity is
4(a)]. In addition, the model exhibits self-similarity in certain =2.63, well above the critical density, while the average event
spatial and temporal features such as fractal shapes of th&yolves far fewer site§70 in this case In the designed system,
individual regions which exhibit avalanchgsee Fig. 80)],  events sweep out the regular rectangular regions separated by the
and power law power spectra of the time series of events. cuts.
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FIG. 4. Both SOC and HOT states exhibit power laws in the avalanche distributio®, (), and(d) we plot the distributions for the
probability P,,(A) of observing an event of size greater than or equdl. t@) illustrates results for the 128128 BTW sand pile(b)—(d)
illustrate results for the HOT state in the continuum limit. Results are obtained for Cauchy, exponential, and Gaussian distributions of hits
(see texx (b) illustratesP(L) vs L for d=1. (c) shows the corresponding cumulative distributioia$.shows the cumulative distribution of
areas ford=2, obtained by overlaying thé=1 solutions. Numerical results for a 54512 discrete lattice with four horizontal cuts and
four vertical cuts are included for comparison with the Gaussian case.

Like equilibrium systems, such as the random percolatiorThe result is illustrated in Fig. 5. For the SOC system, com-
model in the neighborhood of a critical point, SOC systemsputing yield as a time average of iterative dynamics is
exhibit no intrinsic scale. The power law describing the dis-equivalent to computing an ensemble average over different
tribution of sizes of events extends from the microscopicrealizations of the randomness. The results are insensitive to
scale of individual sites out to the system digee Fig. 48)].  changes in the spatial distribution of addition sites. Essen-
Indeed, for some SOC models concrete mappings to equilitiially the same event size distributions are obtained regard-
rium critical points have been obtaing22—24. In the BTW  less of whether grains are added at a particular site, a subset
sand pile model, the critical point is associated with a criticalof sites, or randomly throughout the system.
density(average heightof sand on the pile of roughlyh). Unlike random percolation, in which we obtained a one-
=2.125. parameter curve describing yield as a function of density, our

We define yield for the sand pile model to be the numberresult for the sand pile model corresponds to a single point
of grains left untouched by an avalanche following the addibecause the mean dens{ly.) reaches a steady state. How-
tion of a single grain. That is, once the system has reachedever, it is possible to make a more direct connection between
statistically steady state, we compute yield for a given conour results for the sand pile model and percolation, by con-
figuration after one complete iteration of the additidfg.  sidering a modified sand pile model in which the density is
(13)] and toppling[Eq. (14)] rules, as the sum of heights an adjustable parameter. Aside from a few technical details,
over the subset of sitdd which are not hit during that par- this coincides with the closed, equilibrium analog of the sand
ticular event, and then average the result over time: pile model mentioned above. Alternately, it can be thought

of as a primitive, one parameter, probabilistic design.
_[N-2 - Suppose we can manipulate a single degree of freedom,
Yie) <N > h("’)>' 19 he density of the initial state. That is, we begin with an
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T T T T ‘ T T ‘ ™) C. HOT states

|
: HOT* — In this subsection we show that it is possible to retain
! ] maximum yields well beyond the critical point, and up to the
} maximum density abl—o. This is made possible by select-
! 1 ing a measure zero subsettoferantstates. We refer to these
2 % S0C ] sophisticated designs as HOT states, because we fix the exact
] configuration of the system, laying out a high density pattern
. which is robust to sparks or the addition of grains of sand.
] In our designed configurations, in most respects there will
be no distinction between a designed percolation configura-
. tion and a designed sand pile. In percolation, densities well
¢ 1 above the critical density are achieved by selecting configu-
I N rations in which clusters of occupied sites are compact. In
0 1 2 3 the ?]anhd pile model we cr:)nstruct ?)nalogous Cr(])rtr;plact rﬁgio?]s
: in which most sites are chosen to be one notch below thresh-
Density <h> old: h(i,j)=h,—1=3, which are analogous to the occupied
FIG. 5. Yield vs density. We compare the yidldefined to be  Sités in percolation. In each case to limit the size of the
the number of grains left on those sites of the system which wer@valanches, barriers of unoccupied sites, or sites with
unaffected by the avalanchéor different ways of preparing the h(i,j)=0 are constructed, which, as discussed in Sec. Il, are
system. Results are shown for randomly generated stable initiubject to a constraint.
conditions, which are subject to a single additisolid line) for a As stated previously in Sec. Il, the key ingredients for
128x128 sand pile model, and the corresponding SOC state and theentifying HOT states are the probability distribution of per-
HOT state. Clearly the HOT state outperforms the other systemsurbations, or sparksp(i,j), and a specification of con-
exhibiting a greater yield at higher density. Yield in the HOT statestraints on the optimization or construction of barriers. We
can be made arbitrarily close to the maximum value of 3 for largewjl| begin by considering a global optimization over a re-
systems with a sufficient number of cuts, while increasing the syssyricted subclass of configurations. Numerical and analytical
tem size does not significantly alter the yield in the other two cases.agjits for this case are obtained in Sec. IV. In Sec. V, we
introduce a local incremental optimization scheme, which is
empty lattice, and add grains randomly until the systemwidgeminiscent of evolution by natural selection. Sample HOT
density achieves the value we prescribe. We also restrict alliates are illustrated in Figs. 1 and 3.
cated binomial distribution of heights, restricted to valuespgundaries are composed of horizontal and vertical cuts. For
h(i,j) €[0,1,2,3, where the mean is adjusted to produce thepercolation, the cuts correspond to lines comprised of unoc-
prescribed density. In Fig. 5 we compute the mean yield vgypied sites. In the sand pile model the cuts correspond to
density of this system after one grain is added, as an averagges along whichh(i,j)=0. In the sand pile model, some-
over both the initial states and the random perturbation sitegynat higher yields are obtained if the cuts are defined to have
As in percolation, densities near the critical point produceneight 2, and contiguous barriers of height two are also suf-
the maximum yield. Systems which are designed at low denficient to terminate an avalanche when the BTW toppling
sities are poor performers in terms of the number of graingy|e s iterated. However, the difference in density between a
left on the system after an avalanche because so few graifgid formed with cuts of height zero and 2 is a finite size
were there in the first place. At the critical density, the char-gffect which does not alter the event size distribution, and
acteristic size of the avalanche triggered by the perturbatiofpads to a system which is less robust to multiple hits.
becomes of the order of the system size. Densities beyond a get of 20— 1) cUts{i1,iz,..cin_1:12020--sin_1} de-
the critical density often lead to systemwide events, causingpes a grid ofn? regions on the lattice. For a given configu-
the yield to drop. In fact, both the peak density and yield ofyation (set of cuty, the distribution of events sizes and ulti-
the primitive design are nearly equal to the time averageghately the yield are obtained as an ensemble average. The
yield and density of the SOC stdi25], where for each event gysiem is always initialized in the designed state. Event sizes
the yield is the total number of grains left on sites which dogre getermined by the enclosed area and contribute to the

not topple. o o distribution with a weight determined by the sum of the en-
It is important to note that the primitive design is not ¢|gsed probabilityp(i, ).

equivalent to SOC. The mechanisms which lead the system

to the critical Q(_ansny are er_mrely different in the two cases. V. OPTIMIZATION OF THE GRID DESIGN

In SOC the critical density is the global attractor of the dy-

namics, which follows from the fact that the system is driven  For the grid configurationfFigs. 1b) and 3c)], the de-

at an infinitesimal rate. In contrast, the primitive design issign problem involves choosing the optimal set of cuts which

tuned (by varying the densifyto obtain maximum yield. minimizes the expected size of the avalanche. First we con-
Consequently, the primitive design has statistics whichsider two simple cases. Suppose you know exactly which site
mimic SOC in detail, but without any “self-organization.” (i,j) will receive the next grain. Then, clearly, the best strat-

Thus it would be difficult to distinguish on the basis of sta- egy is to define one of the cuts to coincide with that site, so
tistics alone whether a system exhibits SOC or is merely ghat when a grain is added to the system the site remains
manifestation of a primitive design process. subthreshold and no avalanche occurs. Alternatively, if

Yield /site
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p(i,j) is spatially uniform, then the best design strategy is tofor an asymmetric distribution with Gaussian tails, which is
define equally spaced cuts;=N/n, i,=2N/n,...,i,_;  peaked at the upper left corner of the lattice. The correspond-
=(n—1)N/n, j;=N/n,...,j,-1=(n—1)N/n, so that the ing distribution of event sizes is included in Figb2 The
system is divided intm? regions of equal area. In this case, distribution of event sizes for the symmetric case in a some-
all avalanches are of sizeN(n)2. Already we see that the what larger system is included in Fig(d. The cumulative
avalanche size is considerably less than that which would bdistribution of events is reasonably well fit by a power law
obtained in the SOC or percolation models at the same denwvith Py, (A)~A"7, with y~3/2.
sity (the SOC system will never attain the high densities of Sharper estimates for the exponents can be obtained in the
the HOT statg continuum limit, where we rescale the lattice into the unit
The more interesting case arises when you have somiaterval (x=i/N, y=]j/N) and take the number of lattice
knowledge of the spatial distribution of hitting probabilities. sitesN to infinity. In the limit, the cuts become infinitesi-
For a specified set of cuts the expected size of the avalancheally thin (d—1)-dimensional dividers between continuous
(defined to be the number of toppling sités given by connected regions of high density. We begin by solving the
problem ford=1 since the solution to our grid problem
_ factors into two one-dimensional problems. In each case, we
E(A) ; PRIAR). (16 adjust the positions af— 1 dividers to define total regions,
such that the minimum expected event size is obtained. Here
where for a given set of horizontal and vertical cuts the sunthe event size is associated with the leng{tR) of each of
is over the rectangular regior® of the grid, andP(R) and  the regions.
A(R) represent the cumulative probability and total area of To locate the positions of the cuts which yield the mini-
region R defined generally on d-dimensional spacX as mum expected size, we apply the variational meth2@]
separately to each bracketed term on the right hand side of
P(R):f p(x)dx and A(R):f dx. 17) Eqg. (19. Dgtermination of the stationary point wit_h respect
R R to the positions of each of then(- 1) cuts yields an iterative
solution for the cut positions:
Equation(16) can be written in terms of the hitting prob-

ability distributionp(i,j) and the positions of thieandj cuts P(R)+L(R)P(X)—P(Ri+1)—L(Ri+1)p(x)=0.
as (20)
g Sl The cut positions beginning at the origin are obtained b
_ o igi [ y
E(A) s§=:0 t=§:o [(Z’S j;t p(|,1)) ( Z’S 12141 1) ’ solving Eq.(20) numerically. In Fig. 4b) we illustrateP (L)

(18)  for cases in whichp(x) is described by Cauchyp(x)

, . =(alm)(a®+x?)~1 with a=1], exponential [p(x)
where in the outer sums it is understood that the zeroth and. ;~ 1 exp(—|x/o), with o=10], and Gaussian[p(x)
nth cuts correspond to the boundaries.  =(2m0?)Y2exp(—x&/20?), with o= 15] distributions. The
~ For simplicity we specialize to the subclass of distribu-pparameters are chosen so that the optimal solution obtained
tions of hitting probabilities for which theandj dependence  fom Eq.(20), involves a cut at the origin, followed ten cuts
factors:p(i,j)=p(i)p(j). In this case Eq(18) can be writ- i\ the half space ranging frome [0,101].
ten as the product of quantities which depend separately on gor the Gaussian and exponential cases, even on a loga-

the positions of the andj cuts: rithmic scale regions of smalll are heavily clustered near the
n=1 figiy ™ origin. For larger values of consecutive region sizes grow
E(A)= i 1 rapidly with x, and the effect is most pronounced for the

(A) L;o (iZiS Pl )) ( izis ” distributions in which the rate of decay p{x) is greatest. In

-1 e fd the Gaussian case, the final region encompasses most of the
E E o(i) E 1 (19 syster_n (_1029950 out of the total'le'ngth of fpwhile the
== S, ' first nine regions are clustered within a total length oj.50
The next valuelL,; is sufficiently large that it cannot be
The optimal configuration minimizeE(A) with respect to represented as a floating point number on most machines.
the position of the 2¢— 1) cuts. The factorization allows us For the Cauchy distribution, the lengths do not spread out on
to solve for the positions of theandj cuts separately. When a logarithmic scale.
the distributionp(i,j) is centered at a point=j, thei andj Like the more general case discussed Sec. Il, the solution
solutions are identical. When the distributipki,j) is cen-  for the grid design yields power laws for a broad class of
tered at the origin, the solution is symmetric around the orip(x). Unlike the results in Sec. Il, where the scaling expo-
gin. nents were sensitive to the specific choicep@x), for this
We obtain an explicit numerical solution by minimizing case we find that asymptoticalB(L)~ 1/L for the Cauchy,
the expected event size with respect to all possible placeexponential, and Gaussian distributions. In all three cases,
ments of the cuts. Our result for an optimal grid subject to a@he slope of IfP(L)] vs In(L) never gets steeper than2.
Gaussian distribution of hits centered at the origin is illus- A simple argument will help us see why the numerical
trated in Fig. 8c) [where the system size is taken to be observation that asymptotical®(L)~1/L is plausible. Note
relatively small to allow a visual comparison with the SOC that in each case the decayp(fx) is monotonic, so there are
state in Fig. 8)]. Figure 1b) illustrates analogous results no repeated region sizes. Thus consecutive points in the dis-

X
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tribution of event size® (L) vs L are obtained directly from V. EVOLUTION TO THE HOT STATE
consecutive terms in Eq20), namely,P(R;) vs L(R;). If Most systems in engineering and biology are not designed
P(L)~L"* then the slope on a logarithmic plot, by global optimization, but instead evolve by exploring local
variations on top of occasional structural changes. Biological
AIn(P)  InN[P(Ri+1)]—InN[P(R;)] evolution makes use of a genotype, which can be distin-
Aln(L) - IN[L(Ri+1)]—IN[L(R)] guished, at least abstractly, from the phenotype. In engineer-
ing the distinction is cleaner, as the design specifications
_ In[P(R;+1)/p(xi) ] = In[P(R;)/p(x)] exist completely independently of any specific physical in-
o IN[L(Ri,1)]IN[L(R)] ’ stance of the design. In both cases, the genotype can evolve

due to some form of natural selection on yield.

For both the primitive design and sophisticated grid de-
_ ) ) sign discussed in Sec. lll, we can view the design parameters
will asymptotically approach-1. The second term in the as the genotype and the resulting configuration as the pheno-
denominator is asymptotically negligible compared to theyype |n the primitive design the density is the only design
first since the regions sizes are large and grow rapidly wittharameter. In the advanced design, the design parameter is
increasingx. Combining this with Eq(20), a slope of—11is  ihe locations of the cuts.
obtained as long as the first term in the numerator of(Ed). By introducing a simple evolutionary algorithm on the
is negligible compared to the second. Asymptotically, Weparameters, we can generalize the models so that they evolve
can extend the upper limit of the integral representation ot an optimal state for either the primitive or sophisticated
P(R) in Eq. (17) to infinity. Then clearly (R;)  design. The simplest scenario would involve a large en-
>P(Ri+1)- If p(x) decays too rapidlye.g., double expo- semble of systems that evolve by natural selection based on
nentially), the first term becomes negatively divergent whenyie|d. This is a trivial type of evolution, but it is obvious that
the logarithm is evaluated. However, this does not occur foych a brute force approach will be globally convergent in
distributions which the decay less sharp. Indeed, for thehese special cases because the search space of cuts is highly
Cauchy, exponential, and Gaussian distributions we considefiryctured. Interestingly, both cases evolve to a state which
that the first term in the numerator of EQ1) is negligible  exhibits power law distributions, while all other aspects of
compared to the second, so that in each case asymptoticaliije optimal state are determined by the design constraints.
P(L)~1/L. For the Gaussian and exponential cases the nUsven in the case of primitive design, the evolution proceeds
merics blows up before we reach the asymptotic limit. Forpy selecting states with high yield, and which differs from
the Cauchy distribution, the fit to the asymptotic result isthe internal mechanism by which SOC systems evolve to the

(21)

excellent. S _ _ critical point. With more design structure, systems will
The cumulative distribution® (L) are illustrated in  eyglve to densities far above criticality.
Fig. 4(c). These are obtained from Fig(b} by summing Alternatively, in the context of percolation, we can con-

probabilities of events of size greater than or equdl.tdhe  sjder a local and incremental algorithm for generating con-
solution for thed=2 grid is obtained by overlapping the two figurations which is reminiscent of evolution by natural se-
one-dimensional solutions. The areas of the individual retection. We begin with an empty lattice, and occupy sites one
gions are given bA(R) =Ly(R)Ly(R), and the probabili- at a time in a manner which maximizes expected yield at
ties enclosed in each region is simplyP(R) each step. We choose an asymmefxc, j):

=P«(R)Py(R). The results for power law, exponential, and

Gaussian distributions of hitting probabilities are illustrated T —[(Met (XIN)Y oy ]2

in Fig. 4(d). In each case, the resulting distribution of event P(.1)=p(HP()p(x)>2 e O, (22
sizes exhibits a heavy tails, and is reasonably well fit by a

; P . ~ wherem;=1, 0;=0.4,m;=0.5, ando;=0.2, for which the
power law. For comparison, 1n Fig(d we include the re ;lgorithm is deterministic. We choose the tail of a Gaussian

to dramatize that power laws emerge through design even

good agreement with the continuum results for the exponenvf’he.n . exter.nal distribution Is far f“’”." a power Ia\{v. Oth'
in the power law in spite of the sparse data and the finite gri rwise Eq.(22)l IS (;hosen somewhgt arb!tranly to avoid arti-

effects which prevents us from obtaining an exact solution t icial symmetrles |n.the HO.T conflguratlor_ls.

Eq. (20) for the discrete lattice. Discrete numerical results Implementing this algorithm, we obtain a sequence of

are expected to converge exactly to the continuum case iﬁonﬂguranons of monotonically increasing density, which

the limit asn. N—oo with n/N—0 passes through the critical densfy unobstructed. Here,

Finally, we emphasize that neither our choice to use a gri(ﬁ’lay?’ no spelcollal rplte.f 'ﬁt mudck;) h|gréer dgn?r?es .tTgrefl_r']S a
in the optimization problem nor our use of a factorizablemal):j'mum 3¢e poml 0 gV.VeF. ya frophln € yield. 1he
distributions of hitting probabilities are required to obtain _yleE cuzrge (p) is plotted in Fig. 2a) for the p(i,j) given
power laws tails for the distribution of events. We have veri-"" Tﬂ:( )'. o | | | fracti fth
fied that similar results are obtained for concentric circular 'S Optimization explores only a sma ractlonzo the
and square regions, and for different choicep(fj). The conﬁguNr?nons at each density Specifically, (1-p)N* of
generality of our results suggests that heavy tails in the disthe (; -, \2) possible configurations are searched. Nonethe-
tribution of events follow generically from optimization of a less, yields above 0.9 are obtained on &32 lattice, and in
design objective and minimizing hazards in the presence ahe thermodynamic limit the peak yield approaches the maxi-
resource constraints. mum value of unity. While the clusters are not perfectly

cally optimized with far fewer cuts. We obtain surprisingly
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regular, the configuration has a clear cellular pattern, consist- 10° AL B AL R AL R
ing of compact regions enclosed by well defined barriers. As 107 - -
shown in Fig. 2b), the distribution of eventP(A) exhibits a 10-2 i -
power law tail wherp(i,j) is given by Eq.(22). This is the = 107 _ 3
case for a broad class ¢f(i,j), including Gaussian, expo- T 10 E E
nential, and Cauchy. - 3
Interestingly, in the tolerant regime our algorithm pro- E‘ 104 £ i
duces power law tails for a range of densities below the E 10 £ B
maximum yield, and without ever passing through a state o 107" =
that resembles th@racta) critical state. This is illustrated in ‘8 107® e —
Figs. 1d) and 2Zb) where we plot the event size distribution & 107° % Gaussian hits 3
P(A) (lower of the “evolved” curve$ for a density which 1070 + Uniform hits —
lies below that associated with the peak yield. Note that this 10-1 b
configuration has many clusters of unit sixe=1 in check- 1012 B ol il ol vl vl ol 4o
erboard patterns in the region of higki,j) in the upper left 10° 10" 10% 10% 10* 105 10° 107 108
corner. Event Size A
FIG. 6. The HOT state is highly sensitive to the distribution of
VI. CONTRASTS BETWEEN CRITICALITY AND HOT hitting probabilitiesp(i,j). Here we illustrate the probabiliti?(A)

o . It is that the desi d d pil f an event of sizé\ for the configuration designed for a Gaussian
ur-primary resuft IS that theé designed sand pilies an (i,j) in Fig. 4(d). The points marked correspond to the results

perCO|at!0n mo.dell produce_ power law d.IS.tI’Ib-UtIOI’]S by 8\vhen the system is subject to the distribution of hits it was designed
mechanism which is quite different from criticality. The fact ¢, rihe results shown in Fig.(d) are obtained from these results by
that power laws are not a special feature associated With &mputing the cumulative number of events greater than or equal to
single density in the HOT state is in sharp contrast t0 8 for eachA]. In contrast,+'s correspond to the case when the
traditional critical phenomena. system is subject to a uniform distribution of hits. In this case the

It is interesting to contrast the kind of universality we probability of large events exceeds the likelihood of small events.
obtain for the HOT state with that of criticality. For critical

points, the exponents which describe the power laws dependith an underlying critical phenomenon and emergent large
on a limited number of characteristics of a model: the dimeniength scales which are central features in SOC are not
sionality of the system, the dimensionality of the order pa-present in the HOT state.

rameter, and the range of the interactions. In the case of One of the most interesting differences arises when we
nonequilibrium systems, and particularly for SOC, the con-consider the sensitivity of the HOT state to changes in the
cept of universality is less clear. There are numerous exhitting probability densityp(i,j). In random systems, quali-
amples of sand pile models in which a seemingly very minottatively and in most cases quantitatively similar results are
change in the toppling rule results in a change in the valuesbtained regardless of the probability density describing
of the scaling exponen{22,27]. placements of the sparks or grains. In the BTW model a

As discussed in Sec. Il, for the HOT state we return to asystem which is driven at a single point produces a distribu-
case in which only a few factors influence the scaling expotion of events which is essentially identical to the results
nent for the distribution of events. These include the expoebtained when the system is driven uniformly. In contrast,
nent «, which characterizes how the measure of size scalethe HOT state is much more sensitive. The optimal design
with the area impacted by an evept;which relates the area depends intrinsically op(i,j). Furthermore, if a system is
of an event to the resource density, and most importantly thelesigned for a particular choice pfi,j), and then is subject
tails of the distribution of perturbationg(x). In this sense, to a different density, the results for the event size distribu-
many models of cascading failure yield the same scaling extion change dramatically.
ponents, and thus may be said to fall into the saiamality This is illustrated in Fig. 6, where we initialize the system
class. in the optimal grid designed state for a Gausgiéinj) cen-

To illustrate the differences further, we now considertered at the origin, but then subject the system to a spatially
quantities other than the distribution of events. For exampleuniform distribution of hits. The resulting event size distri-
the fractal regions characteristic of events at criticality arebution increaseswith the size of the event, where for the
replaced by regular, stylized, regions in the HOT state. Infargest event®(A)~A. In this sense, random critical sys-
deed, our sophisticated designs are a highly simplified extems are much more generically robust than HOT systems
ample of self-dissimilarity, in sharp contrast to the self-with respect to unanticipated changes in the external condi-
similarity of criticality. Although this concept has been tions.
suggested in the context of hierarchical systems, the basic Another sense in which the HOT state exhibits strong
notion that the system characteristics change dramaticallyensitivity relative to SOC is in terms of vulnerability to
and fundamentally when viewed on different scales clearlydesign flaws. A single flaw may allow an event to leak past
holds in our case. Put another way, renormalizing the sophighe designed barrier. Furthermore, without incorporating a
ticated designs completely destroy their structure. Whilemechanism for repairing the system, repeated events gradu-
some statistics of the HOT state, such as time histories adlly erode the barriers which leads to an overfrequency of
repeated trials, may exhibit some self-similar characteristictarge events that ultimately reduces the density to the critical
simply because of the power law distribution, the connectiorpoint. This is illustrated in Fig. (& for the case of a sand
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S I B R I ERRE density, for example, it would be easy to design HOT states
7 with small isolated clusters that would be highly robust to
changes in probability distributions or flaws. Common strat-
egies employed in biology and engineering to improve the
system lifetime incorporate backup boundaries at additional
cost (e.g., cuts which are more than one grid spacing in
width) or mechanisms for the system to be repaired with
regular maintenance. Engineers routinely add generic safety
margins to protect against unanticipated uncertainties.

It is interesting to note that even large events on the de-
signed sand pile do not immediately destroy the design struc-
ture when it is subject to repeated hits. When a grain is
L dropped directly on a cut, the height at that site increases but
ol b b b by no avalanche occurs. When an avalanche is initiated within a

0 10000 20000 30000 40000 50000 rectangular domain, the net effect is that the boundaries on
Time (No. hits) all four sides step one site in toward the center of the box,
and leave a residual site of reduced height at the previous
o corner points. All other sites return to their original height.
L (b) 200 Thus implementation of an elementary algorithm for repair-
600 |— ing damage to the system should be straightforward.
i 100 Our obs_ervation_that t_he net change gssociated with an
L avalanche in the grid design is simply to displace the bound-
- | | aries one step towards the site that was hit suggests some
400 0 ol = ‘1061 .,‘200‘ = degree of evolution toward the optimal state is intrinsic to
the BTW algorithm. In Fig. 7 we illustrate what happens
when we begin with a regular grid of equally spaced cuts,
and subject the system to repeated events using the BTW

Average height <h>

Mean Event Size <A>

=00 N algorithm with hitting probabilities chosen from a Gaussian
- p(i,j) centered in the middle of the lattice. We run a long
- sequence of repeated events without making repairs, and find
ol b b e b1y that the mean event size initially decreases during a period in
0 10000 20000 30000 40000 50000 which the density is actually increasingig. 7(a)], as the

Time (No. hits) boundaries contract around the center of the lattice as illus-
trated in Fig. Tb). However, the designed sand pile never
FIG. 7. If the grid is not repaired between hits, the designedreaches the HOT state by this method. Repeated hits create
sand pile evolves back to the SOC state.(d@h we illustrate the  sufficient flaws in the boundary that large events eventually
density as a function of time for the discrete system with the initialreturn the system to the SOC state. However, as illustrated in

state taken to be a uniform grifSimilar results are obtained when the density plofFig. 7(a)], the transient period is extremely
the initial state is optimized as in Fig(.] The system is subject to long.

repeated hits selected from a Gaussian distribution. With time, the

system evolves back to the SOC state. Initially the density exhibits VII. CONCLUSION
oscillations, which arise as mass accumulates in the céttier ) )
Gaussian is centered in the middle of the lajtideut before the In summary, we have described a mechanism whereby

boundaries surrounding the center region have fully disintegratedd€sign optimization in the presence of constraints and uncer-
In (b) we illustrate the corresponding mean event size vs time. Théainty naturally leads to heavy tailed distributions. Common
mean event size initially decreases as the grid contracts around tiigatures of the HOT state includ#) high efficiency, perfor-
more probably initiation siteéshown on an expanded scale in the mance, and robustness to designed-for uncertair(@gsty-
inse). These results are obtained on the discrete latticé&\fel64,  persensitivity to design flaws and unanticipated perturba-
initialized with seven equally spaced vertical and horizontal cutstions; (3) nongeneric, specialized, structured configurations;
The Gaussian distribution of hits is centered in the middle of theand (4) power laws. We are not suggesting that HOT is the
lattice, witho=4, and is computed as the average overi@liza-  only alternative to SOC which yields power laws. In many
tions. Results at small times converge rapidly, since each realizatiopgses, statistics alone may be respondib8. Furthermore,
begins with the same initial state. We plot the mean over a largg seems likely that in some cases real systems may combine
ensemble to obtain smoother results at long times. SOC or some other randomizing phenomenon with design in
the process of mutation and selection as they evolve towards
pile model with an initially uniform gridsimilar results are complex and efficient operating states.
obtained when the initial state is optimized for, e.g., a Gauss- An important consequence of the special features of the
ian). HOT state is the development of new sensitivities at each
While the HOT state is highly sensitive to unanticipatedstep along the path toward increasingly realistic models. Un-
perturbations or flaws, additional constraints can be imposelike criticality, where systems fall into broad universality
on HOT designs to increase their robustness to any desiragdasses which depend only on very general features, for HOT
level, but at the cost of reduced performance. At the criticakystems the details matter.
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From a technological and environmental viewpoint, per-Thus the internal configuration is highly structured and spe-
haps the most important feature of HOT states is the fact thatialized, and extremely robust to the main sources of uncer-
the high performance and robustness of optimized design@inty, which are due to user behavior and network compo-
with respect to the uncertainty for which they were designednent failure. The network is also hypersensitive to common-
is accompanied by extreme sensitivity to additional uncermode software bugs for which it is not designed, and thus
tainty that is not included in the design. We consideredhss all the HOT features.
changgs to the hitting probabili@ies and flaws in the initial  \y/ile the Internet, and computer systems more generally,
conditions, but other changes in the “rules” would have aye self-similar network traffic and ubiquitous power law
similar effects. In contrast, the SOC state performed relag;aiistics for everything from ftp and web file transfers to

tively poorly, but was much less sensitive to changes in th%PU usagd15,30, it remains somewhat controversial as to
rules. the origins of these effects and their significance for network

. Thi; Is one of the most important properties of Complex.design[Bl]. It is widely agreed, however, that the “bursty”
biological and engineering systems that has no counterpart Mature of network traffic requires, say, much larger router

physics, that compIeX|ty.|s driven by profound tradeoffs N hyffers than would result from a more traditional queueing
r_ob_ust_ness and uncertainty. Inde“ed, there are fu_nd_ame[? eory analysi$15]. A popular theory claims that “bursty”
limitations that can be viewed as “conservation principles” | o et traffic can be traced to power law distributions in
{veb files[15,32. Roughly speaking, this theory argues that
eI[arge web file transfers due to heavy tails are streamed onto
. ) he network by TCP to produce long-term correlations, and
(the Internexchosen from engineering, and ofeosystems thus burstiness and self-similarity in network traffic. This

c_hoseln _frohm biology. V\]fgggomdhg\éecbeﬁ” Colns“ljere‘jh%r_er'nechanisms seems to explain the burstiness on time scales of
viously In the context o an , they clearly exnibit ge. 000 4s to hours, that is, long compared to the round-trip
all the features associated with the HOT state. In dlscussmgacket times

these examples, we will not attempt to provide a comprehen-- 1, qing the origins of network burstiness to heavy-tailed

S|vehreV|er(\)/f thﬁl relevlant” Ilt?ratgore, Wh|c§ IS exter?sa/_e "Mweb file distributions is an attractive starting point for under-
each case. We will simply illustratéor an audience whichis - gy, jing the power laws in a wide variety of measurements,

at least somewnhat familiar with these disciplinedly these - e it s consistent with the observation that tloag-time)
systems are good candidates for further investigations in th, iness is independent of congestion level. Recall that,

context of HOT. Itis important to emphasize that our highly )25 on, the evolutionary mod&ec. \, we have identified

simplified models S.hOUId hot be taken ser!oysly as proFo- ower laws at all densities above criticality as a distinction
types for these particular systems. Instead, it is our intentiofoyeen HOT and criticality. While this theory explains net-
to use toy models to illustrate several essential ingredients imlork burstiness in terms of heavy tails in web files, so far

how nature works” which are absent in SOC. It is the o0 js 1o accepted explanation for the heavy tailed web file

general properties of HOT states, rather than the specifics instributions, despite enormous statistical evidence for them
the percolation and sand pile models on the one hand, 532_35

in.ternets or ecosystgmg on the other., which are common to a We suspect that the power laws in web file distributions
wide range of applications, and which therefore should b ay arise via HOT. That is, HOT features may extend not

taken into account in the development of domain speciﬁcomy to the network but to the web sites themselves. High-

models. volume commercial web sites are constantly tuned for high
throughput, and thus we can explore what properties might
A. HOT features of the Internet be consequences of such design. A simple model for this

We begin with the Internet which, as mentioned in Sec. | would be to assume that the “document” making up a web
is an astonishingly complex system. Here we highlight a fewsite is partitioned into files to minimize the expected sizes of
issues that underscore the HOT features, including ubiquifile transmissions. Users exhibit widely varying levels of in-
tous power law statistics. Computer networks are particularlyerest in the document, so that an “optimized” web site
attractive as a prototype system, since a great deal of statigrzould have smaller files for high hit portions of the docu-
tical data are available and experiments are relatively easy tment. To make the connection more precise, suppose that we
perform, certainly compared with ecosystems. The history ofnodel user interest as a probability distributig{x), where
the various types of networks that have been implemented is the location within the document that the user would like
also yields a rich source of examples. For example, a familiato examine. Real web documents, of course, have a great
broadcast ethernet, but without collision and congestion condeal ofa priori structure, but we will make the highly ide-
trol, would correspond to gurely) hypothetical “random”  alized assumption that the document itself is just a single
network and would indeed exhibit congestion induced phaseontiguous object. Also, real users interact in complex ways
transitions at extremely low traffic densities. It is not hard towith the structure of the document. Thus a model that as-
imagine that such a primitive and inefficient network could sumes the user is interested in a single location in an unstruc-
be made to operate in a state that might resemble SOC artdred document is extremely simplified, but allows us to use
EOC. the results in Sec. IV.

In contrast, modern networks use routers and switches An abstract web design problem would then correspond to
together with sophisticated control protocols to produce netpartitioning the document intl files such that the expected
works which are many orders of magnitude more efficienffile transfer is minimized. Because a hit on a file causes the
than if those routers, switches, and protocols were removecentire file to be transferred, the expected transfer Bz is
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given by a sum over the fileisof the product of the prob- as a consequence of the dynamical response of coupled
ability of the file P(i), obtained from the probabilitp,(x) populations to external disturbande&¥]. In the case of en-

thatx will be in file i, and the size of the fil&(i): vironmental policy, there are fundamental distinctions be-
tween the implications of SOC and EOC and HOT.
E(S)=2 P()S(i). (23) It has been argued, principally by physicists, that ecosys-
i

tems are in a critical state because the distribution of sizes of
extinction events, as deduced from the fossil record, is char-

Minimizing E(S) corresponds to exactly the optimization acterized by a power lays8]. This fact has motivated the
problem we solved in Sec. IV for the grid design. In that caséEOC based Kauffman-Johnsen mof&9], which describes
variational methods led to Eq20) for the positions of the the evolution of coupled fitness landscapes, and the Bak-
cuts in one dimension, which in this case correspond to cutSneppen moddK0], which is a simple SOC model of a set
in the document, breaking it up into a set of individual files. of species evolving on a fithess landscape. However, there is
Asymptotically in Sec. IV we found that for a broad class of an ongoing debate as to whether the SOC and EOC models
probability distributions for the hits we indeed obtain heavycapture the essential features of real environmental systems.
tails. Superficially, the plots in Fig.(d) for the resulting The alternative perspective offered more typically by biolo-
cumulative distributions do resemble those for web sites, bugists and ecosystem specialists exhibits many features of
this should not be taken too seriously, as it is not a statistiHOT. Below we summarize a few key results in environ-
cally precise comparison. mental studies which support this point of view.

This view of web site design is so idealized that it may Our investigation of the primitivérandom and sophisti-
not explain in any detail why real web sites have power lawcated designs in percolation and sand pile models has direct
distributions. The assumption of a homogeneous document @arallels in studies of the role of increased complexity and
particularly suspect, and intrinsic heterogeneity and hierarstructure in ecosystems. For ecosystems, the analog of mov-
chy in the original document itself may be more important toing toward higher densities is associated with increasing the
the web site layout than user interest. Also, users typicallynumber of organisms and/or increasing the number of spe-
browse a web site in a sequence that reflects the web sitedes, which is referred to “increasing complexity” in the
structure, and thus we are exploring models with more realecology literature. The early and influential work of May
istic structure. However, given how robust the HOT mecha{41] suggested that high density statbggh levels of com-
nism for producing heavy tails is, we expect that many dif-plexity in ecosystemsare not stable—in simple models in-
ferent design elements could contribute in different settingsgreased population and differentiation eventually leads to a
but all would yield the same effective network behavior. Webifurcation analogous to the percolation transition in the ran-
hope that this approach may begin to demystify some of thelom system. However, according to a recent review by Polis
discussion, since it shows that the observed power laws, if42], “it was clear to empiricists and some theoreticians that
cluding even(roughly) the exponents, are at least consistentnatural systems are quite complex. In any one system, a great
with the web sites being designed. The constant tweeking adiversity of species is connected through many different in-
high volume commercial web sites to maximize throughputteractions.” This was contradiction to May’s conclusions
might yield an adaptive process which is a reasonable aghat increasing complexity will eventually cause ecological
proximation to HOT. Further research in this direction, par-systems to exhibit strong fluctuations and “fall apart.”
ticularly with richer models for web documents and user in- More recent work by McCann, Hastings, and Hup48]
terest, will be needed to evaluate the significance of oushowed that increased densitye., complexity tends to sta-
speculations. bilize an ecosystem, damping out fluctuations and preventing
the loss of species. Their work was based on models with a
more accurate representation of the biology, and leads to
systems which stabilize at higher densities, in a manner

Finally, we move to ecosystems. In comparison to thewhich is qualitatively similar to the way in which our sophis-
Internet, here the analogy while suggestive is much less preicated design in the evolutionary mod&ec. \j passes un-
cise. For the Internet, we have access to a great deal of stabstructed through the critical point associated with a ran-
tistical information as well as all the details of how the sys-dom system to reach a structured high density state.
tem is designed. From this we are beginning to develop a Additional evidence for the critical importance of evolved
case for HOT at the level of the file distributions on web structure in ecosystems is obtained in the study of food webs
sites, as discussed above, as well as the network as a who[d4]. In simple randomized models, high densities., com-
We are suspicious that a similar story may apply to ecosysplexities destabilize food webs in a manner which again
tems, but it is necessarily more speculative because we hayparallels the falloff in yield which we observe in random
a less complete understanding of the details. In the envirorsystems for densities which exceed the critical point. In nu-
mental literature, the definition of what is meant by “ecosys-merical and laboratory studies, randomly assembled but
tem” is in itself a topic of debate, and determining preciselyplausible food webs typically break dowd5,46. The re-
how concepts such as “optimization,” “yield,” and sults of these studies are contradictory to observations of
“events” might play a role in the interactions between spe-food webs in nature, which are composed of large humbers
cies is much more ambiguous. Nonetheless, modeling popwf interacting species. However, real food webs are not ran-
lation dynamics[36] play a central role in environmental domly constructed. In model studies, incorporating design
science. Furthermore, there is increasing evidence that tHfeatures such as adjusting the distribution of interaction
widespread observations of heavy tailed distributions arisestrengths to maximize survival and introducing redundancy,

B. HOT features of ecological systems
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lead to the persistence of webs at more realistic densities, &$OT state on two interdependent levels. The fact that the
well as optimized configurations which are consistent withoverall extinction patterns are highly structured suggests that
observed variabilities in interaction strengths in natural sysecosystems as a whole may be viewed as a HOT state, while
tems. the fact that the most specialized organisms are most vulner-
Food web studies also illustrate the hypersensitivity ofable suggests that the evolution of individual species may
ecosystems to changes that the system was not designed!@sd them toward increasingly HOT states. .
handle[44]. If food webs were in an SOC or EOC state, then There is much at stake in this debate. If ecosystems are in
their complexity would be generic and robust to rearrange@ SOC or EOC state, then observations of massive species
ments and the introduction of new species. However, in reagXtinctions and global warming could be attributed to the
ecosystems the introduction of one weedy species, such as Euﬁtural behavior of the system. In this scenario, large fluc-

exotic plant or animal species, often leads to catastrophimf‘et'r?]glsgmnggii san;n(rje\(/:v?)%? dar?o? Q:t:tﬁb%?gjetgunigﬁfnggéhe
consequencesi7]. y '

Finally, returning to the extinction patterns in the fossil causes. This would support a policy in which humans could

X be relatively cavalier about their interactions with the envi-
record, there is some controversy over whether the data af§, ant because the system would be fluctuating as ob-

actually well described by a power Idw8]. What is clear is  sgryed regardless of our behavior. Alternately, if ecosystems
that there have been mass extinctions and that the distribyye in 2 HOT state then we expect the system to be robust,
tion of events is at least plausibly a power law. Aimost allyet fragile. Heavy tailed distributions are expected, but the
species that have existed are extif@tl% of all recorded gystem is also hypersensitive to new perturbations that were
species currently persjstand the average lifetime of a spe- ot part of the evolutionary history.
gies is of order a million years, though the distribution of |5 terms of policy, this supports a strategy of cautious
lifetimes also has heavy tails. _ environmental perturbation. Polis wrotgt2], “From a
There is a long running debate in paleontology about thgyjicy point of view, the understanding that complexity is
relative roles of random versus deterministic effects in exyjtg| to the integrity and stability of natural systems allows
tinctions. This may be a false dichotomy. If ecological sys-gcologists to argue, more coherently, why we must preserve
tems and populations are HOT states, then it is the interagne diverse elements and species that coexist in a healthy,
tion between the unpredictable exFern_aI pertt_erations and thg stainable and well-functioning ecological community.” If
structured state of the system which is crucial. environmental systems are HOT states, then the burden of
Among paleontologists there is general consensus that &¥roof in the ecological debate must shift from a policy of
tinction vulnerability has some systematic features, COHSiS“waiting for the science” to confirm negative effects such as
tent _vviFh HOT state_$49]. Specifically, Qrganisms evolve t0 gzone depletion or global warming, to a policy which re-
maximize their survival within the existing environment, and qires substantial scientific investigation of whether the per-

thus become vulnerable to rare events. For example, larggrped system is robust to proposed changes before they are
size, and high specialization may yield a temporary advanintroduced.

tage, but creates vulnerability to, say, meteor impacts.
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