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Statistical properties of the volatility of price fluctuations
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We study the statistical properties of volatility, measured by locally averaging over a time windowT, the
absolute value of price changes over a short time intervalDt. We analyze the S&P 500 stock index for the
13-year period Jan. 1984 to Dec. 1996. We find that the cumulative distribution of the volatility is consistent
with a power-law asymptotic behavior, characterized by an exponentm'3, similar to what is found for the
distribution of price changes. The volatility distribution retains the same functional form for a range of values
of T. Further, we study the volatility correlations by using the power spectrum analysis. Both methods support
a power law decay of the correlation function and give consistent estimates of the relevant scaling exponents.
Also, both methods show the presence of a crossover at approximately 1.5 days. In addition, we extend these
results to the volatility of individual companies by analyzing a data base comprising all trades for the largest
500 U.S. companies over the two-year period Jan. 1994 to Dec. 1995.@S1063-651X~99!04808-4#

PACS number~s!: 89.90.1n
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I. INTRODUCTION

1Physicists are increasingly interested in economic ti
series analysis for several reasons, among which are the
lowing. ~i! Economic time series, such as stock market in
ces or currency exchange rates, depend on the evolution
large number of interacting systems, and so is an examp
complex evolving systems widely studied in physics.~ii ! The
recent availability of large amounts of data allows the stu
of economic time series with a high accuracy on a w
range of time scales varying from'1 min up to '1 yr.
Consequently, a large number of methods developed in
tistical physics have been applied to characterize the t
evolution of stock prices and foreign exchange rates@1–19#.

Previous studies@1–33# show that the stochastic proce
underlying price changes is characterized by several featu
The distribution of price changes has pronounced t
@1–7,14–20# in contrast to a Gaussian distribution. The a
tocorrelation function of price changes decays exponenti
with a characteristic time of approximately 4 min. Howev
recent studies@20–31# show that the amplitude of pric
changes, measured by the absolute value or the sq
shows power law correlations with long-range persistence
to several months. These long-range dependencies are b
modeled by defining a ‘‘subsidiary process’’@20–22#, often
referred to as thevolatility in economic literature. The vola
tility of stock price changes is a measure of how much
market is liable to fluctuate. The first step is to construct
estimator for the volatility. Here, we estimate the volatility
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the local average of the absolute price changes.
Understanding the statistical properties of the volatil

also has important practical implications. Volatility is of in
terest to traders because it quantifies the risk@4# and is the
key input of virtually all option pricing models, including th
classic Black and Scholes model and the Cox, Ross,
Rubinstein binomial models that are based on estimate
the asset’s volatility over the remaining life of the optio
@34,35#. Without an efficient volatility estimate, it would b
difficult for traders to identify situations in which option
appear to be underpriced or overpriced.

We focus on two basic statistical properties of t
volatility—the probability distribution function and the two
point autocorrelation function. The paper is organized as
lows. In Sec. II, we briefly describe the databases used in
study, the S&P 500 stock index, and individual compa
stock prices. In Sec. III, we discuss the quantification
volatility. In Sec. IV, the probability distribution function is
studied, and in Sec. V, the volatility correlations are studi
The appendix briefly describes a recently-developed meth
called detrended fluctuation analysis~DFA! that we use to
quantify power-law correlations.

II. DATA ANALYZED

A. S&P 500 stock index

The S&P 500 index from the New York Stock Exchan
~NYSE! consists of 500 companies chosen for their mar
size, liquidity, and industry group representation in the U
It is a market-value weighted index, i.e., each stock
weighted proportional to its stock price times number
shares outstanding. The S&P 500 index, is one of the m
widely used benchmarks of U.S. equity performance. W
analyze the S&P 500 historical data, for the 13-year per
Jan. 1984 to Dec. 1996@Fig. 1~a!# with a recording fre-

o,
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quency of 15 s intervals. The total number of data points
this 13-year period exceed 4.5 million, and allows for a d
tailed statistical analysis.

B. Individual company stocks

We also analyze the trades and quotes~TAQ! database
which documents every trade for all the securities listed
the three major U.S. stock markets—the New York Sto
Exchange~NYSE!, the American Stock Exchange~AMEX !,
and the National Association of Securities Dealers Au
mated Quotation~NASDAQ!—for the two-year period from
Jan. 1994 to Dec. 1995@36#. We study the market capitali
zations@37# for the 500 largest companies, ranked accord
to the market capitalization on Jan. 1, 1994. The S&P 5
index at anytime is approximately the sum of market ca
talizations of these 500 companies@38#. The total number of
data points analyzed exceed 20 million.

III. QUANTIFYING VOLATILITY

The term volatility represents a generic measure of
magnitude of market fluctuations. Thus, many differe
quantitative definitions of volatility are use in the literatur
In this study, we focus on one of these measures by estim
ing the volatility as the local average of absolute pr
changes over a suitable time intervalT, which is an adjust-
able parameter of our estimate.

Figure 1~a! shows the S&P 500 indexZ(t) from 1984 to
1996 in semi-log scale. We define the price changeG(t) as
the change in the logarithm of the index

G~ t ![ ln Z~ t1Dt !2 ln Z~ t !>
Z~ t1Dt !2Z~ t !

Z~ t !
, ~1!

FIG. 1. ~a! Data analyzed: The S&P 500 indexZ(t) for the
13-year period 3 Jan. 1984–31 Dec. 1996 at sampling inter
Dt51 min. These data include the data set analyzed by Mante
and Stanley@18# and the extension of seven extra years. Note
large fluctuations, such as that on 19 Oct. 1987~‘‘black Monday’’!.
The indexZ(t) has an increasing trend except for some crash
such as the crashes in Oct. 1987 and May 1990. For the pe
studied the index can apparently be fit by a straight line on a se
log graph, i.e., exponential growth with annual increase rate
'15%.~b! Amplitude of fluctuationsuG(t)u ~see text for definition!
with Dt51 min.
n
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whereDt is the sampling time interval. In the limit of sma
changes inZ(t) is approximately the relative change, defin
by the second equality. We only count time during open
hours of the stock market, and remove the nights, weeke
and holidays from the data set, i.e., the closing and the n
opening of the market is considered to be continuous.

The absolute value ofG(t) describes the amplitude of th
fluctuation, as shown in Fig. 1~b!. In comparison to Fig. 1~a!,
Fig. 1~b! does not show visible global trends due to the log
rithmic difference. The large values ofuG(t)u correspond to
the crashes and big rallies.

We define the volatility as the average ofuG(t)u over a
time windowT5nDt, i.e.,

VT~ t ![
1

n (
t85t

t1n21

uG~ t8!u, ~2!

wheren is an integer. The above definition can be gener
ized @31# by replacing uG(t)u with uG(t)ug, where g.1
gives more weight to the large values ofuG(t)u and 0,g
,1 weights the small values ofuG(t)u.

There are two parameters in this definition of volatilit
Dt andn. The parameterDt is the sampling time interval for
the data and the parametern is the moving average window
size. Note that our definition of the volatility has an intrins
error associated with it. In principle, the larger the choice
time intervalT, the more accurate the volatility estimatio
However, a large value ofT also implies poor resolution in
time.

Figure 2 shows the calculated volatilityVT(t) for a large
averaging windowT58190 min ~about 1 month! with Dt
530 min. The volatility fluctuates strongly during the cra
of 1987. We also note that periods of high volatility are n
sparse but tend to ‘‘cluster.’’ This clustering is especia
marked around the 1987 crash. The oscillatory patterns
fore the crash could be possible precursors~possibly related
to the oscillatory patterns postulated in@11,12#!. Clustering
also occurs in other periods, e.g., in the second half of 19
There are also extended periods where the volatility rema
at a rather low level, e.g., the years of 1985 and 1993.

IV. VOLATILITY DISTRIBUTION

A. Volatility distribution of the S&P 500 index

1. Center part of the distribution

Figure 3~a! shows the probability density functionP(VT)
of the volatility for several values ofT with Dt530 min.

ls
na
e

s,
od
i-
f

FIG. 2. Volatility VT(t) with T51 month~8190 min! and sam-
pling time intervalDt530 min of the S&P 500 index for the entir
13-year period 1984–1996. The highlighted block shows poss
‘‘precursors’’ of the Oct. 1987 crash.
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1392 PRE 60YANHUI LIU et al.
The central part shows a quadratic behavior on a log-
scale @Fig. 3~a!#, consistent with a log-normal distributio
@30#. To test this possibility, the appropriately scaled dis
bution of the volatility is plotted on a log-log plot@Fig. 3~b!#.
The distributions of volatilityVT , for various choices ofT
~from T5120 min up toT5900 min), collapse onto one
curve and are well fit in the center by a quadratic function
a log-log scale. Since the central limit theorem holds also
correlated series@39#, with a slower convergence than fo
noncorrelated processes@4,15,28#, in the limit of large values
of T, one expects thatP(VT) becomes Gaussian. However,
log-normal distribution fits the data better than a Gauss
as is evident in Fig. 4 which compares the best log-norma
with the best Gaussian fit for the data@30#. The apparent
scaling behavior of volatility distribution could be attribute
to the long persistence of its autocorrelation function@28#
~Sec. V!.

FIG. 3. ~a! Probability distribution of the volatility on a log-log
scale with different time windowsT with Dt530 min. The center
part of the distribution shows a quadratic behavior on the log-
scale. The asymptotic behavior seems consistent with a power
~b! Center of the distribution: The volatility distribution for differ
ent window sizesT using the log-normal scaling formAnexp(a
1n/4)P(VT) as a function of@ ln(VT)2a#/Apn, wherea andn are
the mean and the width on a logarithmic scale. The scaled distr
tions are shown for the region shown by the box in~a!. By the
scaling, all curves collapse to the log-normal form witha50 and
n51, exp@2(ln x)2# ~solid line!.
g

-

n
r

n,
t

2. Tail of the distribution

Although the log-normal seems to describe well the cen
part of the volatility distribution, Fig. 3~a! suggests that the
distribution of the volatility has quite different behavior i
the tail. Since our time windowT for estimating volatility is
quite large, it is difficult to obtain significant statistics for th
tail. Recent studies of the distribution for price changes
port power law asymptotic behavior@14,20,33#. Since the
volatility is the local average of the absolute price change
is possible that a similar power law asymptotic behav
might characterize the distribution of the volatility. Henc
we reduce the time windowT and focus on the ‘‘tail’’ of the
volatility.

We compute the cumulative distribution of the volatilit
Eq. ~2! for different time scales, Fig. 5~a!. We find that the

g
w.

u-

FIG. 4. Comparison of the log-normal and Gaussian fits for
volatility distribution for T5300 min andDt530 min.

FIG. 5. ~a! The cumulative distribution function of the volatility
scaled by the standard deviation, for time scalesT
532,64,128 min with sampling time intervalD51 min, using
nonoverlapping windows for the S&P 500 stock index. Regress
lines yield estimates of the exponentm53.1060.08 for T
532 min, m53.1960.10 for T564 min, andm53.3060.15
for T5128 min. The fits were performed over the range of sca
volatility greater than 1 standard deviation. Choices ofD from 16
and 32 min were also studied for the same values ofT shown.
Results obtained for these cases and the values ofm obtained are
consistent with the present case.
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cumulative distribution of the volatility is consistent with
power law asymptotic behavior

P~VT.x!;
1

xm
. ~3!

Regression fits yield estimatesm53.1060.08 for T
532 min with Dt51 min, well outside the stable Le´vy
range 0,m,2.

For larger time scales the asymptotic behavior is diffic
to estimate because of poor statistics at the tails. In view
the power law asymptotic behavior for the volatility distr
bution, the drop-off ofP(VT) for low values of the volatility
could be regarded as a truncation to the power law behav
as opposed to a log-normal.

B. Volatility distribution for individual companies

In this section, we extend the investigation of the nat
of this distribution to the individual companies comprisin
the S&P 500, where the amount of data is much larg
which allows for better sampling of the tails.

From the TAQ data base, we analyze 500 time se
Si(t), where Si is the market capitalization of companyi
~i.e., the stock price multiplied with the number of outstan
ing shares!, i 51, . . .,500 is the rank in descending order
the company according to its market capitalization on 1 J
1994 and the sampling time is 5 min.The basic quantity st
ied for individual stocks is the change in logarithm of t
market capitalization for each company,

Gi~ t ![ ln Si~ t1Dt !2 ln Si~ t !>
Si~ t1Dt !2Si~ t !

Si~ t !
, ~4!

where theSi denotes the market capitalization of stocki
51, . . .,500 andDt55 min.

As before, we estimate the volatility at a given time
averaginguGi(t)u over a time windowT5nDt,

VT
i [VT

i ~ t ![
1

n (
t85t

t1n21

uGi~ t8!u. ~5!

A normalized volatility is then defined for each company

vT
i [vT

i ~ t ![
VT

i

A^@VT
i #2&2^VT

i &2
, ~6!

where ^•••& denotes the time average estimated by n
overlapping windows for different time scalesT.

Figure 6~a! shows the cumulative probability distributio
of the normalized volatilityvT

i for all 500 companies with
different averaging windowsT, where the sampling interva
Dt55 min. We observe a power law behavior

P~vT
i .x!;

1

xm
. ~7!

Regression fits yieldm53.1060.11 for T510 min. This
behavior is confirmed by the probability density functio
shown in Fig. 6~b!,
t
of

r,

e

r,

s

-

n.
-

-

P~vT!;
1

vT
m11

, ~8!

with a cutoff at small values of the volatility. Regression fi
yield the estimate 11m54.0660.10 for T510 min, in
good agreement with the estimate ofm from the cumulative
distribution. Both the probability density and the cumulati
distribution, Figs. 7 and 8, show that the volatility distrib
tion for individual companies are consistent with power-la
asymptotic exponent m'3, in agreement with the
asymptotic behavior of the volatility distribution for the S&
500 index.

In summary, the asymptotic behavior of the cumulati
volatility distribution is well described by a power law be
havior with exponentm'3 for the S&P 500 index. This
power law behavior also holds for individual companies w

FIG. 6. ~a! The cumulative probability distribution on a log-lo
scale of the normalized volatility for all the 500 individual comp
nies for various averaging window lengths, with a sampling tim
Dt55 min. Power law regression fits yieldm53.1060.11 for T
510 min, m53.1660.15 for T520 min, m53.2860.17 for T
540 min, andm53.3860.18 forT580 min. These fits were per
formed in the region of scaled volatility between 1 and 30 stand
deviations.~b! The probability density function of the normalize
volatility for single companies. Regression fits yield a slope o
1m54.0660.10 for T510 min, 11m54.1560.13 for T
520 min, 11m54.2260.15 for T540 min, and 11m54.38
60.16 for T580 min. The fits were performed in the region o
scaled volatility between 1 and 50 standard deviations.
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similar exponentm'3 for the cumulative distribution, with a
drop-off at low values.

V. CORRELATIONS IN THE VOLATILITY

A. Volatility correlations for S&P 500 stock index

Unlike price changes that are correlated only on v
short time scales@40# ~a few minutes!, the absolute values o
price changes show long-range power-law correlations
time scales up to a year or more@20–31#. Previous works
have shown that understanding the power-law correlatio
specifically the values of the exponents, can be helpful
guiding the selection of models and mechanisms@32#. There-
fore, in this part we focus on thequantificationof power-law
correlations of the volatility. To quantify the correlations, w
use uG(t)u instead ofVT(t), i.e., time windowT is set to 1
min with Dt51 min for the best resolution.

1. Intraday pattern removal

It is known that there exist intraday patterns of mark
activity in the NYSE and the S&P 500 index@23–25,42#. A
possible explanation is that information gathers during
time of closure and hence traders are active near the ope
hours, and many liquidity traders are active near the clos
hours@25#. We find a similar intraday pattern in the absolu
price changesuG(t)u ~Fig. 7!. In order to quantify the corre
lations in absolute price changes, it is important to remo
this trend, lest there might be spurious correlations. The
traday patternA(tday), wheretday denotes the time in a day
is defined as the average of the absolute price change at
tday of the day for all days:

A~ tday![

(
j 51

N

uGj~ tday!u

N
, ~9!

FIG. 7. The 1-min interval intraday pattern for absolute pr
changes of the S&P 500 stock index~1984-1996! ~shifted! and for
the absolute price changes, averaged for the chosen 500 comp
~1994–1995!. The length of the day is 390 minutes. In order
avoid the detection of spurious correlations, this daily pattern
removed. Otherwise one finds peaks in the power spectrum a
frequencies of 1/day and larger. Note that both the curves ha
similar pattern with large values within the first 15 min after t
market opens.
y

n

s,
r
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e
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where the indexj runs over all the trading daysN in the
13-year period (N53309 in our study! and tday denotes the
time in the day. In order to avoid the artificial correlatio
caused by this daily oscillation, we remove the intraday p
tern fromG(t) which we schematically write as

g~ t ![G~ tday!/A~ tday!, ~10!

for all days. Each data pointg(t), denotes the normalized
absolute price change at timet, which is computed by divid-
ing each pointG(tday) at time tday of the day byA(tday) for
all days.

Three methods—correlation function, power spectru
and detrended fluctuation analysis~DFA!— are employed to
quantify the correlation of the volatility. The pros and co
of each method and the relations between them are desc
in the Appendix.

2. Correlation quantification

Figure 8~a! shows the autocorrelation function of the no
malized price changesg(t), which shows exponential deca
with a characteristic time of the order of 4 min. However, w
find that the autocorrelation function ofug(t)u has power law
decay, with long persistence up to several months, Fig. 8~b!.
This result is consistent with previous studies on several e
nomic time series@20–28,40#.

More accurate results are obtained by the power spect
@Fig. 9~a!#, which shows that the data fit not one but rath
two separate power laws: forf . f 3 , S( f ); f 2b1, while for
f , f 3 , S( f ); f 2b2, where

b150.3160.02, f . f 3 , ~11!

b250.9060.04, f , f 3 , ~12!

and

f 35
1

570
min21, ~13!

nies

s
he
a

FIG. 8. ~a! Semilog plot of the autocorrelation function ofg(t).
~b! Autocorrelation function ofug(t)u in the double log plot, with
sampling time intervalDt51 min. The autocorrelation function o
g(t) decays exponentially to zero within half an hour,C(t)
;exp(2t/t) with t'4.0 min. A power law correlationC(t);t2g

exists in theug(t)u for more than three decades. Note that bo
graphs are truncated at the first zero value ofC(t). The solid line in
~b! is the fit to the function 1/(11tg) from which we obtaing
50.3060.08. The horizontal dashed line indicates the noise lev
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where f 3 is the crossover frequency.
The DFA method confirms our power spectrum resu

@Fig. 9~a!#. From the behavior of the power spectrum, w
expect that the DFA method will also predict two distin
regions of power law behavior,F(t);ta1 for t,t3 with
exponenta150.66 andF(t);ta2 for t.t3 with a250.95,
where the constant time scalet3[1/f 3 , where we have
used the relation@39#,

a5~11b!/2. ~14!

Figure 9~b! shows the results of the DFA analysis. We o
serve two power law regions, characterized by exponent

a150.6660.01, t,t3 , ~15!

a250.9360.02, t.t3 ~16!

FIG. 9. Plot of ~a! the power spectrumS( f ) and ~b! the de-
trended fluctuation analysisF(t) of the absolute values of detrende
incrementsg(t) with the sampling time intervalDt51 min. The
lines show the best power law fits (R values are better than 0.99
above and below the crossover frequency off 35(1/570) min21 in
~a! and of the crossover time,t35600 min in ~b!. The triangles
show the power spectrum and DFA results for the ‘‘contro
shuffled data~see text for details!.
s

-

in good agreement with the estimates of the exponents f
the power spectrum. The crossover time is close to the re
obtained from the power spectrum, with

t3'1/f 3'600 min ~17!

or approximately 1.5 trading days.

B. Volatility correlations for individual companies

The observed correlations in the price changes and
absolute price changes for the S&P 500 index raises
question if similar correlations are present for individu
companies which comprise the S&P 500 index@38#.

In the absolute price changes of the individual compan
there is also a strongly marked intraday pattern, similar
that of the S&P 500 index. We compute the intraday patt
for single companies in the same sense as before,

Ai~ tday![

(
j 51

N

uGi
j~ tday!u

N
, ~18!

where timetday refers to the time in the day, the indexi
denotes companies, and the indexj runs over all days—504
days. In Fig. 7 we show the intraday pattern, averaged o
all the 500 companies and contrast it with that of the S
500 stock index.

In order to avoid the intra-day pattern in our quantific
tion of the correlations, we define a normalized price chan
for each company,

gi~ t ![Gi~ tday!/Ai~ tday!. ~19!

The average autocorrelation function ofgi(t), i
51,2, . . . ,500, shows weak correlations up to 10 min, af
which there is no statistically significant correlation. The a
erage autocorrelation function for the absolute price chan
shows long persistence. We quantify the long-range corr
tions by two methods—power spectrum and DFA. In F
10~a!, we show the power spectral density for the absol
price changes for individual companies and contrast it w
the S&P 500 index for the same two-year period. We a
observe a similar crossover phenomena as that observe
the S&P 500 index. The exponents of the two observ
power laws are

b150.2060.02, f . f 3 , ~20!

b250.5060.05, f , f 3 , ~21!

where the crossover frequency is

f 35
1

700
min21. ~22!

In Fig. 10~b!, we confirm the power spectrum results b
the DFA method. We observe two power law regimes wi

a150.6060.01, t,t3 , ~23!

a250.7460.03, t.t3 ~24!
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with a crossover

t3'1/f 3'700 min. ~25!

The exponents characterizing the correlations in the ab
lute price changes for individual companies are on aver
smaller than what is observed for the S&P 500 pr
changes. This might be due to the cross-dependencies
tween price changes of different companies. A system
study of the cross-correlations and dependencies will be
subject of future work@41#.

FIG. 10. ~a! The power spectrum for the absolute values of
normalized price changes for individual companies, with the sa
pling time intervalDt55 min. This is obtained by averaging th
power spectrumSi( f ) for all the 500 companies. We contrast th
with the power spectrum of the S&P 500 for the same two-y
period 1994–1995. Similar to the S&P 500, we observe two po
laws separated by a crossover frequency. Power law regressio
yield exponentsb150.20 for the high frequency region andb2

50.50 for the low frequency region. The crossover occurs at
proximately 700 min—slightly larger than that found for the S&
500 index.~b! The average DFA results of 5 min sampledug(t)u for
the single companies, averaged over all 500 companies. It is
trasted with the result of the S&P 500 index. There are two regi
characterized by power laws with exponentsa150.60 for small
time lags anda250.74 for large time lags.
o-
e

be-
ic
e

C. Additional remarks on power-law volatility correlations

Even though several different methods give consistent
sults, the power-law correlation of the volatility needs to
tested. It is known that the power-law correlation could
caused by some artifacts, e.g., anomaly of the data or
peculiar shape of the distribution, etc.

1. Data shuffling

Since we find the volatility to be power-law distributed
the tail, to test that the power-law correlation is not a spu
ous artifact of the long-tailed probability distribution, w
shuffled each point of theug(t)u randomly for the S&P 500
data. The shuffling operation keeps the distribution ofug(t)u
unchanged, but destroys the correlations in the time se
totally if there are any. DFA measurement of this random
shuffled data does not show any correlations and gives
ponenta50.50~Fig. 9!—confirming that the observed long
range correlation is not due to the heavy-tailed distribution
the volatility.

2. Outliers removal

As an additional test, we study how the outliers~big
events! of the time seriesug(t)u affect the observed power
law correlation. We removed the largest 5 and 10 % eve
of the ug(t)u series and applied the DFA method to the
respectively, the results are shown in Fig. 11. Removing
outliers does not change the power-law correlations for
short time scale. However, that the outliers do have an ef
on the long time scale correlations, the crossover time is a
affected.

3. Subregion correlation

The long range correlation and the crossover behavior
served for the S&P 500 index are for the entire 13-year

-

r
r

fits

-

n-
s

FIG. 11. DFA results of removing top 5% and 10% data poi
of the ug(t)u for the S&P 500 data. The crossover time is appro
mately 600, 1000, and 10 000 min for the data removing the top
and the top 10%, respectively. The DFA exponenta1 for the short
time scale does not change, the power law regression fit givesa1

'0.66 for all three curves. Regression fits for the exponenta2 give
0.9160.02, 0.9160.03, and 1.0260.04 for three cases, respe
tively.
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riod. Next, we study whether the exponents characteriz
the power-law correlation are stable, i.e., does it still hold
periods smaller than 13 years. We choose a sliding wind
~with size 1 yr! and calculate both exponentsa1 and a2
within this window as the window is dragged down the da
set with one month steps. We find@Fig. 12~b!# that the value
of a1 is very ‘‘stable’’ ~independent of the position of th
window!, fluctuating slightly around the mean value 2/
However, the variation ofa2 is much greater, showing sud
den jumps when very volatile periods enter or leave the t
window. Note that the error in estimatinga2 is also large.

VI. CONCLUSION

In this study, we find that the probability density functio
of the volatility for the S&P 500 index seems to be well
by a log normal distribution in the center part. However, t
tail of the distribution is better described by a power la
with exponent 11m'4, well outside the stable Le´vy range.
The power law distribution at the tail is confirmed by th
study of the volatility distribution of individual companies
for which we find approximately the same exponent. We a
find that the distribution of the volatility scales for a range
time intervals.

We use the detrended fluctuation analysis and the po
spectrum to quantify correlations in the volatility of the S&
500 index and individual company stocks. We find that
volatility is long-range correlated. Both the power spectru
and the DFA methods show two regions characterized
different power law behaviors with a crossover at appro
mately 1.5 days. Moreover, the correlations show power-
decay, often observed in numerous phenomena that ha
self-similar or ‘‘fractal’’ origin @47–51#. The scaling prop-
erty of the volatility distribution, its power-law asymptoti
behavior, and the long-range volatility correlations sugg
that volatility correlations might be one possible explanat
for the observed scaling behavior@18# for the distribution of
price changes@37#.

FIG. 12. ~a! The S&P 500 indexZ(t) for the 13-year period.~b!
Results of dragging a window of size 1 yr down the same data b
one month at a time, and calculating the best fit exponenta1

~dashed line! and a2 ~full line! for the time intervalst,t3 and t
.t3 , respectively, wheret35600 min.
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APPENDIX: METHODS TO CALCULATE
CORRELATIONS

1. Correlation function

The direct method to study the correlation property is
autocorrelation function

C~ t ![
^g~ t0!g~ t01t !&2^g~ t0!&2

^g2~ t0!&2^g~ t0!&2
, ~A1!

wheret is the time lag. Potential difficulties of the correlatio
function estimation are the following:~i! The correlation
function assumes stationarity of the time series. This cr
rion is not usually satisfied by real-world data.~ii ! The cor-
relation function is sensitive to the true average va
^g(t0)& of the time series, which is difficult to calculate re
liably in many cases. Thus the correlation function c
sometimes provide only qualitative estimation@39#.

2. Power spectrum

A second widely used method for calculating correlati
properties is the power spectrum analysis. Note that
power spectrum analysis can only be applied to linear
stationary~or strictly periodic! time series.

3. Detrended fluctuation analysis

The third method we use to quantify the correlation pro
erties is called detrended fluctuation analysis~DFA! @43,44#.
The DFA method is based on the idea that a correlated t
series can be mapped to a self-similar process by integra
@39,43,44#. Therefore, measuring the self-similar feature c
indirectly tell us information about the correlation propertie
The advantages of DFA over conventional methods~e.g.,
spectral analysis and Hurst analysis! are that it permits the
detection of long-range correlations embedded in a non
tionary time series, and also avoids the spurious detectio
apparent long-range correlations that are an artifact of n
stationarities. This method has been validated on con
time series that consist of long-range correlations with
superposition of a nonstationary external trend@43#. The
DFA method has also been successfully applied to de
long-range correlations in highly complex heart beat tim
series@44,45#, and other physiological signals@46#.

A description of the DFA algorithm in the context of hea
beat analysis appears elsewhere@43,44#. For our problem, we
first integrateug( i )u time series withN total data points

y~ t8![(
i 51

t8

ug~ i !u. ~A2!

Figure 13~b! shows y(t8) after subtracting the ‘‘global’’
trend, computed by performing a linear fit in the entire ran
of y(t8). Figures 13~b!,13~c! show the integrated time serie

e,
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FIG. 13. ~a! Time series of absolute price changesug( i )u sampled at 1-min intervals. Parts~b! and ~c! show the integrated time serie
y(t8) after subtracting its ‘‘global’’ trend. The global trend is computed by performing a linear fit in the entire range ofy(t8). The time series
y(t8) divided into boxes of equal lengtht. In each box, a least squares linear fit is made to the data, representing the localtrend in that box.
Next we detrend the integrated time seriesy(t8) by subtracting the local trendyt(t8) in each box.~d! The root-mean-square fluctuationF(t)
as a function of various box sizest, defined in Eq.~A3!.
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i.e.,
y(t8) divided into boxes of equal lengtht. In each box, a
least squares fit to the data is performed, representing
trend in that box. They coordinate of the straight line seg
ments is denoted byyt(t8). Next we detrend the integrate
time series,y(t8), by subtracting the local trend,yt(t8), in
each box. The root-mean-square fluctuation of this integra
and detrended time series is calculated

F~ t !5A1

N (
t851

N

@y~ t8!2yt~ t8!#2. ~A3!

This computation is repeated over all time scales~box
sizes! to provide a relationship betweenF(t), the average
fluctuation, and the box sizet. In our case, the box sizet
ranged from 10 min to 105 min ~the upper bound oft is
determined by the actual data length!. Typically, F(t) will
increase with box sizet @Fig. 13~d!#. A linear relationship on
a double log graph indicates the presence of power law s
ing. Under such conditions, the fluctuations can be cha
terized by a scaling exponenta, the slope of the line relating
logF(t) to logt @Fig. 13~d!#.
he

d

l-
c-

In summary, we have the following relationships b
tween, above three methods.

~i! For white noise, where the value at one instant is co
pletely uncorrelated with any previous values, the integra
value, y(t8), corresponds to a random walk and therefo
a50.5, as expected from the central limit theorem@47–49#.
The autocorrelation functionC(t) is 0 for any t ~time-lag!
not equal to 0. The power spectrum is flat in this case.

~ii ! Many natural phenomena are characterized by sh
term correlations with a characteristic time scalet and an
autocorrelation functionC(t) that decays exponentially@i.e.,
C(t);exp(2t/t)#. The initial slope of logF(t) vs logt may be
different from 0.5, nonetheless the asymptotic behavior
large window sizest with a50.5 would be unchanged from
the purely random case. The power spectrum in this case
show a crossover from 1/f 2 at high frequencies to a consta
value ~white! at low frequencies.

~iii ! An a greater than 0.5 and less than or equal to
indicates persistent long-range power-law correlations,
C(t);t2g. The relation betweena andg is

g5222a. ~A4!
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Note also that the power spectrumS( f ) of the original signal
is also of a power-law form, i.e.,S( f );1/f b. Because the
power spectrum density is simply the Fourier transform
the autocorrelation functionb512g52a21. The case of
a51 is a special one which has long interested physic
and biologists—it corresponds to 1/f noise (b51).

~iv! When 0,a,0.5, power-law anticorrelations are
present such that large values are more likely to be follow
by small values and vice versa@39#.
ic
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~v! When a.1, correlations exist but cease to be of
power-law form.

Thea exponent can also be viewed as an indicator of
‘‘roughness’’ of the original time series: the larger the val
of a, the smoother the time series. In this context, 1/f noise
can be interpreted as a compromise or ‘‘trade-off’’ betwe
the complete unpredictability of white noise~very rough
‘‘landscape’’! and the much smoother landscape of Brow
ian noise@52#.
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