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Universal critical coupling constants for the three-dimensionaln-vector model from field theory
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The field-theoretical renormalization groyRG) approach in three dimensions is used to estimate the
universal critical values of renormalized coupling constatandgg for the O(n)-symmetric model. The RG
series forgg andgg are calculated in the four- and three-loop approximations, respectively, and then resummed
by means of the PadBorel-Leroy technique. Under the optimal value of the shift parantefmoviding the
fastest convergence of the iteration procedure, numerical estimatgg fare obtained with an accuracy no
worse than 0.3%. The RG expansion fiy demonstrates a stronger divergence, and results in considerably
cruder numerical estimatelsS1063-651X%99)01808-5

PACS numbses): 64.60.Fr, 05.70.Jk, 11.10.Gh, 64.60.Ak

|. INTRODUCTION values forgg which differ from each other by less than 0.5%
[18,19, while the use of a resummed three-loop RG expan-
The three-dimension&BD) O(n)-symmetric model plays sion enabled one to achieve an apparent accuracy no worse

a very important role in the theory of phase transitions. Itthan 1.6%[7,17]. Moreover, the field-theoretical RG ap-
describes critical phenomena in a variety of physical systemproach turns out to be powerful enough even in two dimen-
including lIsing, XY-like, and Heisenberg ferromagnets, sions: properly resummed four-loop RG expansions lead to
simple fluids and binary mixtures, superconductors and Bostair numerical estimates for the critical exponef&fand the
superfluids, etc. This model is also relevant to certainrenormalized coupling constagf [24] of a 2D Ising model,
asymptotic regimes of the critical behavior of the quark-and give reasonable results for its random countefpéit It
gluon plasma in quantum chromodynamics=(4) [1,2]. In is natural, therefore, to use the field theory for a calculation
the critical region, then-vector model is known to be ther- of renormalized higher-order coupling constants for the 3D
modynamically equivalent to the 3D Euclidean field theoryn-vector model. In this paper, the 3D RG expansion for the
of N¢* type, and may be treated by the field-theoreticalrenormalized coupling constantg and gg will be calcu-
renormalization grougRG) technique which proved to be lated, and the numerical estimates for their universal critical
very efficient both for studying the qualitative features of values will be obtained.
phase transitions and calculating the critical exponents

[3-7].
On the other hand, for decades the influence of ordering Il. RG EXPANSIONS FOR THE SEXTIC
fields upon the critical behavior of various systems attracted AND OCTIC COUPLING CONSTANTS

permanent attention, being of prime interest both for theo-

rists and experimentalists. Recently, the free endedfec-

tive action and, in particular, higher-order renormalized

coupling constantg,, for the basic models of phase transi-

tions became the target of intensive theoretical studies

[7—23]. These constants are related to the non-linear suscep-  sris2 2 5 2.2

tibilities x,, and enter the scaling equation of state, thus H—f d*x[2(Moes+ (Ve ))+ N (@) ], (1)

playing a key role at criticality. Along with critical expo-

nents and critical amplitude ratios, they are universal, i.e., ] . ©)

they possess, unddi—T,, numerical values that are not Where a bare mass squareg is proportional toT—T¢”,

sensitive to the physical nature of the phase transition, dels being the phase transition temperature in the absence of

pending only on the system dimensionality and the symmethe order parameter fluctuations. Taking fluctuations into ac-

try of the order parameter. count results in renormalizations of the masg—m, the
Calculation of the universal critical values gf, gg, etc.  field ¢— ¢r, and the coupling constant—mg,. Moreover,

for the three-dimensional Ising model by a number of anathermal fluctuations give rise to many-point correlations

lytical and numerical methods showed that the field-(®(X1)¢@(X2)---¢(X2)) and, correspondingly, to higher-

theoretical RG approach in fixed dimensions yields the moserder terms in the expansion of the free energy in powers of

accurate numerical estimates for these quantities. It is a cofthe magnetizatio:

sequence of a rapid convergence of the iteration schemes

originating from renormalized perturbation theory. Indeed, o

the resummation of four- and fi\_/e-loop RG expansions by F(M,m)=F(0,m)+ 2 INYES )

means of the Borel-transformation-based procedures gave k=1

Within field-theoretical language, the 3D(n)-symmetric
model in the critical region is described by Euclidean scalar
field theory with the Hamiltonian
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In the critical region, the coefficienis,, , being one-particle

irreducible X-point vertices taken at zero external momenta,

demonstrate the well-known scaling behavior

3—k(1+ 7])’ (3)
where 7 is a Fisher exponent, angh, are some constants.
Let us set as usual,=3. Theng,, de, Js, - . . Will acquire
universal values. The asymptotic critical values @f,

Iok=gom
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I°M

=— (5
dH |, _

=7203m %(8g5—0s).
0

X6

Their inversion gives the relations

3 mé(10x5— X6X2)

720¢5

J6=

04= (6)

24)(% ’

g; (n), determine the critical exponents and other universal

quantitites, thus playing a very important role in the theory.

The numberg} (n) have been found by resummation of the
six-loop expansion for the R@ function [3,4,6,7, from
strong-coupling serieg26], by lattice calculation$21], and
from the e expansion[27], and are known today with an
accuracy which may be considered rather high.

The universal values of higher coupling constagits g ,
etc. determine the structure of the free enelfgv,m) un-

which are widely used for extraction of numerical values of

renormalized coupling constants from the results of lattice
calculationg14,16,21,22,28,29

The method of calculating the RG series for theandgg

we use here is straightforward. Since in three dimensions
higher-order bare couplings are irrelevant in the RG sense,
the renormalized perturbative series to be found can be ob-
tained from conventional Feynman graph expansions for the

der strong critical fluctuations. In fact, the Taylor expansionsix_ and eight-point vertices in terms of the only bare cou-

of the scaling function contains the ratiag,/(g) 1,

pling constant -\. In the course of calculations the tensor

which may be easily shown by replacement of the magnetisi ctures of these vertices

zation M in Eq. (2) by the dimensionless variable

=M\g,/m 77

322

m
F(z,m)—F(0m)= —<E+z4+g—§zﬁ+ g—iz%
94 94 s

(4)

Moreover, viag,, the nonlinear susceptibilitieg,, can be
expressed. Foi, and xg, corresponding formulas are as
follows:

I*M

= = —24y5m3g,,

H=0

Xa

A\Z?

\Z?

_)3

n+26 9n%+340n+2324
27 1627

m\ m

9
96=—

ZZ

+ 16.20428685}{ —
m

The perturbative expansion far emerges directly from the
normalizing condition\ =mZ,Z g, and the known series
for Z, [6]:

n+8

;14 . 3n?+38n+148
4= 2 94

o2 g5+ (0.0040314418°
ar

+0.0679416657°+ 0.466356236+ 1.24033848)0; .
(10)

Combining these expressions, we obtain

2
) —(0.001493126%+ 0.09961441°%+ 2.1523201°+ 18.330704 + 52.830284(

r 15(8,p08,58,,+14 transpositiond’s  (7)

aBySuv—

T apysuvpo=105(0apSys56,,8,,+ 104 transpositiond’s,

®

should be taken into account. In its tummay be expressed
perturbatively as a function of the renormalized coupling
constantg,. Substituting corresponding power series for
into original expansions, we can obtain the RG seriegfor
andgg. The one-, two-, three-, and four-loop contributions to
gs are formed by one, three, 16, and 94 one-particle irreduc-
ible Feynman graphs, respectively. Their calculation gives

+(0.0056289546468 + 0.28932672886° + 4.0404241235

1

(€)

9
J6=—

w

3n+26 17n+ 226
94 757 81

+0.14768927 + 1.2412745%g% — (— 0.00000948°

g4+ (0.00099916#42

+0.007831282+ 0.34565688 + 2.1482545507 |
(11)

In the case ofjg, the one-, two-, and three-loop contribu-
tions are given by one, five, and 36 Feynman graphs, respec-
tively. Corresponding “bare” and renormalized perturbative
expansions are found to be
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TABLE I. The values ofg for n=1, 3, and 10 obtained by means of the R&weel-Leroy technique for
variousb within three-loop(approximant1/1]) and four-loop(approximantg1/2] and[2/1]) RG approxi-
mations. The estimates for several valuesah the middle lines are absent because corresponding Pade
approximant turns out to be spoiled by a positive axis pole.

b 0 1 1.24 2 3 4 5 7
n=1
[1/1] 1.576 1.604 1.6089 1.621 1.633 1.641 1.648 1.656
[1/2] - - 1.6084 1.600 1.595 1.592 1.590 1.587
[2/1] 1.639 1.613 1.6084 1.596 1.583 1.573 1.566 1.555
n=3
[1/1] 0.937 0.949 0.95133 0.957 0.962 0.966 0.969 0.973
[1/2] - - 0.95133 0.948 0.946 0.944 0.944 0.942
[2/1] 0.964 0.953 0.95133 0.946 0.941 0.937 0.934 0.930
n=10
[1/1] 0.2338 0.23515 0.2360 0.2366 0.2370 0.2373 0.2377
[1/2] - - 0.2348 0.2346 0.2345 0.2344 0.2342
[2/1] 0.2359 0.23515 0.2346 0.2342 0.2339 0.2337 0.2334
81 /2Z%\4n+80 turns out to be alternating the analytical continuation of the
9=~ 277( m ) 31 Borel transform may be then performed by using Page
proximants.
40512+ 356261+ 342320/ A Z? Let us discuss first the estimation of the sextic coupling
B 131227 O(W) constantgy . With the four-loop expansiofil) in hand, we

can construct, in principle, three different Padpproxi-
mants:[2/1], [1/2], and[0/3]. To obtain proper approxima-
2\ 2 tion schemes, however, only diagongl/L] and near-
+8.86811658+45.4769025( W) } (12)  diagonal Pad@pproximants should be employg80]. That
is why, further, when estimatingg , we limit ourselves with
approximantg2/1] and[1/2]. Moreover, the diagonal Pade
approximan{ 1/1] will also be dealt with, although this cor-

+(0.0046907958°+ 0.46365068862

81 ,[n+80 8In*+7114+134960

957" 27 9% a1 131227 94 responds, in fact, to the usage of the lower-order, three-loop
RG approximation.
+(0.00943497%+ 0.60941318 + 7.156153239121}. The algorithm of estimatingg we use here is as follows.

Since the Taylor expansion for the free energy contains as
(13)  coefficients the ratioR,,= g, /gk ' rather than the renor-
malized coupling constants themselves, we work with the
In Sec. lll, the series of equationitl) and(13) will be used RG series forRg. It is resummed in three different ways
for estimation of the universal numbegs andgj . based on the Borel-Leroy transformation and the "Pajle
proximants just mentioned. The Borel-Leroy integral is
evaluated as a function of the paramétemderg, =g} . For
the fixed point coordinatg}, the values given by the re-
Being a field-theoretical perturbative expansions the sesummed six-loop RG expansion for the function are
ries of equationg11) and (13) have factorially growing co- adopted[3,7], which are believed to be the most accurate
efficients, i.e., they are diverget@symptotig. Hence, direct estimates available today. The optimal valuebgsroviding
substitution of the fixed point valugj into them would not the fastest convergence of the iteration scheme is then deter-
lead to satisfactory results. To obtain reasonable numericanined. It is deduced from the condition that the Pagbe
estimates fogf andg}, some procedure making these ex- Proximants employed should give, fbr=bgy, the values of
pansions convergent should be applied. As is well knownRs which are as close as possible to each other. Finally, the
the Borel-Leroy transformations average over three estimates Rjf is found and claimed to
be a numerical value of this universal ratio.
o . To obtain an idea about how such a procedure works, let
f(x)=2 cixizj tPe 'F(xt)dt, F(y)= E —yl us use Table I, where the results of corresponding calcula-
1=0 0 o (i +b)' tions forn=1, 3, and 10 are presented. It is seen thatnfor
(14) =1 and 3,b,y, providing a coincidence of the estimates
given by all three working Padapproximants, is equal to
diminishing the coefficients by the factar{b)!, can play a  1.24. Forn=10, b, fixed by the approximantsl/1] and
role of such a procedure. Since the RG series considerd@/1], is equal to 1, whereas the third approximgr'2]) at

Ill. RESUMMATION AND NUMERICAL ESTIMATES



PRE 60 UNIVERSAL CRITICAL COUPLING CONSTANTS F® .. .. 1347

TABLE II. Our estimates of universal critical values of the renormalized sextic coupling constant for the
3D n-vector modelcolumn 3. The fixed point coordinateg* are taken from Refd.7] (1<n<3) and[11]
(4=n=40). Thegg estimates extracted earlier from Pade-Borel resummed three-loop RG exp@amion
umn 4, from the exact RG equationgolumn 5, obtained by the lattice calculatioisolumn 6, and
resulting from a constrained analysis of th@xpansiongcolumn 7 are presented for comparison. Column
8 contains the values @ff given by the lh-expansion technique.

n g* g5 gs [7] gs [11] gs [14] gs [23] gs (1)
2 3 4 5 6 7 8
1 1.415 1.608 1.622 1.52 1.e2) 1.6099)
2 1.406 1.228 1.236 1.14 1.5 1.27)
3 1.392 0.951 0.956 0.88 0.29) 0.93146)
4 1.3745 0.747 0.751 0.68 0@%) 0.72529) 1.6449
5 1.3565 0.596 0.599 1.0528
6 1.3385 0.483 0.485 0.7311
7 1.321 0.396 0.398 0.5371
8 1.3045 0.329 0.331 0.3(49 0.4112
9 1.289 0.277 0.278 0.3249
10 1.2745 0.235 0.236 0.2632
12 1.2487 0.174 0.175 0.1828
14 1.2266 0.134 0.134 0.1343
16 1.2077 0.105 0.105 0.10@2 0.1028
18 1.1914 0.0845 0.0847 0.0812
20 1.1773 0.0693 0.0694 0.0658
24 1.1542 0.0487 0.0488 0.0457
28 1.1361 0.0360 0.0361 0.0336
32 1.1218 0.0276 0.0276 0.0275% 0.0257
36 1.1099 0.0218 0.0218 0.0203
40 1.1003 0.0176 0.0176 0.0164

b=1 is spoiled by a positive axis pole. Nevertheless, theerty obvious, let us replacg, in Eq. (11) by the effective
numerical estimate given by this approximant under thecoupling constant

nearest “safe” (intege) value of b(b=2) turns out to be

very close to that predicted by the pole free approximants for _n+8

boet- Moreover, as is seen from Table |, with increasimg 9= 2 94, (19
numerical estimates fagz become less dependent bpi.e.,

their sensitivily to the type of resummation decreases. This ishat is known to be only weakly dependent onit varies
not surprising. The point is that the RG expansiat) be-  from 1.415 to 1 whem goes from 1 to infinity{6,7]. Then
comes less divergent whengrows up. To make this prop- we obtain

_87%(n+26) 2(17n+226) . 1.065025%+157.42454+1323.09596
96~ 3(n+8)3 g 3(n+8)(n+26) " (n+8)%(n+26)

—0.063%°+52.4510°+ 2314.9897 + 14387.6460 16
(n+8)3(n+26) ik

One can see now that all terms in the RG expansiorgfor contains numerical estimates fg§ resulting from the four-

(in square bracketsapart from the first one, decrease mono-loop RG expansion resummed by the R&teel-Leroy tech-

tonically whenn—oe. This implies that the largen is the  nique described abov@olumn 3, and their analogs given

smaller the contribution of the higher-order terms and, corby the PadéBorel resummed three-loop RG seri{g§ (col-

respondingly, the better the approximating properties of thisimn 4. As is seen, with increasingthe difference between

series. the four- and three-loop estimates rapidly diminishes. Being
This conclusion is definitely confirmed by Table II. It small (0.9 % even forn=1, it becomes negligible at
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TABLE Ill. Three-loop RG estimates of universal critical values of the renormalized octic coupling
constantgg (column 2. Theg; estimates resulting from a constrained analysis ofetiexpansioncolumn
3), from the exact RG equationgolumn 4 and given by the Hh-expansion techniquécolumn 5 are
presented for comparison.

n 98 95 [23] g5 [11] gz (1)
2 3 4 5

1 0.825 0.8D9) 0.721

2 0.388 0.8831) 0.343

3 0.168 0.3617) 0.145

4 0.057 0.1613 0.042 —2.151

6 —0.021 —-0.834

8 —0.034 —0.032) —0.0388
16 —-0.014 —0.0152) —0.0456
32 —0.0023 —0.00231) —0.00395
48 —0.00062 —0.000612) —0.00087
64 —0.00023 —0.00029

100 —0.000046 —0.0000442) —0.000049 —0.000052
=10 and practically disappears foe 14. for each other, making their mutual contribution small and

How close to the exact values g may the numbers in increasing the role of the higher-order terms. That is why
column 3 be? To clear up this point, let us compare oumumerical estimates resulting from expansid’) are ex-
four-loop estimate folRy at n=1 with those obtained re- pected to be substantially cruder than those given by series
cently by an analysis of the five-loop scaling equation of(16) both for small and large values af
state for the 3D Ising mod¢lL9,31]. Guida and Zinn-Justin In order to estimat@j (n), we resum the RG expansion
obtainedR§ = 1.644 and, taking into account some additionalfor gg by the PadeBorel-Leroy technique using the diagonal
information, R = 1.643, while our estimate iR =1.648.  Padeapproximan{1/1]. Other Padepproximants[0/2] and
Keeping in mind that the exact value B should lie be- [0/1], are ignored, since they turn out to lead to quite unsat-
tween the four- and five-loop estimatéthe RG series is isfactory numerical results. Dealing with a single Paqte
alternating, our estimate can differ from the exact number proximant, in some condition we need to fix the optimal
by no more than 0.3%. Since far>1 the RG expansion value of the shift parametdn. For the three-dimensional
(11) was argued to provide better numerical estimates than ifsing model the estimatgj = 0.825 was recently found 9].
the Ising case, this valug.3% may be referred to as an This number has been extracted from the five-loop RG ex-
upper bound for the deviation of the numbers in column 3 ofpansion, and may be considered the most accurate known up
Table 11, from their exact counterparts. to the present. It is natural therefore to tune, by proper choice

It is interesting to compare our estimates fgf with of b, a numerical value ofyj (1) given by the resummed
those obtained by other methods. Since 1994, the universghree-loop RG series with the best estimate available. Such a
values of the sextic coupling constant for the 3D procedure leads tboy=40, and this number is adopted as
O(n)-symmetric model were estimated by solving the exaclptimal in the course of evaluation g§ for arbitraryn.

RG equationg11], by lattice calculationd14], and by a The results of our calculations are collected in Table III,
constrained analysis of theexpansion(23]; corresponding  \here the estimates fay?(n), obtained by a constrained
results are collected in columns 5, 6, and 7 of Table Il, renajysis of thee expansior{23] by an approximate solution
spectively. As is seen, they are, in general, in accord withyt {he exact RG equationd11] and given by the
ours. S _ 1/n-expansion technique, are also presented for comparison.

A less qptlmlstlc situation takes place in the case pf theag seen, fom=8 the numbers originating from two field-
octic coupling constangs. The RG expansiofEq. (13)] i theoretical approachesg—expansion in three dimensions
shorter than Eq(11), and strongly diverges. Moreover, the 4.4, expansion—agree quite well. However, for smatier
s_e_cond term in this series, along-with.the first one, remain%specially fom=2, differences between them turn out to be
finite undern—-e. It becomes obvious if one replacgsby  ather large. This is not surprising since overly short pertur-
g bative expansions fogg are available both in three and 4

— ¢, dimensions and they demonstrate a strong divergence
_ wg4 _ 81n2+7114h+1349609 preventing accurate nurﬁerical estimates fron? beinél ob-
(n+8)* 81(n+80)(n+8) tained. At the same time, our three-loop RG estimates are
believed to be closer to the true critical valuesggaf than
N 30.1707°+1948.7518 +22883.6021 , 17 those given by the expansion, because in three dimensions
(n+80)(n+8)2 9 we have longer perturbative series. A fair agreement between
our results and the numbers emerging from the exact RG
In addition, the RG series fogs has an unusual feature: equationgsee Table Il may be considered as an argument
whenn—co |, the first and second terms tend to compensatén favor of this belief.

Js=
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IV. CONCLUSION be less accurate because of the smaller length and stronger

To summarize, we have calculated the RG expansions focgwergence of the RG expansion obtained. They were found

renormalized coupling constantgs and gg of the 3D ;EO betﬁonsstetr;,Gln gentgral, W'Ejh ;gzsvaluihsgt%fdedu'ced
n-vector model in four- and three-loop orders, respectively romine exac equations and, Wi ose given

Resummation of the RG series by the Paeel-Leroy by a constrained analysis of correspondingxpansion.
method has enabled us to obtain numerical estimates for the
universal critical values of these quantities for arbitrary
Having analyzed the sensitivity of the RG estimatesyipito This work was supported by the Ministry of General and
the type of resummation procedure and a character of thefProfessional Education of the Russian Federation under
dependence on the order of the RG approximation, the agsrant No. 97-14.2-16. One of the auth@#sl.S.) gratefully
parent accuracy of these numbers has been argued to be acknowledges the support of the International Science Foun-
worse than 0.3%. Numerical estimates g turned out to  dation via Grant No. p98-537.
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