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Resonant activations for a fluctuating barrier system driven by dichotomous noise
and Gaussian white noise
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We consider the escape over a fluctuating barrier in the presence of a dichotomous noise and a Gaussian
white noise. It is shown that the mean first passage (IMEPT) over the fluctuating barrier displays two
resonant activations. One is the resonant activation of the MFPT as a function of the flipping rate of the
fluctuating potential barrier; the other is the resonant activation of the MFPT as a function of the transition rate
of the dichotomous noise. In addition, we find that the dichotomous noise can weaken the former resonant
activation, but enhance the latter one. By further study, we find that, when the fluctuating potential barrier is
driven by two or more dichotomous noises, there are three or more resonant activations.
[S1063-651%99)00608-X]

PACS numbegps): 05.40—a, 02.50--r, 82.20.Mj

Noise-induced nonequilibrium phenomena in nonlinearGaussian white noise and a dichotomous noise simulta-
systems have recently attracted a great deal of attention inreeously, how is the situation? In this paper, we shall study
variety of context§1]. In general, these phenomena involve the escape time over a fluctuating potential barrier in the
a response of the system that is not only produced or erpresence of a Gaussian white noise and a dichotomous noise.
hanced by the presence of noise, but that is optimized foFor simplicity and convenience, we take the fluctuating po-
certain values of the parameters of the noise. One example fential barrier as a piecewise linear one depicted in Fig. 1. In
the phenomenon of stochastic resonaewherein the re- our study, we will find a new phenomenon; i.e., there are two
sponse of a nonlinear system to a signal is enhanced by tHeA'’s, which are, respectively, for the MFPT a function of
presence of noise and maximized for certain values of théhe flipping rate of the fluctuating potential barrier and for
noise parameters. Another is the “Brownian motors,” the MFPT a function of the transition rate of the driving
wherein intrinsically unbiased Brownian motion in stochasticdichotomous noise.
spatial periodic potentials with spatial asymmetry or noise The Langevin equation of the model studied by usiris
asymmetry leads to a systematic drift motion whose magnidimensionless formn
tude and even direction can be tuned by parameters of the .
noise[3]. A third is the recent discovery of a reentrant noise- x=—=V'(x,t)+ &(t)+ 5(t), (D)
induced phase transition that is only observed for certain
finite ranges of noise parametgd. A fourth such phenom- WhereV’ denotes the derivative of the potentia(depicted
enon, the one of interest to us in this paper, has been callddl Fig. 1) with respect tox. §(t) is a Gaussian white noise
“resonant activation” and was first identified by Doering With zero mean and correlation functio¢(t)&(t"))
and Gadoud5] and further studied by a number of other =2Dd(t—t"). #(t) is a dichotomous noise with zero mean
authors[6—16]. Here the mean first passage tifhéFPT) of ~ and correlation  function (7(t) 5(t'))=(D/7)exd —|t
a particle driven byusually white noise over a fluctuating —t'|/7]=a%exg —\[t—t’|]. Here 5(t) has two values-a
potential barrier exhibits a minimum as a function of the(a>0), and 1/(2r)=A\/2 is the transition rate of(t) from a
parameter of the fluctuating potential barrigrsually the to —a or vice versa. The potenti&8(x,t) is piecewise linear
flipping rate of the fluctuating potential barrjer and fluctuating'see Fig. 1

Earlier studies of the activation of the MFPT over fluctu- The master equation of E¢l) is [20,21]
ating potentials were restricted to limiting cases, i.e., slow
[17] or fast[17,18 barrier fluctuations, or small fluctuations _

[19]. Owing to using approximate treatments in Refs/— 1
19], the resonant activation cannot be observed. Recently, i

Refs.[56-16], the authors reported results concerning the es e=g 7| [
cape time(i.e., MFPT) over a fluctuating potential in the 2
absence of approximate treatments as in Ré&f&-19. They
revealed a resonant activatioRA) of the MFPT as a func-
tion of the potential fluctuation flipping rate.

All of the above work for the RA of the MFPT over a
fluctuating potential barrier has been focused on system
driven only by a Gaussian white noise. One unavoidably
wants to ask the question, i.e., if the systems are driven by a FIG. 1. The fluctuating barriev(x,t) in Eq. (1).
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Y 0 The equations of the MFPT’s for EqR) are(see Appen-
P1 ! 7 P1 dix A)
P2 L 0y P2 5
J = R ,
| Pg y 0 L3 A\ P3 @ [—y—A—(E1—a)dy+ D3| T;+ AT+ yT3+1=0,
P4 0 ¥ X |:4 P4

[—y—A—(Ey+a)dy+ D2 To+ AT+ yT4+1=0,
where Ll:_y_)\+0x(El_a)+D‘9)2(y Lo=—vy—A\

+0(E1+a)+Ddz, Lz=—y—N+3,(E;—a)+Dd%, and [—y—A—(Epy—a)dy+ DX Ta+ AT+ yT;+1=0,
L,=—7y—N+a,(E,+a)+Déd?, andP,=P(x,t,E;,a), P,
=P(X,t,E1,—a), P3:P(X,t,E2,a), and P4: P(X,t,Ez,
—a). P;=P(x,t,E;,a) represents that the particle is xt
the potential is iV =E, configuration, and the dichotomous
noise is iny(t)=a configuration. There is the same under- whereT; (i=1, 2, 3, and #is the MFPT corresponding to
standing forP,, P35, andP,. y denotes the flipping rate of the probability densityP;. The absorbing boundary condi-
the fluctuating barrier. We start with the particle at the bot-tion and the reflecting boundary condition of E@) are
tom (x=—1), so the initial condition i§i4:1Pi(x,0)= 8(x  Ti(0)=0 andd,T;(—1)=0 (i=1, 2, 3, and 4 respectively.
+1). The boundary conditions for the reflecting—1)  The MFPT for a particle over the fluctuating barrier that
and absorbing X=0) boundaries, respectively, are starts at the bottomxE=—1) is T=3%_ ;T;(—1). Taking

[—y—A—(Ey+a)dy+ D] T4+ T3+ yT,+1=0, (3)

Pi(X,1)|x= —1=0 andP;(x,t)|x=o=0. o Ti=s; (i=1, 2, 3, and 4 we derive
|
0 1 0 0 0 0 0 0
+\N E;—a A 1
yrr o= 2 o0 -2 0 0 0 _Z
T, D D D D Ty D
S 0 0 0 1 0 0 0 0 S1 0
T2 A v+\ E;+a 0 Y 0 T 1
S, D D D D S,
dx = + . 4
T, 0 0 0 0 0 1 0 0 T, 0
S +N E,—a N S 1
3 ~Y o 0 o X1t = _t 0 3 _ =
T, D D D D T,
S 0 0 0 0 0 0 0 1 \s, 0
N +N E,t+a 1
0 o -X o -X o Xt = _=
D D D D D

WhenE;+E,# 0, the solution of Eq(4) is (see Appen- 2,...,9 anngl). From these linear algebraic equations, one
dix B) can deriveA(") andB{". The MFPT for a particle over the
fluctuating barrier is

~

si= 2, kDAM exp\jx) + =——, 4
= EitE, T=2 Ti(-1)
=1
7 i )
=3 k}')AJ‘”eXm.x)+B<”+F-+ x (5 —i > £A<1>e-xj+45<1>+é Fim=———. (6)
Y . 8 LB tEy B=T=B Y ® S EitEy

wherei=1, 2, 3, and 4); (i=1, 2,...,7 are seven inde- Here, the condition for validity of formuld6) is E;+E,
pendent nonzero eigenvalues of the matrix of the homoge«Q.

neous part aboul; ands; (i=1, 2, 3, and 4in Eq. (4). The By numerical calculus based on E@) we find that for
coefficientsk!” andF; (i=1, 2, 3, and #have been givenin Eq. (1) there are two RA'’s for the MFPT. One is the RA of
Appendix B. Substituting Eq(5) into the boundary condi- the MFPT as a function of the flipping rate of the fluctu-
tions T;(0)=0 ands;(—1)=0 (i=1, 2, 3, and 4 one can ating potential barrieN(x,t) (the first RA); the other is the
obtain eight linear algebraic equations f@r}l) (j=1, RA of the MFPT as a function of the transition rateof the
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InT

MFPT over the fluctuating barrier with the dichotomous
noise in the—a configuration, which accords with the above
reason for the RA happening in Fig. 2.

In Figs. 3a) and 3b), for different values of dichotomous
noise strength we represent the In of the MFPT as a function
of the In of the potential barrier fluctuation flipping rate and
as a function of the dichotomous noise transition rate, re-
spectively. The figures show that as the dichotomous noise
strength increases, the resonant behavior of the MFPT as a
function of the barrier fluctuation flipping rate becomes more
and more indistinct, but the resonant behavior of the MFPT
as a function of the dichotomous noise transition rate be-
comes more and more distinct. So the dichotomous noise can

9 7 5 3 4 1 38 5 7 weaken the first RA, but enhance the second RA. In addition,

Inx

Figs. 3a) and 3b) also show that with increasing the di-

chotomous noise strength the value of the MFPT over the
FIG. 2. The In of the MFPT over the fluctuation barrier versusfluctuating potential barrier decreases, and its minimum
the In of the dichotomous noise transition rate wigs 10, E, value moves toward right.
=10, E;=14,a=6, andD=1. Below we consider the case whéh+E,=0. By nu-
merical simulation and analysis we can find that witen
dichotomous noise(t) (the second RA The first RAisthe +E,=0 there are six nonzero real independent eigenvalues
same as that proposed by Doering and Gadéliaand stud- and two zero eigenvalues for the matrix of the homogeneous
ied in Refs[6-16]. In order to avoid unnecessary repetition part in Eq.(4). Now we havdgnoted, T;=s; (i=1, 2, 3, and

we do not present a figure that is basically similar to the onel)]
in Refs.[5—16]. In Fig. 2 we plot the behavior of the In of
the MFPT numerically based on E@&) with respect to the In

of the dichotomous noise transition rate The figure shows
that there is a RAthe second RAin the dynamics of the
MFPT with an increase of the transition rateof the di-
chotomous noise. A reason for this RA happening here is
given below(the reason for the first RA was given in Ref.
[5]). The resonance in Fig. 2 occurs when the crossing takes
place with the dichotomous noise most likely in the con-
figuration. Now the MFPT has a local minimum for the di-

6

5=, Cj(i) exp(rjx)+C(7i)+Cg)x,
=1

M

6
C : . 1 .

Ti=>, r—'exp(r,-x)+D(7')+C(7')x+ ECg)xz, @)
=1

1

chotomous noise transition rate on the order of the inverse ofherer; (j=1,2,...,6 are the six nonzero eigenvalues of
the time required to cross the fluctuation barrier with thethe matrix of the homogeneous part in Ed). From Eq.(4)
dichotomous noise in-a configuration. A point1) marked and the boundary conditions fdr, ands;, using a similar
in Fig. 2 is the point where the transition time equals themethod which has been used when calculating forni6la

InT
InT

(0)

FIG. 3. For different values of the dichotomous noise strefijfta= 3, (2) a=6, and(3) a=12, the In of the MFPT versus the In of
the barrier fluctuation flipping rate with A =10 (a) and the In of the MFPT versus the In of the dichotomous noise transitior rati¢h

y=10 (b). E;=10, E,=14, andD=1.
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we can deriveC{) and DY) (i=1, 2, 3, and 4,k=1, [~ y—A—(Ej+a)dy+ Do To+ AT+ yT,4+1=0,
2,...,8. The MFPT for a particle over the fluctuating barrier
is
s 6 1o L [—y—A—(Ez—@)d+ D Ta+ T4+ 9T +1=0,
T=> > |[Ltei+DP-cP+=cP|. (8
=1=1 T 2

—y—A—(Ep+a)dy+ D] T4+ ATg+ yT,+1=0.
Further study shows that whéh + E,=0 there is the same [y A= (Ept @)t DAITat A Ts+ 9 To+ 1 0(A3)

phenomenon as reported above.

In Eqg. (1), the fluctuating potential barrier is only driven
by a dichotomous noise. When the fluctuating potential bar-
rier is driven by two or more dichotomous noises, further
study shows that there are three or more resonant activations By numerical simulation and analysis we can find that
(a detailed theory is under studyn addition, when the fluc-  whenE; + E,+0 the eigenvalues of the matrix of the homo-
tuating potential barrier is not piecewise linear, such as geneous part aboii ands; (i=1, 2, 3, and #in Eq. (4) are
—V'(x,t)=—U"(X)+ no(t)g(x) [whereU(x) is a bistable real and independent, and there is a zero eigenvalue. The

potential or a multitable potentialkyo(t) is a noise which  general solutions of Eq4) whenE;+E,#0 are
takes on the values 1 (the transition rate between1 is

v), coupled tog(x), and causes the potential barrier to fluc-
tuatd, as long as there is the dichotomous ndi$g in Eq. 7
(1) the phenomenofi.e., there are two resonant activatipns s = E Aj(i) exp()\jx)+Ag)+Ag)x,
reported by us in the paper still exists. i=1
Because the model with a fluctuating potential barrier is
of generic interest in chemistf22], biology [23—-25, phys-
ics, and other sciences, our results probably apply to a [ . .
broader class. Furthermore, in our case, the dependence of Ti= > BU exp(\jx)+B§ +BYx, (B1)
the RA as a function of the transition rate of the dichotomous =1
noise, which is an external random force, would make con-
trol of the RA easier in an experimental search.

APPENDIX B: SOLUTION OF EQ. (4)

wherei=1, 2, 3,and 4, andl; (i=1, 2,...,7 are the above-
mentioned nonzero eigenvalues. Substitug@nd T; into
This research was supported by the China Postdoctorg) T7.=s. one can obtainBJ(i)=AJ(‘)/)\j, A{)=0 and B
Science Foundation. :Ag) . So we have

APPENDIX A: THE MFPT EQUATIONS FOR EQ. (2)

7
The backward master equation for master equat®ns ; ;
q d 5=, Aj(') ex;i)\jx)+A('),
=1

[20,21]
L/ A 0

Gl L]_ Y Gl A(i)

G, N L, 0 vl G, A T=2 )\LexmjstguAg)x. (B2)
J = R , =1 Aj
‘ GS Y 0 Lé A G3

<X N G4 _ . .

Y Ly Substituting Eg. (B2) into Eq. (4) and using the

A . comparing-coefficient method, we get
where  Li=—y-A—0(E;—a)+Dd;, Lr=—y—)\
—9(E1+a)+DaZ, Li=—y—N—d(E;—a)+Dd?, and

) 4
L,=—y—A—dx(Ep+a)+DdZ. A==
The MFPT is defined ak20] 17 =2
Ti(x)=— f t3,Gi(x,t)dt= f Gi(x,hdt,  (A2) By =B§"+F;,
0 0

wherei=1, 2, 3, and 4.
From Egs(Al) and(A2), one obtains the equations of the
MFPT:

AD=kOAD = (i=1, 2,3 and 4j=12,...,7
(B3)

[—y—N—(Ey—a)dy+ D3] T+ AT+ yT4+1=0, with
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4a
F1=0, F2:— Y — ,
ANN+7y) MNE;+Ey)

E.— A 4E, Eo=—1N—1/ 4a N 4E,
Ty AEFE) VTNEAE)  WETEY
2_ .2 2 2
kD=1 k(2):)‘ —y*+(DAj—y—A—E;+a)(DAj—y—A—Eyta)

’ : N(—2DN2+2y+ 2\ +E; +Ey)
! \’= 9?4 (DNf—y—A—E;+a)(DA{— y—A—E,+a)
k¥==| y+N+E;—a—DA]+ . ,
’ 2DA2-2y-2\—E;—E,

() 1 [ H(y+>\+ Ei+a—DAY)[A2—y?+ (DN = y—N—E;+a) (DN — y— A —E,+ a)]}
O .
Y

—2DA?+2y+ 2 —E +E,

Substituting Eq(B3) into Eq.(B2), one can obtain

7
A NROINES: ) ——
Si le AT expinx) E, E,’

7T KHAMD
T=>, ‘)\' exp(\;x)+B{+F+
=N

E+ sz. (B4)
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