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We develop a statistical-mechanical formulation for image restoration and error-correcting codes. These
problems are shown to be equivalent to the Ising spin glass with ferromagnetic bias under random external
fields. We prove that the quality of restoration/decoding is maximized at a specific set of parameter values
determined by the source and channel properties. For image restoration in a mean-field system a line of optimal
performance is shown to exist in the parameter space. These results are illustrated by solving exactly the
infinite-range model. The solutions enable us to determine how precisely one should estimate unknown pa-
rameters. Monte Carlo simulations are carried out to see how far the conclusions from the infinite-range model
are applicable to the more realistic two-dimensional case in image restof@&i063-651X99)02807-X|

PACS numbd(s): 05.50+4q, 75.10.Nr, 89.70:c

I. INTRODUCTION correcting codes can be written in terms of the theory of spin
glasses. The idea is first to represent the bit sequence as an

Information is usually transmitted through noisy channels.ising spin configuration and then to form a set of exchange
One therefore has to devise a method to retrieve the originahteractions as the products of appropriate sets of spins,
information from the output of a noisy channel. Let us sup-which can be considered as a generalization of the Mattis
pose that the original information is represented as a seamodel of spin glassegt]. The set of interactions, instead of
guence of bits. The idea of error-correcting coflekis to  the spin configuration, is fed into the channel, in which noise
introduce redundancy into the bit sequence to be fed into theauses the signs of interactions to flip with some probability.
noisy channel, so that this additional information is helpful At the receiving end, one forms the Ising model Hamiltonian
to retrieve(decode the original bit sequence from the cor- from the corrupted exchange interactions, the ground state of
rupted output of the channel. An example is the parity-checkvhich is accepted as the decoded information. This process
code in which the parities of appropriate blocks of bits areis equivalent to the MAP estimate. Sourlas used this formu-
sent through the channel in addition to the original sourcdation to show that there exists a family of codes that are
sequence. The receiver checks the consistency between tasymptotically error-free and saturate the bound on the code
information bits and parity bits and takes appropriate actionsate (the number of information bits divided by the number
if an inconsistency is found. of transmitted bits derived by Shannofb].

The problem of image restoratidr2] is similar to the Rujan [6] subsequently proposed to carry out the decod-
error-correcting code, in the sense that an image representétyy procedure not at the ground state but at a finite tempera-
by a set of pixel§corresponding to the bit sequence in error-ture corresponding to the Nishimori temperature found in the
correcting codesis corrupted by noise and the receiver triestheory of spin glassg¥]. The finite-temperature decoding is
to retrieve the original image out of the noisy, corrupted oneeffective because the correct original bit sequence has a
A major difference is that in the image restoration problem,higher energy than the ground state if the exchange interac-
one is usually given only the corrupted image, not other adtions are corrupted and thus are deviated from the Mattis
ditional redundant information. One thus relies on same type. His proposal was supported by one of the auth®fs
priori knowledge about images, in general, to remove noisewho proved that when the decoding temperature is varied,
A simple instance is the assumption of smoothness in reathe average error per bit in the decoded sequence becomes
world images; for example, one may wish to suppress amsmallest at the Nishimori temperature. Soufl@sused the
isolated white pixel among black ones because such a comBayes formula to rederive the finite-temperature decoding of
figuration is likely to have been caused by noise rather thaiRujan under more general conditions. A recent development
to have existed in the original image of the real world. along this line is the contribution by Kabashima and Saad

A general strategy common in error-correcting codes an@i10] who used a diluted many-spin interacting model of spin
image restoration is to use the Bayes formula onatmos-  glasses to show that this system asymptotically saturates the
teriori probability (posterioj of an output sequence, given Shannon bound with the code rate kept finite.
the input sequence. One then often accepts the seqliemce Analogy with statistical mechanics has also been a useful
age, which maximizes the posterior as the decoded/restoreduide to develop a variety of techniques in the image resto-
result. This method is called the maximunposterioriprob-  ration problem[11-13. Most of the efforts, however, have
ability (MAP) estimate. been devoted to the development of efficient methods to

Sourlas [3] pointed out that the problem of error- search for the ground state of appropriate statistical-
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mechanical systemghe MAP restorationusing simulated the output consists of the se{tﬂsil.“ir} for various values of

annealing[11], mean-field annealing12], or the cluster- r, which are the corrupted versionsjﬂ,_,i _Two kinds of
variation method$13]. An interesting exception is the work . . Lo .
noisy channels are considered in this paper: the binary sym-

of Pryce and Bruc¢2] who pointed out that under a certain d .
criterion, the MAP estimate is outperformed by the thresh-metrIC channe(BSC) and the Gaussian chanr@C).

olded posterior meafTPM) estimateg 14|, which is actually
equivalent to a finite-temperature decoding method.

It is therefore natural to formulate the problems of error-  |n the binary symmetric channel, the outpit.. ;. is
correcting codes and image restoration Wlthln a unified the; qual to+J° . with probabilitiesp, and 1—p,, respec-
oretical framework and apply various techniques developeg o e
in the theory of disordered systems like spin glasses and thtéve!)y’ wherep, is the error rate of the BSC for transmission
random-field Ising model. In this paper, we study the choicé®f Ji,...i,- The error probabilities of flipping the signal1 to
of parameters for optimal performance with this approach—1 and—1 to +1 are the same. This output probability can
For illustration, we introduce the infinite-range model, by be written in a compact form as
which it becomes possible to discuss analytically the param-
eter dependence of the performance. Poul{J}{£})

In Sec. Il we give the basic formulation of the problem for
the binary symmetric and Gaussian channels. The posterior =]] (2 coshg,) ™ exr{ > B> Jij i i &
for the output of a noisy channel is interpreted as the Boltz- r r ' '
mann factor of a statistical-mechanical system, namely, the (1)
Ising spin glass with ferromagnetic bias under random fields.

Important quantities in the theory of error-correcting codesvhere g, =0 if the code under consideration does not in-
and image restoration are represented in terms of thermalude the sefJ; .. } and
averages of the Ising model at finite temperatures. We derive

an upper bound on the overlap between the decoded/restored 1 1-p,
result with the original sequence/image using the statistical- ,8,=§In P,
mechanical formulation. The problem of image restoration is

treated in Sec. Il in detail where we derive a line of optimal otherwise. The second summation in the exponent of(Bq.
performance in mean-field systems, find the exact solutio@xtends over an appropriate set of the indidgs (. . i),

for the infinite-range model, and present simulation result$he choice of which determines the type of the code, ldpd
for the two-dimensional case. The infinite-range model iss the number of terms appearing in this summation. Note
shown to work as a good guide to the description of qualitathatN,=0 if 8,=0. Each index may appear in a number of
tive behavior of the two-dimensional problem. Explicit ex- r-spin terms in the exponential expression; the number of
amples of images are displayed to clarify what happens urtimes of appearance is called the valemgy

der various conditions. The problem of error-correcting The procedure of decoding/restoration proceeds as fol-
codes is analyzed in Sec. IV. We solve the infinite-rangdows. According to the Bayes formula and E@), the pos-
model explicitly using the replica method. Compact expresterior probability that the source sequencddg, given the
sions of the overlap and other order parameters enable us tutput {J}, is proportional to the Boltzmann factor of an
discuss various aspects of error-correcting codes quantitdsing model multiplied by the prior:

tively. The final section is devoted to discussions.

A. Binary symmetric channel

@

P({o}i{J})«exp(Z B2 Jiioi ..o |Ps{a}).

Il. GENERAL FORMULATION 3)

Consider an information source that generates a bit se-

quence represented by a set of Ising sig$, whereg=  Note that we use the symbgir} for the decoded/restored
+1 andi=1,... N, with the source probabilitPs({}) result that is, in general, different from the original $¢}._
(the prioy. The sequencés;} is coded as the products of For simplicity, we restrict ourselves to the case of a single
spinsJ?l“.ir=§il~ -+ & for appropriately chosen sets of in- nonvanishings, (= B;) with r=2 andg,(=g,). Following

the convention of separating the interaction terms and local
field terms in statistical mechanics, we wrilgas 7; for r
=1 terms, and Eq(3) becomes

dices{i,- - -i;}. The Sourlas cod¢3] is equivalent to the

infinite-range model in which all possible combinations of

sites are chosen froi sites. In general, we consider several

different r's in a single code, such as in the case of the

Viterbi code[6] which hasr=2 and 3. The problem of im- P({0}|{J},{T})°<6XF< B> Jij i, Ti, O

age restoration can be regarded as a special case bf in

which casel; corresponds to the state of thi pixel in the

corrupted(noisy) image. A “bit” in error-correcting codes +8,> T O'i) Ps({o}). (4)

should thus be identified with a “pixel” in image restora-

tion, a “bit sequence” with an “image,” and “decoding” Similarly, we will usep;, p, to represenp,, p;, respec-

with “restoration” whenever necessary in the following ar- tively.

guments. It often happens that the receiver at the end of the noisy
When the signal is transmitted through a noisy channelgchannel does not have precise informationdn 8, or Ps.

r
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One has to estimate these so-called hyperparameters, which The decoding/restoration procedure reduces to the method
is one of the major topics in this fieltsee, for example, of Rujan in the situation of error-correcting codéise., h
[15]). If the receiver estimateg for 8; andh for 8., and =0 and P;=P,=const) wheng=3;, in which case the
uses a modelgues$ P({o}) of the source prioP4({¢}),  noise temperature 84 is equal to the Nishimori tempera-
then the mean of the posterior distribution®fis equal to  ture, which is known to play an interesting role in the theory
the thermal average of spin glasseg7]. Pryce and Brucd2] called the same
method the TPM in the image restoration situation, in which

D se PP, ({o}) ?(?)e setdh= B, in the absence of the interaction term in Eqg.
(o)= , (5) The finite-temperature method with appropriate param-
> e PP, ({a}) eters 3=8;,h=8,,P,=Ps) is known to give the se-
o quence of most probable bits both in error-correcting codes
S and image restoratiof2,8,9,14. The MAP estimate, on the
where the Hamiltonian is given by other hand, chooses the sequence that gives the largest value
of the posterior4), corresponding to the ground state of the
,BHZ—,BE Jil-..i,Uil---Ui,—hz o . (6) Ising model. The result of finite-temperature decoding/

restoration gives a lower value of the posteridy than the
) . MAP result. However, there appear very many states with
One then regards sgm) as theith bit of the decoded/ imost the same value of the posterior if we generate finite-
restored information Wlth_ f|n|te_/3 and h m_t_he finite- “temperature states by E@), and thus after weighted by the
temperature process, or with their ratio kept finite when theif,ymper of such similar states, finite-temperature states out-
magnitudes approach infinity in the MAP method. ~ weigh the MAP counterpart. In other words, if we take into
In the context of image restoration, one often considergccount the entropy effects, the finite-temperature method
patterns with nontrivial structures. Therefore, they are aspecomes the natural choice. This corresponds to the free-
sumed to be generated by a nonuniform source priognergy minimization rather than the energy minimization as

Ps({¢}). When we do not have any information on the jn ysyal statistical-mechanical systems at finite temperatures.
source prior, we have to represent aupriori knowledge on

general images in the model priBr,({£}). A natural choice

. L B. Gaussian channel
often used as a generic form of the prior is the Boltzmann uss!

factor of the ferromagnetic Ising model, In the Gaussian channel, the outdyt..; is a Gaussian
1 random variable with appropriate meamiol__.ir and vari-
Pm({a})z—exr{ﬁ 2 Uiffj). 7) anceJrz. Hence for a given sequendg;}, the Gaussian

Z(Bm) z {h channel is given as

whereZ(B,,) is the partition function at the inverse tempera- 1
ture B, (ij ) represents interacting sites, anis the valency Pout({J},{T}Hf})“eXP( — = 2 iy —doki - &)?
of each site. The summation usually extends over neighbor- 2J
ing sites on a two-dimensional lattice. This prior is natural 1
because it suppresses different states of neighboring sites, - z (Ti—a§i)2) (9)
enhancing a smooth structure. In this paper we consider pri- 272
ors with general connections.

To proceed further, we have to assume some explicit form 1 1
of the source prioP4({£}). To develop a general theory, we = exp( - > (Jizl. . 'ir+JC2)) - > (P+a?)
adopt the Boltzmann factor of the Ising model, 2J 27

J a
1 Bs o s L9 "
Ps({f}):mexﬁ{?% §I§J), (8) +J22 J|1~~-Ir§|l-..§lr+ 7-22 T|§|)! (10)

which has the same form as E€f) but with a different where, again following the statistical mechanics convention,

inverse temperature. Thus the original images correspond € have usedy, J, a, andr to represeng, , J, a;, andJy,

snapshots of equilibrium Monte Carlo simulations of the fer-"eSPectively. o
romagnetic Ising model. The similarity between Eq$4) and(10) implies that the

Comparison of Eqs(4), (5), and (6) implies that the output probability distribution for BSC and GC can be writ-
Bayes resul{4) specifies the inverse temperatyseto g,, (€N in the same form,
the field strengtth to B,, and the model prioP,, to Ps.
Nevertheless, it is useful to kegf h, andPy, as adjustable p_ 13y{eh)=]] Fr(Jil---i,)H Fa(r)
parameters and investigate how precisely we should estimate
the hyperparameters and tune the adjustable parameters for
optimal decoding/restoration. Our statistical-mechanical for- ><exp< B1>, Jip i &y -§ir+ﬁ72 Ti&i |,
mulation is particularly useful to investigate this problem
both qualitatively and quantitatively. (11
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whereg;=J,/J% and3,=al 7> for GC.F, andF, are func-
tions independent of¢;}. For BSC,

1
Fr(Jilmi,):m{a‘uil...ir—ln5(Ji1__ir+1)},
(12)
Fu(7)= 5 cosng (i~ D a(ni+1}E (19
For GC,
— 1 1 2 2
Frdiy i) = o= = 5 (30 o) | (19
1 1, .,
Fi(m)= 7TTZex _;(Ti‘i‘a). (15

C. Overlap
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of the MAP corresponding to the limjg,h—o cannot ex-
ceed that of the finite-temperature decoding/restoratigsy at
andg,.

This inequality was known in error-correcting codi8s9],
and equivalent statements were given also in the image res-
toration probleni14] although not in the explicit form given
here. One of the contributions of the present paper is that we
have generalized the inequalities to the case where two dif-
ferent types of terms are present, one with2 and the other
with r=1. Similar inequalities can be easily derived for the
more general case of several differerg in Eq. (1).

1. IMAGE RESTORATION
A. Line of optimal performance in mean-field models

In conventional image restoration problems, the output of
the transmission channel only consists of the set of pixels
{7} (corrupted image in the usual sejseut not the set of
exchange interactiongJ;;} (the corrupted version O{Jﬂ
=§&&;}). In this case the following inequality applies to im-

The most important quantity in the present problem is the2des Wwith extensive valency. Mean-field results are exact

overlap of the decoded/restored bit égr) and the original

when each pixel interacts extensively with other pixels in the

bit & averaged over the output probability. We may expres$ource and model prior distributiori8) and (7). These in-

this overlap as

I1 f dI ] J drPou({It{TH{EN & sgn(o).  (16)

clude the infinite-range model, in which all pixels interact
with each other, its randomly diluted version with infinite
valency in the thermodynamic limitN—®), or finite-
dimensional models with long-range interactions. Mean-field
approximations also work well for finite but large valencies

This expression(16) should be further averaged over the when the temperature is not too low. The following inequal-
possible sequences of source bits represented by the priy derived in Appendix B is useful in finding the optimal

Ps({&}). The final expression of the overldy is then

MEn Py =3 1 [ a3
3

<1 [ drPu(ien Pout(3).(711(€D & s0r(er).
7

The dependence dfl on B, h, andP,, exists in the thermal

averag€(o;). The average of any other quantityo) is cal-
culated similarly:

(=3 11 [ adll [ arpuctenPadionintlien

> f(o)e PP ({a})
X— . (18)
> e PP ({o})

(o8

The outer bracket§- - -] in Eq. (18) denote the averages

over{¢}, {3}, and{7} with the weightP P .

The following inequality on the overlap is very useful in
discussions on the decoding/restoration performance, and t

proof is outlined in Appendix A:

M(B.h,Pm)=<M(B;.8;,Ps). (19

restoration performance,

Bsmo S) ’ (20)

M(hyﬂm)gM(sty

for arbitrary values o>0. Heremy and m are the(self-
averaging thermal averages of the source pixels and
model pixelso;, respectively, for those sitasthat interact
with a given site, say, site 1 that, however, is removed from
the thermal process. Note that the derivation only makes use
of the self-averaging nature of the mean-field quantities, and
does not rely on any connection topology of the s{wsept
for the mean-field requirementNo particular techniques
such as the replica method are employed. Hence the inequal-
ity applies to mean-field systems in general.

Sincem, andm are functions of3s, B, andh, Eq. (20)
defines the line of optimal performance in the spack ahd

Bm:

h BmM(Bs,Bm.h)
B, Bsmo(Bs) - D)

In particular, whers=1, h=8,, B,=8s andm=m,, Eq.
(21) reduces to the point of optimal performance predicted
by Eq.(19). On the other hand, if the fieldis different from

-, then the source and model temperatures have to be res-
caled by the magnetization of the respective systems. When
s—oo, we obtain the zero-temperature restoration, i.e., the
MAP estimate. Hence the MAP estimate is also optimal,

This inequality means that the overlap becomes largest wheprovided that the correct ratio &f 8,,, is used(although this
B=B;, h=8_, andP,=Ps. In this sense the performance choice can only be determined iteratively
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B. The infinite-range model

0.76 — e e
Let us now suppose that we are given the corrupted ver- I |
sion of the set of pixel§~;} and, in addition, the exchange —opth
interactions{J;;}, the latter being the corrupted version of 0755 Lo L T et
the Mattis-type interaction§s;&;}. The additional contribu- ' ’: |

tion from the exchange term enables us to formulate the im- M
age restoration and error-correcting code problems on the I
same footing and at the same time investigate the extent to 0.75
which the additional informatiofJ;;} enhances the perfor-
mance. The restoration process is carried out at the inverse
temperature3 and the fieldh using Egs.(5) and(6) with r

=2. Though the inequalitie€l9) and (20) give a bound on

the overlapM, they do not reveal the explicit dependence of
M on the parameterg, h, B,,, andg,, which is necessary

for studying the tolerance of the restoration results against 0.74
uncertainties in the estimation of the hyperparameters. The
infinite-range model serves as a useful test ground for this

purpose. Of course the infinite-range model is not useful for FIG. 1. The overlap as a function of the restoration temperature

restoration of a real two-dimensional image since all pixelsr, i the infinite-range model. The random-field strengtis cho-
are neighbors of each other and hence the spatial structuredgn 1o beh=g.8,,/8s (Opt h), h=0.98.8,/8s (Opt*0.9), h

ignored. However, we may reasonably expect from experi—1.13 g/ (Opt*1.1), orh=1.
ence in statistical mechanics of many-body systems that the
behavior ofmacroscopiaquantities(such as the overlapl)

of realistic problems are at least qualitatively well predicted
by the infinite-range model.

h=1

0.745

[&i]=mg=tanhBsmy,

We, therefore, suppose that the summation in the §&por [(o))]=m= eBsm0§J Dx tanhU,
extends over all possible pairs of sites, 2 coshBsmg ¢==1

Ps({&}) = ! ex e > &g, (22 [&(o)]=t=——F— geﬁsmo‘ff Dx tanhU

Z(Bs) 2N 7 o 2 coshBymg 521 ’

and similarly for the model prioP,,. We also assume that
the two-body exchange interactions for all pairs of sites are [<Ui>2]:q:2 coshBymg :£51 eﬁsmo§j Dxtantf U,
included in the given information, or equivalently E@®) (24)
with r=2 and the summation extending over all pairs of
sites, and that the channel is Gaussian. We thus have tohere
evaluate the following averaged replicated partition function,

U=(B23%q+ ?h®)Y%x+ B,,m+ (ah+ BIst) €. (25

dJ;; , :
[zn]zé Il;[j WIIZIN The overlap is a function of these order parameters,

1
2 &sgno)]=M=——r-— > §eﬁsm0§J’st nu .
e _12 (Jij—ﬁaa) [£i sgr(oi)] 2 CoshBamy 221 9
232 5] N (26)
dr 1 s An example of the dependence iif on the model prior
X 1_,[ 2772 2.2 EI (ri—ag) temperatureT ,= 3.} is shown in Fig. 1 for conventional

2exp( -
7 2 image restoratioriwithout the exchange tern3=0). The
Bs parameters ar@;=0.9 anda=7=1. The usual practice in
2N ; &iéj image restoration is to use a Hamiltonian with a fixed ratio of
h/B,,, and then to use,, as an adjustable parameter for
n simulated annealing. Hence we consider the behavior as a
x> exp B Jij > ofaf function of B,, when h/3,, is kept constant to the optimal
7 <l Ce=l value B./Bs (the curve marked Oph), to 0.9 times the
B n n optimal value(Opt*0.9), or to 1.1 times the optimal value
+ N 2 2 cri“crj“Jr hz Ti E ai“) . (23 (Opt*1.1). In the curve markedi= 1, hitself is kept constant
1<) a=1 b=l to 1. The ground-state limif,,—0 gives the MAP restora-
tion. The maximum is afl,,=0.9(=T,) for the optimal
The standard replica calculation with the replica symmetricchoice ofh=1(=8,8,/8s), as predicted by Eq19). This
ansatZ 16] leads to the expressions of the order parameterdigure indicates that one does not have to approach the zero

*Z(B) &
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FIG. 2 The line of optimal performance in the space of the K5 3 The overlap as a function of the parameein the
random-field strengti and the restoration temperatufg, in the infinite-range model. The center of the channel output distribution

infinite-range model for the parameters used in Fig. 1. The thregs 3 _5 g and the other restoration parameters are chosen to be the
lines of operationgOpt h, Opt*0.9, and Opt*1.1 are shown for optimal valuesT,,=T(=0.9) andh=a(=1)
m= s . :

comparison.
and Opt*1.1 of Fig. 1, respectively. Where they intersect the

temperature limit as in MAP in the search of the best reqine of optimal performance, the overlap reaches a maxi-
stored image by such a process as simulated annealing. mum.

For the curves Opt*0.9 and Opt*1.1, the location of the | realistic image restoration, the precision in the estima-
largestM is not atTy,=0.9. However, the maximum value tion of hyperparameters is an important issue. One can see
coincides with the best value as predicted by E). This  that the three lines of operation follow the general trend of
fact can easily be verified by differentiating EQ6) with  the optimal curve. Hence they are much more error tolerant
respect toBy . The optimal parameter i8n=BsMoh/B,M,  than other curves, sap=1. Furthermore, if a line of opera-

agreeing with Eq(21). . tion intersects the line of optimal performance with a small
_ The line of optimal performance in the spaceTgfandh  angle between the tangents, then the ovekliajs very near
is obtained by combining Eq$21) and (24), yielding to its optimum for a wide range of parameters along the line
1 of operation, and the procedure has a high tolerance for pa-
_ Bz 2 BsMoé rameter uncertainties. Among the three lines of operation in
T e Dxtanh : : .
Bsmoh 2 coshBsmg =1 Fig. 2, T,;h = 0.99 has the highest tolerance. In fact, if one

usesT ,h=1.0267 according to Eq28), then it has the wid-
_ 27) est range of tolerance in the low temperature region.
Figure 3 shows the effects of introducing the exchange
term. It depictsM as a function of the inverse exchange

When h—0, T,, approaches the Iir.nit'l(mmalefraﬁrlﬁs- temperature8 in Eq. (23) with the other parameters set to the
This is the temperature above which the maximum OVe”anptimal valuesT,=T,,=0.9,a=h=1.0 and withJ,=2.0 in

cannot be achieved.
In the low temperature limith—o and the ratioh/ 3,
approaches a constant,

BsMg

T

x| h

+aé+7x

the unitJ=r=1. The axis8=0 corresponds to the optimum
point T,,=0.9 of Fig. 1. The introduction of the exchange
term is seen to sharply improve the performance. The maxi-
h B 1 mum of M is located at3=2.0 (=Jg) as required, and
lim — =—2" E =(1+myé) stays close to the maximum value beygdid 2.0. The com-
hoo Bm  BsMo ¢==1 2 bination of the ideas of error-correcting cottee 8 term
and image restoratiofthe 8,, and h termg leads to a re-
Xe”{i(@Jr 5)1 (0  Markable improvement in the quality of the restored image.
J2r\ B- ' Two remarks are in order in relation to Fig. 3. First, the
amount of information conveyed by the de;} may seem
Hence the maximum overlap is achievable for any temperaexceedingly large compared to thatf} because the num-
ture below [T)max- The zero-temperature restoratigihe  ber of elements in the former setNg¥N—1)/2 while it isN
MAP estimate is potentially as optimal as the finite tempera- in the latter. This fact may be mistaken as the reason of the
ture procedure determined by E@9) in mean-field systems, improved result in Fig. 3 for finitg3. However, since each
although it can only be achieved at the correct rdui@,, Jij(~O(1/\/N)) is much smaller in magnitude than
given by Eq.(28). 7{(~0(1)), the contribution of eacl; is very small. Such a
Figure 2 shows the line of optimal performance for thesituation is characteristic of the infinite-range model. The
parameters used in Fig. 1. The hyperbdlags = 0.9, 0.81, equivalent situation in the finite-dimensional case is that the
and 0.99 correspond to the lines of operation @@pt*0.9, number of exchange interactions is of the same order as that
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FIG. 4. The overlap as a function of the restoration temperature FIG. 5. The overlap as a function ¢f for the square lattice
on the square lattice obtained by simulations. The source temper#thenT,=Ts=2.15 andh=3.=1.0986.
ture isTg=2.15, the error rate_.=0.1, and no exchange interac-

tions (3=0). lap is seen to increase quite significantly as a functiop of

] ] ) The axis =0 corresponds to the optimal point df,,
of sites. For example, there arélearest-neighbor interac- — 15 iy Fig. 4. The overlap reaches its maximum at around
tions forN sites on the square lattice. Therefore, the increas%:ﬁJ:1_0986 as it should and decreases slowlyBas
in the amount of information by the introduction of the setf ther increased.
1Jjj} should be of order unity, not infinitely large. Second, as  Respectively, Figs. 4 and 5 are qualitatively similar to Opt
the exchange term is seen to increase the overlap velyin Fig. 1, and Fig. 3, for the infinite-range model, implying

sharply, even the information from a fraction of the ex-the ysefulness of the infinite-range model as an approxima-
change interactions may be useful to improve the restoratiojoy of the two-dimensional problem.

resqlt. For example, one may choose a small fraction of _pairs Let us show an explicit example of the actual image res-
of sites(either randomly or notand use the corrupted, noisy toration. Figure 6 represents the situations of Figs. 4 and 5

version of these exchange interactions to restore the image {gith the size 106 100. We have generated a pattern by the
obtain a better result. This method should be useful when thﬁrior (8) with T,=2.15 to obtain Fig. @) and have added

bandwidth (the amount of information to be carried by the ise with probability. = 0.1, resulting in Fig. &) [17]. To

channe) is limited. obtain the restored images, Figgc)sand d), only the cor-
rupted imagdFig. 6(b)] was used without extra information
C. Simulations on exchange interactiong3&0). Restoration was tried at

It is difficult to investigate the more realistic case of two- temperaturesl,=0.5 for Fig. @c) resulting in M =0.888
dimensional images by analytical methods. We therefore
have carried out Monte Carlo simulations to confirm the
qualitative pictures obtained by the exact solution of the
infinite-range model. To generate the source image, we have
used the priof8) with T4=2.15, which is slightly lower than
the critical point 2.269 of the two-dimensional Ising model
on the square lattice. The error probability was setpgo
=p,=0.1 for BSC, corresponding t@;=3,=1.0986 by
Eq. (2). Averages over five sampléBig. 4, size 40& 400)
or ten samplegFig. 5, size 106 100) were taken at each
data point.

Figure 4 shows the overla as a function ofT,,, when
B=0 andh is chosen so thdt/3,, is fixed to the optimum
value B,/Bs. The overlap should have a maximum &
=T¢,=2.15in Fig. 4 according to Eq19), although it is not
very clearly seen due to statistical uncertainties. It is at least

true thatM does not change significantly beldiy,=2.15. It © @ @©
is, therefore, unnecessary to lower the temperature Than
=2.15 to obtain a better result. FIG. 6. Examples of image restoration. The original image is

The effects of exchange interactions have been taken int@), and the image corrupted by the noise,€0.1) is (b). The

account in Fig. 5 wherd@ , and h are fixed to the optimal restored images afe) (T,,=0.5),(d) (T,,=2.15), ande) (with the
values 2.15€T,) and 1.0986€ 8.), respectively. The over- exchange term



PRE 60 STATISTICAL MECHANICS OF IMAGE RESTORATION ... 139

and atT,,=2.15 for Fig. §d) with M=0.892. It is clearly =0.986. Fine structures are remarkably well restored in the
recognized that the optimal temperatdiyg=2.15[Fig. 6(d)]  result [Fig. 6(e)]. Thus the additional information of ex-
has a better restored image than Figc)6 The low-  change interactions is very effective to restore images faith-
temperature proced$ig. 6(c)] suppresses small structures, fully.

which were actually present in the original image. The low-

temperature result is close to the MAP estimalg,€0),

which would further suppress small structures. It should be IV. ERROR-CORRECTING CODES
noticed that the difference iM in these two restored results
[Figs. 6c) and &d)] is very small(which is also seen in Fig. The infinite-range model has the same significance in

4) but the intuitive impressions on similarity to the original error-correcting codes as in the image restoration problem;
image|[Fig. 6(@)] are rather different. The reason is that thenamely, an exactly solvable model, which describes more
small structures do not contribute significantly to the value ofrealistic situations at least qualitatively. The difference is that
M although such structures have strong influence on intuitiveve consider a general value ofin error-correcting codes,
impressions. Therefore, we should keep in mind that thenstead of onlyr=2 in the case of image restoration. We
overlapM alone does not represent all aspects of the qualitgherefore calculate the overldg and related quantities ex-
of restored images. plicitly assuming that the sdi,, ... i} in Eqg. (6) extends
We next consider the effects of the additional informationover all possible combinations of indices.
of exchange interactions among nearest neighbors. The sameWe consider the Gaussian channel, and the source and
corrupted imagéFig. 6(b)] has been used to obtain the re- model distributions are both assumed to be unifofg,
stored imag¢Fig. 6€)]. The parameter$,,, h, andg were =P_,,=2"N, as s customary in the theory of error-correcting
fixed to the optimal values 2.15(Ty), 1.0986(=8,), and  codes[3,6,8—1Q. From Eqgs.(17) and (9), the overlap is
1.0986(= B;), respectively, resulting in an overlap &f given by

N 2 N - 2
M(B,h)=27N2§ J]___[ d“]il"'ir< ) EX[{_ E (Jil”'ir_%gil"'gir) ]

J2ar! J2r! i< <iy

2 o EXF{,BE Jil--<ir0'i1"'0'ir+h2 TiUi)
> exp(ﬁZ i, oo +hX Tiffi)

N I I _z) .
Xj H dTI(\/ZT)NeX% 2722' (ri—ag&)“|é& sy

(29

The normalizations of andj are different from Eq(9) and  whereDx is the Gaussian measure and
follow the convention of the infinite-range model of spin
glasses so that the limit—co yields meaningful resultsl6].

We may change the signs of integration variables in Eq. G
(29) appropriately ;i ...i —Ji ...i & - &, Ti— T, O 2
—0&;), which allows us to drog’s from the integrandthe
ferromagnetic gauge Then the problem becomes the stan-The corresponding free energy is
dard mean-field theory of spin glasses witispin interac-
tions under external random fields, and we can apply the 5 5 5
well-established replica meth¢d6]. Standard replica calcu- B B By .,

r 2J2 r-1 1/2
=—ﬁ g +7?h?| x+Bjorm' " l+ah. (33

— - . — r -
lations under the replica-symmetriRS) ansatz lead to the fre==TIn2=—=+ =~ (1=1)a+—rq
following set of equations of state for the spin-glass order-
Ic;f;r'i\l/ln."neteq, ferromagnetic order parametex and the over- +io(r—1)m — f Dx In coshG. (34)
q:f Dxtani G, (30 The present system witfy=0 is known to have a spin-

glass phase with a single-step replica-symmetry breaking

(1RSB at a low temperature wheare 3 [18]. This spin glass
m= J Dx tanhG, (31) phase with 1RSB is replaced by a full-step replica-symmetry

breaking at a still lower temperature. It is, therefore, neces-
sary to study replica-symmetry breaking solutions following
Refs.[18,19. The stability condition of the RS solution, the

M :f DxsgnG, (32 de Almeida—Thoules6AT) line, is found to be
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2T2q2—r T
—2>f Dx sech G. (35 12 ; ; ;
r(r—1)J \
\
The free energy with 1RSBh(=0 for simplicity) is 10 - N
PM \
J? J? | \
flRSBz—TInZ—BT+BTx0(1—r)q{) 08 b
0.6 +
BY? BP
+ - (1=x)(1-r)ar+ ——ra; ! SG(IRSB)
0.4
i T
+jo(r—1)m"— —f Duln j Dv coshe G,
Xo 02 -
(36) SG(full RSB)
00 ! 1 1 1
where 0.0 0.2 0.4 0.6 0.8 1.0
Y
G \/I’ 2J2 r71+ \/rﬁsz [qr—1 r—1
= u — v _ —
! 2'8 do 2 1 9o FIG. 7. The phase diagram of thre=3 system. Message re-
. _ trieval is possible in the stable and metastable ferromagnetic phases
+Bjorm' 1. 37 shown hatched

The self-consistent equations for the order parameters are

obtained by extremization of E¢36), Investigation of the properties of the mixed phaéésuch
as distinction between 1RSB and full RgBs well as the

details of the spin-glass phase, are interesting future prob-
: (38  lems, which we do not pursue here since they are not directly

relevant to our problem of error-correcting codes around the

optimum temperatur& = J?/2j , shown dashed in Fig. 7. We

2

f (va cosho G tanhG;
= u
do /Dv cosHo G,

q :f DufDU cosHo G, tantt G, (39) have not shown the structure of the phase diagram at very
1 SDuv cosHo G, ' low temperatures for this reason.
Figure 8 shows the dependence of the oveNapn the
JDuv cosho G, tanhG, decoding temperaturgd= "1 with r=3 and,/J=0.77.
m= f (400  Thelinejy/J=0.77 lies slightly to the right of the TP in Fig.
JDuv costo G, 7. The maximum performance is achieved Bt J%/2j,

. . . =0.649. This result is consistent with the argument in Sec. Il
We do not write out the explicit form for the equation xf g

because the formula is not very instructive. The AT stability
of this 1RSB solution is 0.89

20212 Dv cosho 4G
q1 >f JDv 1 (a1)

r(r—1)J2 u fDuv costo G, ‘ 0.88 | e ,,,,,,,,,,,,, 7
The phase diagram in the caseref3 andh=0 is shown
in Fig. 7. Retrieval is not possible unless the ferromagnetic
phase is at least locally stable. The hatched region satisfies
this condition. The ferromagnetic phase is stable in the
replica-symmetric ansatz for sufficiently strong biasand
high-temperaturd. For T/J above and below 0.651, it is,
respectively, replaced by the paramagnetic and spin-glass
phases through first-order phase transitions wihgnde- : 1 ; :
creases. These three phases coexist at the triple (it 085 L e . |
The ferromagnetic phase remains metastable down to the 0.4 0.5 0.6 0.7 0.8 0.9
spinodal line shown as a dotted curve. The replica-symmetric r
solution_of the ferromagnetic phase becomes unstable below 5 g The overlapM as a function of the decoding temperature
the AT line (35) shown by the dash-dotted curve. _in the Sourlas code. Three-body interactions3 are considered
Also shown in Fig. 7 are the spin-glass phases, whichyng the center of the channel output distributiofgit) =0.77. The
exist at lower values of the bigg. Spin glass with a single- field term ish=0. The replica-symmetric solution shown here is
step replica-symmetry breaking is stable fbfJ between unstable below the AT line & =0.43(shown dotteplalthough we
0.651 and 0.240. At lower temperatures, it is replaced by @o not expect a significant deviation in the temperature rahge
full replica-symmetry breaking spin-glass phase. =0.40.
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7 have a formal similarity to the theory of spin glasses, in

‘ : i particular the one using gauge symmefi#l. One should
note, however, that we have not used gauge symmetry in the
present paper. The variablé&} in Eq. (18), playing a cen-
tral role in the spin-glass theoffyr], come naturally in the
present problem whereas they emerged as a result of gauge
transformation in the spin-glass theory.

The infinite-range model has been solved exactly both in
the image restoration and error-correcting code situations.
The results made it possible to reveal the dependence of the
overlapM on various parameters. Simulations for image res-
toration have confirmed that the results for the infinite-range
model remain qualitatively valid in two dimensions.

I For image restoration in mean-field systems, we have
Y 1 15 2 found a line of optimal performance along which the overlap
h M takes the same maximum value. The line contains the

point of optimal performance predicted by the inequality

FIG. 9. The overlap as a function of the field strengthiThe  (19), but extends also to the zero-temperature limit. This
conventional statistical-mechanical formulation of error-correctingindicates that optimalor quasioptimal performance is far
codes(Sourlas codecorresponds to the axis=0. The parameters more accessible than previously thought. It remains to study
arer=3, jo/J=0.77,a=1, andT=0.649. the extent to which the picture is applicable to finite-

dimensional systems where the mean-field theory is only ap-
C: if we repeat the proof of Eq19) with the external field  proximate. In this respect, it is interesting to note that a ridge
neglected andPs=P,=2"", we obtain the inequality of nearly optimal overlap has already been observed in early
M(B)<M(2j,/J%). literature, such as Fig. 2 $14] and Fig. 8 of[2]. Naturally,

The optimum conditionT=J%/2j, coincides with the one is led to expect that a narrow but extended region of
Nishimori line shown dashed in the phase diagi@ig. 7).  optimal (or near-optimal performance spans the parameter
This curve crosses the phase boundary and the spinodal lirgace.
at the points wherg, takes the smallest values in the ferro- By comparing the optimal line and the operation lines on
magnetic stable and metastable phases, respectiirey  which h/g,, is kept constant, we have studied the tolerance
cated by black and white circlesit can be shown that the towards uncertainties in parameter estimation. Apparently,
spinodal line, the Nishimori line, and the AT line are con-the zero-temperature restoratithe MAP estimateis most
current for any values af. Hence, the AT line terminates at robust. Furthermore, if the MAP estimate is approached by
the triple point. Since the Nishimori line lies in the replica- simulated annealing, it may be more effective to consider
symmetric phase, the replica-symmetric argument would beescaling the field strength while lowering the temperature at
sufficient to clarify the behavior of the overlap around itsthe same time.
maximum. The lower-temperature properties, including the However, we have a few remarks of caution about the
possibility of a re-entrant spin-glass phase, may be affecteMAP estimate.(a) The zero-temperature restoration is opti-
by replica-symmetry breaking. mal only when the correct ratio/ 3, is used, which can only

Figure 9 shows the dependenceMfon the random-field be found self-consistently in realistic situations; if the incor-
strengthh at the optimal temperatur€=0.649 withr=3,  rect ratio is used, the performance will be suboptingb).
jo/J=0.77 anda=1. The axish=0 corresponds to the con- The existence of the line of optimal performance in finite-
ventional Sourlas code without the field term, which is thedimensional systems remains an open issue. Simulations in
maximum point in Fig. 8. It is observed that the overMp two dimensions seem to show that the MAP estimate is sub-
increases sharply as the field is introduced, reaching theptimal, although most likely it is still nearly optimal. On the
maximum ath=1, in agreement with the theoretical predic- other hand, the optimal point predicted by Ef9) is guar-
tion hyp=a/ . anteed to be the best in general cagesThe present result

applies to the equilibrium state of the system, and the dy-
V. DISCUSSIONS namics remain; an open issue. It may happen that the ap-
proach to equilibrium at a low temperature is much slower,

We have formulated the problems of image restoratioror is more prone to being trapped by local minima.
and error-correcting codes in a unified framework using sta- We have also considered the inclusion of exchange inter-
tistical mechanics. We have derived an upper bound on thactions as extra information in image restoration. Explicit
overlapM between the restored/decoded image/sequence amskamples of images in two dimensions show that the fine
the original image/sequence. The maximuniois achieved structures are remarkably well restored. We remark that the
when the restoring/decoding temperature and field strengtexchange interactions have some similarities with “line pro-
match the corresponding temperature and field strength chacesses,” which has been proposed to improve the quality of
acteristic of the source and channel properties. This resuitnages[11]. If the line variables were quenched, they are
comes as a natural generalization of the previously knowmquivalent to binary and multiple interactions among neigh-
inequalities for image restoratiori4] and error-correcting boring sites. However, a major difference is that the line
codes[8]. The formulation and the proof of the inequality variables are dynamical in the process of image restoration,

0.95

0.9
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whereas the exchange interactions considered here atemperature decoding/restoration process for the other less

guenched. stable degrees of freedom. We call this idea the selective
A comment is in order on the amount of information car- freezing, which turns out to enhance tolerance against uncer-

ried by the channel of the infinite-range model. The Slgnaltalnnes in parameter estimation. The details will be presented

amplitude of the exchange term in E@9) is jor!/N'~ in a forthcoming papef21].

The channel noise causes fluctuations in the output W|th the

standard deviatiod(r!/N"~%)%2 which is much larger than

the signal itself wherN_>1. 'I_'his corresponds to an ex- ACKNOWLEDGMENTS
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APPENDIX A: THE INEQUALITY FOR GENERAL DECODING AND RESTORATION

To prove the inequalityf19), we first note that the argument of the summation in the definiioh is bounded by its
absolute value:

M(B,h,Pm)=2§ 11 fdJFru)H deFl(T)eXp(BJE i iy & T B Tia)w{f})a sgr{o)

<II fdJFrmH fdr&(r) Eg 3 exp(ﬁJE Jijoi iy & B rifi)P (A1)
where|sgno;)| has been replaced with 1. Using the identity=x sgnx, we get
M(B.h.Pm=<> ]I fdJH(J)H fdrﬂ(r) > & exp(BJE Jiji &y &
& 5
2 o eX%ﬂJE Jijoi oo+ B2 TiUi)Ps({U})
+B.2 rifi)Ps({sw s — (A2)

> eXl{ﬁJE iy 010+ B2 TiUi)Ps({U})

Thus the right-hand side can be interpreted as the average of
the product of; and sgio;) at the optimal parameter values M(h,Bm)= 708 )H f driF(7) 2 &
B=8;, h=8., andP,=Py, yielding Eq.(19). S

Xex;{ﬂ?s > §i§j+,37§i: uts

APPENDIX B: THE INEQUALITY FOR MEAN-FIELD (ij)

IMAGE RESTORATION
. ) . _ XSQF{Z alexp( 2 crcr,+h2 TM)

To derive the inequality20), we start with the definition o
(17). Substituting Eqgs(11), (8), and (7) we obtain, fori

=1 in the average, (B1)
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In the exponential argument of the Boltzmann factor contaidiglg &; only appears in the expressim1ﬁ52<lj>§1§j
+ B,71£1. Hence, if we multiply and divide this expression by the partition functiof&f excluding site 1, we have

> §19XP(&Z §i§j+,372_ Ti§i)22\1 eXF{IB—SE\l §i§j+ﬁrz\l Ti§i>
& Z (i) i g Z (i) i

, (B2)

X<E ﬂleXF{(% E 77j+BTT1) 71
7i 1)

>H(BS,BT)\1

where( )H(BS,BT)\l represents the thermal average taken over the Hamiltonian with inverse temp@atuné random-field
strengthB,,, excluding site 1. Similar arguments can be applied to the argument of the sign function(B1Eqyielding

M(h,ﬁm) Z(ﬁs) fd7| (T| 2\1 ex%ﬁs E_>\l §i§j+:87
XE\l Tigi)J‘dTlFl(Tl)2<Sin}_<B?Sz 77j+BTTl>> F<Sln)'<% 0']'+th > .
' ) H(B Bt ) H(Bp 1)1
(B3)

For mean-field system&,;;,»; andZ 4,0 are self-averaging guantiti€®2], and the thermal average of the hyperbolic sine
functions can be replaced by a single function of the thermal-averaged argumenMThyg,,) reduces to

M(h,Bm) = H driFi(7) 2\1 eXF('BS 2\1 §§J+B 2 T|§|)

Z(Bs)

(B4)

B B
Xf dTlFl(Tl)z S|n"(?s <;> <7IJ>H(ﬁSxBT)\l+ BTT:L) sgn S|n}€?m & <O-j>H(5mxh)\l+ th .
J

For mean-field systems with large valency, the averaging over the neighbors of site 1 reduces to the disordered average.
Consider[(nJ-)\l], which is the thermal and disordered averageyptaken over the Hamiltoniakl (3s,8,) !,

Bs
> 7 ex;{ <Z> \177i77k+,372i\1 i 7;

B i
() 1=> )\lll;llfdr. ()2 exp(f 2 EgT A2 ne.)
i [ s
J A exr{;E\l mimt B, 2 T
7 (ik) i
(BS)
|
After canceling terms in the denominator and numerator, we 2Z(BH
arrive at (h,Bm)= 28y d7F(7)
S
X sinh( Bsmg+ B,7)sgn B,m+h7). (B7)
[(m) 1= 11 f driFy(7)
: Z(Bs )\l'*l I I The rest of the proof is similar to Appendix A. Noting that
5 the integrand ofr is bounded by its absolute value, we have
x 2 ﬂJeXF(fz\l mmet B2 i | \1
7 (ik) . M(h, 3 )<22(ﬁs) drFy(7)
y == T T
(B6) ™ Z(Bs) !

which reduces t(¢;)"*]=mj,, namely, the magnetization in X Sinf(Bsmo+ B,7)Sgr( BsMo+ B,7).
the prior distribution. Similarly[{o; Y 1=m, which is the (B8)

magnetization in the model d|str|but|on

Substituting these results, and using the normalization ofhe right-hand side is the value bf(h,8,) when Eq.(21)
the probabllltyE\lPS({g,}\l)P({TI}\1|{§,}\1) Eq. (B4) re- s satisfied, since in this case, s@ag+ B8,7) =sgn(B,m
duces to +h7).
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