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Statistical mechanics of image restoration and error-correcting codes
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We develop a statistical-mechanical formulation for image restoration and error-correcting codes. These
problems are shown to be equivalent to the Ising spin glass with ferromagnetic bias under random external
fields. We prove that the quality of restoration/decoding is maximized at a specific set of parameter values
determined by the source and channel properties. For image restoration in a mean-field system a line of optimal
performance is shown to exist in the parameter space. These results are illustrated by solving exactly the
infinite-range model. The solutions enable us to determine how precisely one should estimate unknown pa-
rameters. Monte Carlo simulations are carried out to see how far the conclusions from the infinite-range model
are applicable to the more realistic two-dimensional case in image restoration.@S1063-651X~99!02807-X#

PACS number~s!: 05.50.1q, 75.10.Nr, 89.70.1c
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I. INTRODUCTION

Information is usually transmitted through noisy channe
One therefore has to devise a method to retrieve the orig
information from the output of a noisy channel. Let us su
pose that the original information is represented as a
quence of bits. The idea of error-correcting codes@1# is to
introduce redundancy into the bit sequence to be fed into
noisy channel, so that this additional information is help
to retrieve~decode! the original bit sequence from the co
rupted output of the channel. An example is the parity-ch
code in which the parities of appropriate blocks of bits a
sent through the channel in addition to the original sou
sequence. The receiver checks the consistency betwee
information bits and parity bits and takes appropriate acti
if an inconsistency is found.

The problem of image restoration@2# is similar to the
error-correcting code, in the sense that an image represe
by a set of pixels~corresponding to the bit sequence in erro
correcting codes! is corrupted by noise and the receiver tri
to retrieve the original image out of the noisy, corrupted o
A major difference is that in the image restoration proble
one is usually given only the corrupted image, not other
ditional redundant information. One thus relies on somea
priori knowledge about images, in general, to remove no
A simple instance is the assumption of smoothness in r
world images; for example, one may wish to suppress
isolated white pixel among black ones because such a
figuration is likely to have been caused by noise rather t
to have existed in the original image of the real world.

A general strategy common in error-correcting codes
image restoration is to use the Bayes formula on thea pos-
teriori probability ~posterior! of an output sequence, give
the input sequence. One then often accepts the sequence~im-
age!, which maximizes the posterior as the decoded/resto
result. This method is called the maximuma posterioriprob-
ability ~MAP! estimate.

Sourlas @3# pointed out that the problem of erro
PRE 601063-651X/99/60~1!/132~13!/$15.00
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correcting codes can be written in terms of the theory of s
glasses. The idea is first to represent the bit sequence a
Ising spin configuration and then to form a set of exchan
interactions as the products of appropriate sets of sp
which can be considered as a generalization of the Ma
model of spin glasses@4#. The set of interactions, instead o
the spin configuration, is fed into the channel, in which no
causes the signs of interactions to flip with some probabil
At the receiving end, one forms the Ising model Hamiltoni
from the corrupted exchange interactions, the ground stat
which is accepted as the decoded information. This proc
is equivalent to the MAP estimate. Sourlas used this form
lation to show that there exists a family of codes that
asymptotically error-free and saturate the bound on the c
rate ~the number of information bits divided by the numb
of transmitted bits! derived by Shannon@5#.

Ruján @6# subsequently proposed to carry out the dec
ing procedure not at the ground state but at a finite temp
ture corresponding to the Nishimori temperature found in
theory of spin glasses@7#. The finite-temperature decoding
effective because the correct original bit sequence ha
higher energy than the ground state if the exchange inte
tions are corrupted and thus are deviated from the Ma
type. His proposal was supported by one of the authors@8#
who proved that when the decoding temperature is var
the average error per bit in the decoded sequence beco
smallest at the Nishimori temperature. Sourlas@9# used the
Bayes formula to rederive the finite-temperature decoding
Ruján under more general conditions. A recent developm
along this line is the contribution by Kabashima and Sa
@10# who used a diluted many-spin interacting model of sp
glasses to show that this system asymptotically saturates
Shannon bound with the code rate kept finite.

Analogy with statistical mechanics has also been a us
guide to develop a variety of techniques in the image res
ration problem@11–13#. Most of the efforts, however, hav
been devoted to the development of efficient methods
search for the ground state of appropriate statistic
132 ©1999 The American Physical Society
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PRE 60 133STATISTICAL MECHANICS OF IMAGE RESTORATION . . .
mechanical systems~the MAP restoration! using simulated
annealing@11#, mean-field annealing@12#, or the cluster-
variation methods@13#. An interesting exception is the wor
of Pryce and Bruce@2# who pointed out that under a certa
criterion, the MAP estimate is outperformed by the thre
olded posterior mean~TPM! estimate@14#, which is actually
equivalent to a finite-temperature decoding method.

It is therefore natural to formulate the problems of err
correcting codes and image restoration within a unified t
oretical framework and apply various techniques develo
in the theory of disordered systems like spin glasses and
random-field Ising model. In this paper, we study the cho
of parameters for optimal performance with this approa
For illustration, we introduce the infinite-range model,
which it becomes possible to discuss analytically the par
eter dependence of the performance.

In Sec. II we give the basic formulation of the problem f
the binary symmetric and Gaussian channels. The poste
for the output of a noisy channel is interpreted as the Bo
mann factor of a statistical-mechanical system, namely,
Ising spin glass with ferromagnetic bias under random fie
Important quantities in the theory of error-correcting cod
and image restoration are represented in terms of the
averages of the Ising model at finite temperatures. We de
an upper bound on the overlap between the decoded/res
result with the original sequence/image using the statisti
mechanical formulation. The problem of image restoration
treated in Sec. III in detail where we derive a line of optim
performance in mean-field systems, find the exact solu
for the infinite-range model, and present simulation res
for the two-dimensional case. The infinite-range mode
shown to work as a good guide to the description of qual
tive behavior of the two-dimensional problem. Explicit e
amples of images are displayed to clarify what happens
der various conditions. The problem of error-correcti
codes is analyzed in Sec. IV. We solve the infinite-ran
model explicitly using the replica method. Compact expr
sions of the overlap and other order parameters enable u
discuss various aspects of error-correcting codes quan
tively. The final section is devoted to discussions.

II. GENERAL FORMULATION

Consider an information source that generates a bit
quence represented by a set of Ising spins$j i%, wherej i5
61 and i 51, . . . ,N, with the source probabilityPs($j i%)
~the prior!. The sequence$j i% is coded as the products ofr
spinsJi 1••• i r

0 5j i 1
•••j i r

for appropriately chosen sets of in

dices $ i 1••• i r%. The Sourlas code@3# is equivalent to the
infinite-range model in which all possible combinations or
sites are chosen fromN sites. In general, we consider seve
different r ’s in a single code, such as in the case of t
Viterbi code@6# which hasr 52 and 3. The problem of im-
age restoration can be regarded as a special case ofr 51, in
which caseJi corresponds to the state of thei th pixel in the
corrupted~noisy! image. A ‘‘bit’’ in error-correcting codes
should thus be identified with a ‘‘pixel’’ in image restora
tion, a ‘‘bit sequence’’ with an ‘‘image,’’ and ‘‘decoding’’
with ‘‘restoration’’ whenever necessary in the following a
guments.

When the signal is transmitted through a noisy chann
-
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the output consists of the sets$Ji 1••• i r
% for various values of

r, which are the corrupted versions ofJi 1••• i r
0 . Two kinds of

noisy channels are considered in this paper: the binary s
metric channel~BSC! and the Gaussian channel~GC!.

A. Binary symmetric channel

In the binary symmetric channel, the outputJi 1••• i r
is

equal to7Ji 1••• i r
0 with probabilitiespr and 12pr , respec-

tively, wherepr is the error rate of the BSC for transmissio
of Ji 1••• i r

0 . The error probabilities of flipping the signal11 to

21 and21 to 11 are the same. This output probability ca
be written in a compact form as

Pout~$J%u$j%!

5)
r

~2 coshb r !
2Nr expS (

r
b r( Ji 1••• i r

j i 1
. . . j i r D ,

~1!

where b r50 if the code under consideration does not
clude the set$Ji 1••• i r

% and

b r5
1

2
ln

12pr

pr
~2!

otherwise. The second summation in the exponent of Eq.~1!
extends over an appropriate set of the indices (i 1 , . . . ,i r),
the choice of which determines the type of the code, andNr
is the number of terms appearing in this summation. N
thatNr50 if b r50. Each indexi may appear in a number o
r-spin terms in the exponential expression; the number
times of appearance is called the valencyzr .

The procedure of decoding/restoration proceeds as
lows. According to the Bayes formula and Eq.~1!, the pos-
terior probability that the source sequence is$s%, given the
output $J%, is proportional to the Boltzmann factor of a
Ising model multiplied by the prior:

P~$s%u$J%!}expS (
r

b r( Ji 1••• i r
s i 1

. . . s i r D Ps~$s%!.

~3!

Note that we use the symbol$s% for the decoded/restore
result that is, in general, different from the original set$j%.

For simplicity, we restrict ourselves to the case of a sin
nonvanishingb r([bJ) with r>2 andb1([bt). Following
the convention of separating the interaction terms and lo
field terms in statistical mechanics, we writeJi as t i for r
51 terms, and Eq.~3! becomes

P~$s%u$J%,$t%!}expS bJ( Ji 1••• i r
s i 1

. . . s i r

1bt( t is i D Ps~$s%!. ~4!

Similarly, we will usepJ , pt to representpr , p1, respec-
tively.

It often happens that the receiver at the end of the no
channel does not have precise information onbJ , bt , or Ps .
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One has to estimate these so-called hyperparameters, w
is one of the major topics in this field~see, for example
@15#!. If the receiver estimatesb for bJ and h for bt , and
uses a model~guess! Pm($s%) of the source priorPs($j%),
then the mean of the posterior distribution ofs i is equal to
the thermal average

^s i&5

(
s

s ie
2bHPm~$s%!

(
s

e2bHPm~$s%!

, ~5!

where the Hamiltonian is given by

bH52b( Ji 1••• i r
s i 1

. . . s i r
2h( t is i . ~6!

One then regards sgn^s i& as the i th bit of the decoded/
restored information with finiteb and h in the finite-
temperature process, or with their ratio kept finite when th
magnitudes approach infinity in the MAP method.

In the context of image restoration, one often consid
patterns with nontrivial structures. Therefore, they are
sumed to be generated by a nonuniform source p
Ps($j%). When we do not have any information on th
source prior, we have to represent oura priori knowledge on
general images in the model priorPm($j%). A natural choice
often used as a generic form of the prior is the Boltzma
factor of the ferromagnetic Ising model,

Pm~$s%!5
1

Z~bm!
expS bm

z (̂
i j &

s is j D , ~7!

whereZ(bm) is the partition function at the inverse temper
turebm , ^ i j & represents interacting sites, andz is the valency
of each site. The summation usually extends over neigh
ing sites on a two-dimensional lattice. This prior is natu
because it suppresses different states of neighboring s
enhancing a smooth structure. In this paper we consider
ors with general connections.

To proceed further, we have to assume some explicit fo
of the source priorPs($j%). To develop a general theory, w
adopt the Boltzmann factor of the Ising model,

Ps~$j%!5
1

Z~bs!
expS bs

z (̂
i j &

j ij j D , ~8!

which has the same form as Eq.~7! but with a different
inverse temperature. Thus the original images correspon
snapshots of equilibrium Monte Carlo simulations of the f
romagnetic Ising model.

Comparison of Eqs.~4!, ~5!, and ~6! implies that the
Bayes result~4! specifies the inverse temperatureb to bJ ,
the field strengthh to bt , and the model priorPm to Ps .
Nevertheless, it is useful to keepb, h, andPm as adjustable
parameters and investigate how precisely we should estim
the hyperparameters and tune the adjustable parameter
optimal decoding/restoration. Our statistical-mechanical f
mulation is particularly useful to investigate this proble
both qualitatively and quantitatively.
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The decoding/restoration procedure reduces to the me
of Ruján in the situation of error-correcting codes~i.e., h
50 and Ps5Pm5const) whenb5bJ , in which case the
noise temperature 1/bJ is equal to the Nishimori tempera
ture, which is known to play an interesting role in the theo
of spin glasses@7#. Pryce and Bruce@2# called the same
method the TPM in the image restoration situation, in wh
one setsh5bt in the absence of the interaction term in E
~6!.

The finite-temperature method with appropriate para
eters (b5bJ ,h5bt ,Pm5Ps) is known to give the se-
quence of most probable bits both in error-correcting co
and image restoration@2,8,9,14#. The MAP estimate, on the
other hand, chooses the sequence that gives the largest
of the posterior~4!, corresponding to the ground state of th
Ising model. The result of finite-temperature decodin
restoration gives a lower value of the posterior~4! than the
MAP result. However, there appear very many states w
almost the same value of the posterior if we generate fin
temperature states by Eq.~4!, and thus after weighted by th
number of such similar states, finite-temperature states
weigh the MAP counterpart. In other words, if we take in
account the entropy effects, the finite-temperature met
becomes the natural choice. This corresponds to the f
energy minimization rather than the energy minimization
in usual statistical-mechanical systems at finite temperatu

B. Gaussian channel

In the Gaussian channel, the outputJi 1••• i r
is a Gaussian

random variable with appropriate meanar Ji 1••• i r
0 and vari-

ance Jr
2 . Hence for a given sequence$j i%, the Gaussian

channel is given as

Pout~$J%,$t%u$j%!}expS 2
1

2J2 ( ~Ji 1••• i r
2J0j i 1

. . . j i r
!2

2
1

2t2 ( ~t i2aj i !
2D ~9!

5expS 2
1

2J2 ( ~Ji 1••• i r
2 1J0

2!2
1

2t2 ( ~t i
21a2!

1
J0

J2 ( Ji 1••• i r
j i 1

. . . j i r
1

a

t2 ( t ij i D , ~10!

where, again following the statistical mechanics conventi
we have usedJ0 , J, a, andt to representar , Jr , a1, andJ1,
respectively.

The similarity between Eqs.~4! and ~10! implies that the
output probability distribution for BSC and GC can be wr
ten in the same form,

Pout~$J%u$j%!5) Fr~Ji 1••• i r
!) F1~t i !

3expS bJ( Ji 1••• i r
j i 1

. . . j i r
1bt( t ij i D ,

~11!
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PRE 60 135STATISTICAL MECHANICS OF IMAGE RESTORATION . . .
wherebJ5J0 /J2 andbt5a/t2 for GC. Fr andF1 are func-
tions independent of$j i%. For BSC,

Fr~Ji 1••• i r
!5

1

2 coshbJ
$d~Ji 1••• i r

21!1d~Ji 1••• i r
11!%,

~12!

F1~t i !5
1

2 coshbt
$d~t i21!1d~t i11!%. ~13!

For GC,

Fr~Ji 1••• i r
!5

1

A2pJ2
expS 2

1

2J2
~Ji 1••• i r

2 1J0
2!D , ~14!

F1~t i !5
1

A2pt2
expS 2

1

2t2
~t i

21a2!D . ~15!

C. Overlap

The most important quantity in the present problem is
overlap of the decoded/restored bit sgn^s i& and the original
bit j i averaged over the output probability. We may expr
this overlap as

) E dJ) E dtPout~$J%,$t%u$j%!j i sgn̂ s i&. ~16!

This expression~16! should be further averaged over th
possible sequences of source bits represented by the
Ps($j%). The final expression of the overlapM is then

M ~b,h,Pm!5(
j

) E dJ

3) E dtPs~$j%!Pout~$J%,$t%u$j%!j i sgn̂ s i&.

~17!

The dependence ofM on b, h, andPm exists in the therma
averagê s i&. The average of any other quantityf (s) is cal-
culated similarly:

@^ f &#5(
j

) E dJ) E dtPs~$j%!Pout~$J%,$t%u$j%!

3

(
s

f ~s!e2bHPm~$s%!

(
s

e2bHPm~$s%!

. ~18!

The outer brackets@•••# in Eq. ~18! denote the average
over $j%, $J%, and$t% with the weightPsPout.

The following inequality on the overlap is very useful
discussions on the decoding/restoration performance, and
proof is outlined in Appendix A:

M ~b,h,Pm!<M ~bJ ,bt ,Ps!. ~19!

This inequality means that the overlap becomes largest w
b5bJ , h5bt , andPm5Ps . In this sense the performanc
e

s

ior

the

en

of the MAP corresponding to the limitb,h→` cannot ex-
ceed that of the finite-temperature decoding/restoration abJ
andbt .

This inequality was known in error-correcting codes@8,9#,
and equivalent statements were given also in the image
toration problem@14# although not in the explicit form given
here. One of the contributions of the present paper is that
have generalized the inequalities to the case where two
ferent types of terms are present, one withr>2 and the other
with r 51. Similar inequalities can be easily derived for th
more general case of several differentr ’s in Eq. ~1!.

III. IMAGE RESTORATION

A. Line of optimal performance in mean-field models

In conventional image restoration problems, the outpu
the transmission channel only consists of the set of pix
$t i% ~corrupted image in the usual sense!, but not the set of
exchange interactions$Ji j % ~the corrupted version of$Ji j

0

5j ij j%). In this case the following inequality applies to im
ages with extensive valency. Mean-field results are ex
when each pixel interacts extensively with other pixels in
source and model prior distributions~8! and ~7!. These in-
clude the infinite-range model, in which all pixels intera
with each other, its randomly diluted version with infini
valency in the thermodynamic limit (N→`), or finite-
dimensional models with long-range interactions. Mean-fi
approximations also work well for finite but large valenci
when the temperature is not too low. The following inequ
ity derived in Appendix B is useful in finding the optima
restoration performance,

M ~h,bm!<M S bt s,
bsm0

m
sD , ~20!

for arbitrary values ofs.0. Herem0 and m are the~self-
averaging! thermal averages of the source pixelsj i and
model pixelss i , respectively, for those sitesi that interact
with a given site, say, site 1 that, however, is removed fr
the thermal process. Note that the derivation only makes
of the self-averaging nature of the mean-field quantities,
does not rely on any connection topology of the sites~except
for the mean-field requirement!. No particular techniques
such as the replica method are employed. Hence the ineq
ity applies to mean-field systems in general.

Sincem0 andm are functions ofbs , bm , andh, Eq. ~20!
defines the line of optimal performance in the space ofh and
bm :

h

bt
5

bmm~bs ,bm ,h!

bsm0~bs!
5s. ~21!

In particular, whens51, h5bt , bm5bs and m5m0, Eq.
~21! reduces to the point of optimal performance predic
by Eq.~19!. On the other hand, if the fieldh is different from
bt , then the source and model temperatures have to be
caled by the magnetization of the respective systems. W
s→`, we obtain the zero-temperature restoration, i.e.,
MAP estimate. Hence the MAP estimate is also optim
provided that the correct ratio ofh/bm is used~although this
choice can only be determined iteratively!.
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B. The infinite-range model

Let us now suppose that we are given the corrupted
sion of the set of pixels$t i% and, in addition, the exchang
interactions$Ji j %, the latter being the corrupted version
the Mattis-type interactions$j ij j%. The additional contribu-
tion from the exchange term enables us to formulate the
age restoration and error-correcting code problems on
same footing and at the same time investigate the exten
which the additional information$Ji j % enhances the perfor
mance. The restoration process is carried out at the inv
temperatureb and the fieldh using Eqs.~5! and ~6! with r
52. Though the inequalities~19! and ~20! give a bound on
the overlapM, they do not reveal the explicit dependence
M on the parametersb, h, bm , andbt , which is necessary
for studying the tolerance of the restoration results aga
uncertainties in the estimation of the hyperparameters.
infinite-range model serves as a useful test ground for
purpose. Of course the infinite-range model is not useful
restoration of a real two-dimensional image since all pix
are neighbors of each other and hence the spatial structu
ignored. However, we may reasonably expect from exp
ence in statistical mechanics of many-body systems that
behavior ofmacroscopicquantities~such as the overlapM )
of realistic problems are at least qualitatively well predict
by the infinite-range model.

We, therefore, suppose that the summation in the prior~8!
extends over all possible pairs of sites,

Ps~$j%!5
1

Z~bs!
expS bs

2N (
iÞ j

j ij j D , ~22!

and similarly for the model priorPm . We also assume tha
the two-body exchange interactions for all pairs of sites
included in the given information, or equivalently Eq.~6!
with r 52 and the summation extending over all pairs
sites, and that the channel is Gaussian. We thus hav
evaluate the following averaged replicated partition functi

@Zn#5(
j
E )

i , j

dJi j

A2pJ2/N

3expF2
N

2J2 (
i , j

S Ji j 2
J0

N
j ij j D 2G

3E )
i

dt i

A2pt2
expS 2

1

2t2 (
i

~t i2aj i !
2D

3
1

Z~bs!
expS bs

2N (
iÞ j

j ij j D
3(

s
expS b(

i , j
Ji j (

a51

n

s i
as j

a

1
bm

N (
i , j

(
a51

n

s i
as j

a1h(
i

t i (
a51

n

s i
aD . ~23!

The standard replica calculation with the replica symme
ansatz@16# leads to the expressions of the order paramet
r-

-
e
to

se

f

st
e

is
r
s

is
i-
he

e

f
to
,

c
s:

@j i #5m05tanhbsm0 ,

@^s i&#5m5
1

2 coshbsm0
(

j561
ebsm0jE Dx tanhU,

@j i^s i&#5t5
1

2 coshbsm0
(

j561
jebsm0jE Dx tanhU,

@^s i&
2#5q5

1

2 coshbsm0
(

j561
ebsm0jE Dx tanh2 U,

~24!

where

U5~b2J2q1t2h2!1/2x1bmm1~ah1bJ0t !j. ~25!

The overlap is a function of these order parameters,

@j i sgn̂ s i&#5M5
1

2 coshbsm0
(

j561
jebsm0jE Dx sgnU .

~26!

An example of the dependence ofM on the model prior
temperatureTm[bm

21 is shown in Fig. 1 for conventiona
image restoration~without the exchange term,b50). The
parameters areTs50.9 anda5t51. The usual practice in
image restoration is to use a Hamiltonian with a fixed ratio
h/bm , and then to usebm as an adjustable parameter f
simulated annealing. Hence we consider the behavior a
function of bm when h/bm is kept constant to the optima
value bt /bs ~the curve marked Opth), to 0.9 times the
optimal value~Opt*0.9!, or to 1.1 times the optimal value
~Opt*1.1!. In the curve markedh51, h itself is kept constant
to 1. The ground-state limitTm→0 gives the MAP restora-
tion. The maximum is atTm50.9(5Ts) for the optimal
choice ofh51(5btbm /bs), as predicted by Eq.~19!. This
figure indicates that one does not have to approach the

FIG. 1. The overlap as a function of the restoration tempera
Tm in the infinite-range model. The random-field strengthh is cho-
sen to beh5btbm /bs ~Opt h), h50.9btbm /bs ~Opt*0.9!, h
51.1btbm /bs ~Opt*1.1!, or h51.
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temperature limit as in MAP in the search of the best
stored image by such a process as simulated annealing.

For the curves Opt*0.9 and Opt*1.1, the location of t
largestM is not atTm50.9. However, the maximum valu
coincides with the best value as predicted by Eq.~20!. This
fact can easily be verified by differentiating Eq.~26! with
respect tobm . The optimal parameter isbm5bsm0h/bt m,
agreeing with Eq.~21!.

The line of optimal performance in the space ofTm andh
is obtained by combining Eqs.~21! and ~24!, yielding

Tm5
bt

bsm0h

1

2 coshbsm0
(

j561
ebsm0jE Dx tanh

3FhS bsm0

bt
1aj1txD G . ~27!

When h→0, Tm approaches the limit (Tm)max511abt /bs.
This is the temperature above which the maximum over
cannot be achieved.

In the low temperature limit,h→` and the ratioh/bm
approaches a constant,

lim
h→`

h

bm
5

bt

bsm0
(

j561

1

2
~11m0j!

3erfF 1

A2t
S bsm0

bt
1aj D G . ~28!

Hence the maximum overlap is achievable for any tempe
ture below (Tm)max. The zero-temperature restoration~the
MAP estimate! is potentially as optimal as the finite temper
ture procedure determined by Eq.~19! in mean-field systems
although it can only be achieved at the correct ratioh/bm
given by Eq.~28!.

Figure 2 shows the line of optimal performance for t
parameters used in Fig. 1. The hyperbolasTmh 5 0.9, 0.81,
and 0.99 correspond to the lines of operation Opth, Opt*0.9,

FIG. 2. The line of optimal performance in the space of t
random-field strengthh and the restoration temperatureTm in the
infinite-range model for the parameters used in Fig. 1. The th
lines of operations~Opt h, Opt*0.9, and Opt*1.1! are shown for
comparison.
-

p

a-

and Opt*1.1 of Fig. 1, respectively. Where they intersect
line of optimal performance, the overlap reaches a ma
mum.

In realistic image restoration, the precision in the estim
tion of hyperparameters is an important issue. One can
that the three lines of operation follow the general trend
the optimal curve. Hence they are much more error toler
than other curves, say,h51. Furthermore, if a line of opera
tion intersects the line of optimal performance with a sm
angle between the tangents, then the overlapM is very near
to its optimum for a wide range of parameters along the l
of operation, and the procedure has a high tolerance for
rameter uncertainties. Among the three lines of operation
Fig. 2, Tmh 5 0.99 has the highest tolerance. In fact, if o
usesTmh51.0267 according to Eq.~28!, then it has the wid-
est range of tolerance in the low temperature region.

Figure 3 shows the effects of introducing the exchan
term. It depictsM as a function of the inverse exchang
temperatureb in Eq. ~23! with the other parameters set to th
optimal valuesTs5Tm50.9,a5h51.0 and withJ052.0 in
the unitJ5t51. The axisb50 corresponds to the optimum
point Tm50.9 of Fig. 1. The introduction of the exchang
term is seen to sharply improve the performance. The m
mum of M is located atb52.0 (5J0) as required, andM
stays close to the maximum value beyondb52.0. The com-
bination of the ideas of error-correcting code~the b term!
and image restoration~the bm and h terms! leads to a re-
markable improvement in the quality of the restored imag

Two remarks are in order in relation to Fig. 3. First, th
amount of information conveyed by the set$Ji j % may seem
exceedingly large compared to that by$t i% because the num
ber of elements in the former set isN(N21)/2 while it is N
in the latter. This fact may be mistaken as the reason of
improved result in Fig. 3 for finiteb. However, since each
Ji j „;O(1/AN)… is much smaller in magnitude tha
t i„;O(1)…, the contribution of eachJi j is very small. Such a
situation is characteristic of the infinite-range model. T
equivalent situation in the finite-dimensional case is that
number of exchange interactions is of the same order as

e

FIG. 3. The overlap as a function of the parameterb in the
infinite-range model. The center of the channel output distribut
is J052.0 and the other restoration parameters are chosen to b
optimal valuesTm5Ts(50.9) andh5a(51).
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of sites. For example, there are 2N nearest-neighbor interac
tions forN sites on the square lattice. Therefore, the incre
in the amount of information by the introduction of the s
$Ji j % should be of order unity, not infinitely large. Second,
the exchange term is seen to increase the overlap
sharply, even the information from a fraction of the e
change interactions may be useful to improve the restora
result. For example, one may choose a small fraction of p
of sites~either randomly or not! and use the corrupted, nois
version of these exchange interactions to restore the imag
obtain a better result. This method should be useful when
bandwidth~the amount of information to be carried by th
channel! is limited.

C. Simulations

It is difficult to investigate the more realistic case of tw
dimensional images by analytical methods. We theref
have carried out Monte Carlo simulations to confirm t
qualitative pictures obtained by the exact solution of
infinite-range model. To generate the source image, we h
used the prior~8! with Ts52.15, which is slightly lower than
the critical point 2.269 of the two-dimensional Ising mod
on the square lattice. The error probability was set topJ
5pt50.1 for BSC, corresponding tobJ5bt51.0986 by
Eq. ~2!. Averages over five samples~Fig. 4, size 4003400)
or ten samples~Fig. 5, size 1003100) were taken at eac
data point.

Figure 4 shows the overlapM as a function ofTm when
b50 andh is chosen so thath/bm is fixed to the optimum
value bt /bs . The overlap should have a maximum atTm
5Ts52.15 in Fig. 4 according to Eq.~19!, although it is not
very clearly seen due to statistical uncertainties. It is at le
true thatM does not change significantly belowTm52.15. It
is, therefore, unnecessary to lower the temperature thaTs
52.15 to obtain a better result.

The effects of exchange interactions have been taken
account in Fig. 5 whereTm and h are fixed to the optima
values 2.15(5Ts) and 1.0986(5bt), respectively. The over

FIG. 4. The overlap as a function of the restoration tempera
on the square lattice obtained by simulations. The source temp
ture is Ts52.15, the error ratept50.1, and no exchange interac
tions (b50).
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lap is seen to increase quite significantly as a function ofb.
The axis b50 corresponds to the optimal point ofTm
52.15 in Fig. 4. The overlap reaches its maximum at arou
b5bJ51.0986 as it should and decreases slowly asb is
further increased.

Respectively, Figs. 4 and 5 are qualitatively similar to O
h in Fig. 1, and Fig. 3, for the infinite-range model, implyin
the usefulness of the infinite-range model as an approxi
tion of the two-dimensional problem.

Let us show an explicit example of the actual image r
toration. Figure 6 represents the situations of Figs. 4 an
with the size 1003100. We have generated a pattern by t
prior ~8! with Ts52.15 to obtain Fig. 6~a! and have added
noise with probabilitypt50.1, resulting in Fig. 6~b! @17#. To
obtain the restored images, Figs. 6~c! and 6~d!, only the cor-
rupted image@Fig. 6~b!# was used without extra informatio
on exchange interactions (b50). Restoration was tried a
temperaturesTm50.5 for Fig. 6~c! resulting in M50.888

re
ra-

FIG. 5. The overlap as a function ofb for the square lattice
whenTm5Ts52.15 andh5bt51.0986.

FIG. 6. Examples of image restoration. The original image
~a!, and the image corrupted by the noise (pt50.1) is ~b!. The
restored images are~c! (Tm50.5),~d! (Tm52.15), and~e! ~with the
exchange term!.
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and atTm52.15 for Fig. 6~d! with M50.892. It is clearly
recognized that the optimal temperatureTm52.15@Fig. 6~d!#
has a better restored image than Fig. 6~c!. The low-
temperature process@Fig. 6~c!# suppresses small structure
which were actually present in the original image. The lo
temperature result is close to the MAP estimate (Tm50),
which would further suppress small structures. It should
noticed that the difference inM in these two restored result
@Figs. 6~c! and 6~d!# is very small~which is also seen in Fig
4! but the intuitive impressions on similarity to the origin
image@Fig. 6~a!# are rather different. The reason is that t
small structures do not contribute significantly to the value
M although such structures have strong influence on intui
impressions. Therefore, we should keep in mind that
overlapM alone does not represent all aspects of the qua
of restored images.

We next consider the effects of the additional informati
of exchange interactions among nearest neighbors. The s
corrupted image@Fig. 6~b!# has been used to obtain the r
stored image@Fig. 6~e!#. The parametersTm , h, andb were
fixed to the optimal values 2.15(5Ts), 1.0986(5bt), and
1.0986(5bJ), respectively, resulting in an overlap ofM
in

Eq

n

th
-

er
-

e

f
e
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50.986. Fine structures are remarkably well restored in
result @Fig. 6~e!#. Thus the additional information of ex
change interactions is very effective to restore images fa
fully.

IV. ERROR-CORRECTING CODES

The infinite-range model has the same significance
error-correcting codes as in the image restoration probl
namely, an exactly solvable model, which describes m
realistic situations at least qualitatively. The difference is t
we consider a general value ofr in error-correcting codes
instead of onlyr 52 in the case of image restoration. W
therefore calculate the overlapM and related quantities ex
plicitly assuming that the set$ i 1 , . . . ,i r% in Eq. ~6! extends
over all possible combinations of indices.

We consider the Gaussian channel, and the source
model distributions are both assumed to be uniform,Ps
5Pm522N, as is customary in the theory of error-correctin
codes @3,6,8–10#. From Eqs.~17! and ~9!, the overlap is
given by
M ~b,h!522N(
j
E ) dJi 1••• i rS Nr 21

J2pr !
D 1/2

expF2
Nr 21

J2r !
(

i 1,•••, i r
S Ji 1••• i r

2
j 0r !

Nr 21
j i 1

•••j i r D 2G
3E ) dt i

1

~A2pt!N
expS 2

1

2t2 (
i

~t i2aj i !
2D j i sgnS ( s i expS b( Ji 1••• i r

s i 1
•••s i r

1h( t is i D
( expS b( Ji 1••• i r

s i 1
•••s i r

1h( t is i D D .

~29!
-
ing

try
es-
ng
e

The normalizations ofJ and j 0 are different from Eq.~9! and
follow the convention of the infinite-range model of sp
glasses so that the limitr→` yields meaningful results@16#.

We may change the signs of integration variables in
~29! appropriately (Ji 1••• i r

→Ji 1••• i r
j i i
•••j i r

, t i→t ij i , s i

→s ij i), which allows us to dropj ’s from the integrand~the
ferromagnetic gauge!. Then the problem becomes the sta
dard mean-field theory of spin glasses withr-spin interac-
tions under external random fields, and we can apply
well-established replica method@16#. Standard replica calcu
lations under the replica-symmetric~RS! ansatz lead to the
following set of equations of state for the spin-glass ord
parameterq, ferromagnetic order parameterm, and the over-
lap M:

q5E Dx tanh2 G, ~30!

m5E Dx tanhG, ~31!

M5E Dx sgnG, ~32!
.

-

e

-

whereDx is the Gaussian measure and

G5S rb2J2qr 21

2
1t2h2D 1/2

x1b j 0r mr 211ah. ~33!

The corresponding free energy is

f RS52T ln 22
bJ2

4
1

bJ2

4
~12r !qr1

bJ2

4
rqr 21

1 j 0~r 21!mr2E Dx ln coshG. ~34!

The present system withj 050 is known to have a spin
glass phase with a single-step replica-symmetry break
~1RSB! at a low temperature whenr>3 @18#. This spin glass
phase with 1RSB is replaced by a full-step replica-symme
breaking at a still lower temperature. It is, therefore, nec
sary to study replica-symmetry breaking solutions followi
Refs.@18,19#. The stability condition of the RS solution, th
de Almeida–Thouless~AT! line, is found to be
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2T2q22r

r ~r 21!J2
.E Dx sech4 G. ~35!

The free energy with 1RSB (h50 for simplicity! is

f 1RSB52T ln 22
bJ2

4
1

bJ2

4
x0~12r !q0

r

1
bJ2

4
~12x0!~12r !q1

r 1
bJ2

4
rq1

r 21

1 j 0~r 21!mr2
T

x0
E Du ln E Dv coshx0 G1 ,

~36!

where

G15uAr

2
b2J2q0

r 211vArb2J2

2
Aq1

r 212q0
r 21

1b j 0rmr 21. ~37!

The self-consistent equations for the order parameters
obtained by extremization of Eq.~36!,

q05E DuS *Dv coshx0 G1tanhG1

*Dv coshx0 G1
D 2

, ~38!

q15E Du
*Dv coshx0 G1tanh2 G1

*Dv coshx0 G1

, ~39!

m5E Du
*Dv coshx0 G1tanhG1

*Dv coshx0 G1

. ~40!

We do not write out the explicit form for the equation ofx0
because the formula is not very instructive. The AT stabi
of this 1RSB solution is

2q1
22rT2

r ~r 21!J2
.E Du

*Dv coshx024 G1

*Dv coshx0 G1

. ~41!

The phase diagram in the case ofr 53 andh50 is shown
in Fig. 7. Retrieval is not possible unless the ferromagn
phase is at least locally stable. The hatched region sati
this condition. The ferromagnetic phase is stable in
replica-symmetric ansatz for sufficiently strong biasj 0 and
high-temperatureT. For T/J above and below 0.651, it is
respectively, replaced by the paramagnetic and spin-g
phases through first-order phase transitions whenj 0 de-
creases. These three phases coexist at the triple point~TP!.
The ferromagnetic phase remains metastable down to
spinodal line shown as a dotted curve. The replica-symme
solution of the ferromagnetic phase becomes unstable be
the AT line ~35! shown by the dash-dotted curve.

Also shown in Fig. 7 are the spin-glass phases, wh
exist at lower values of the biasj 0. Spin glass with a single
step replica-symmetry breaking is stable forT/J between
0.651 and 0.240. At lower temperatures, it is replaced b
full replica-symmetry breaking spin-glass phase.
re
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Investigation of the properties of the mixed phaseM ~such
as distinction between 1RSB and full RSB!, as well as the
details of the spin-glass phase, are interesting future p
lems, which we do not pursue here since they are not dire
relevant to our problem of error-correcting codes around
optimum temperatureT5J2/2j 0 shown dashed in Fig. 7. We
have not shown the structure of the phase diagram at v
low temperatures for this reason.

Figure 8 shows the dependence of the overlapM on the
decoding temperatureT5b21 with r 53 and j 0 /J50.77.
The line j 0 /J50.77 lies slightly to the right of the TP in Fig
7. The maximum performance is achieved atT5J2/2j 0
50.649. This result is consistent with the argument in Sec

FIG. 7. The phase diagram of ther 53 system. Message re
trieval is possible in the stable and metastable ferromagnetic ph
shown hatched.

FIG. 8. The overlapM as a function of the decoding temperatu
in the Sourlas code. Three-body interactionsr 53 are considered
and the center of the channel output distribution isj 0 /J50.77. The
field term ish50. The replica-symmetric solution shown here
unstable below the AT line atT50.43 ~shown dotted! although we
do not expect a significant deviation in the temperature rangT
>0.40.
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C: if we repeat the proof of Eq.~19! with the external field
neglected andPs5Pm522N, we obtain the inequality
M (b)<M (2 j 0 /J2).

The optimum conditionT5J2/2j 0 coincides with the
Nishimori line shown dashed in the phase diagram~Fig. 7!.
This curve crosses the phase boundary and the spinoda
at the points wherej 0 takes the smallest values in the ferr
magnetic stable and metastable phases, respectively~indi-
cated by black and white circles!. It can be shown that the
spinodal line, the Nishimori line, and the AT line are co
current for any values ofr. Hence, the AT line terminates a
the triple point. Since the Nishimori line lies in the replic
symmetric phase, the replica-symmetric argument would
sufficient to clarify the behavior of the overlap around
maximum. The lower-temperature properties, including
possibility of a re-entrant spin-glass phase, may be affec
by replica-symmetry breaking.

Figure 9 shows the dependence ofM on the random-field
strengthh at the optimal temperatureT50.649 with r 53,
j 0 /J50.77 anda51. The axish50 corresponds to the con
ventional Sourlas code without the field term, which is t
maximum point in Fig. 8. It is observed that the overlapM
increases sharply as the field is introduced, reaching
maximum ath51, in agreement with the theoretical predi
tion hopt5a/t2.

V. DISCUSSIONS

We have formulated the problems of image restorat
and error-correcting codes in a unified framework using s
tistical mechanics. We have derived an upper bound on
overlapM between the restored/decoded image/sequence
the original image/sequence. The maximum ofM is achieved
when the restoring/decoding temperature and field stren
match the corresponding temperature and field strength c
acteristic of the source and channel properties. This re
comes as a natural generalization of the previously kno
inequalities for image restoration@14# and error-correcting
codes@8#. The formulation and the proof of the inequali

FIG. 9. The overlap as a function of the field strengthh. The
conventional statistical-mechanical formulation of error-correct
codes~Sourlas code! corresponds to the axish50. The parameters
are r 53, j 0 /J50.77,a51, andT50.649.
ine
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have a formal similarity to the theory of spin glasses,
particular the one using gauge symmetry@7#. One should
note, however, that we have not used gauge symmetry in
present paper. The variables$j i% in Eq. ~18!, playing a cen-
tral role in the spin-glass theory@7#, come naturally in the
present problem whereas they emerged as a result of g
transformation in the spin-glass theory.

The infinite-range model has been solved exactly both
the image restoration and error-correcting code situatio
The results made it possible to reveal the dependence o
overlapM on various parameters. Simulations for image r
toration have confirmed that the results for the infinite-ran
model remain qualitatively valid in two dimensions.

For image restoration in mean-field systems, we ha
found a line of optimal performance along which the overl
M takes the same maximum value. The line contains
point of optimal performance predicted by the inequal
~19!, but extends also to the zero-temperature limit. T
indicates that optimal~or quasioptimal! performance is far
more accessible than previously thought. It remains to st
the extent to which the picture is applicable to finit
dimensional systems where the mean-field theory is only
proximate. In this respect, it is interesting to note that a rid
of nearly optimal overlap has already been observed in e
literature, such as Fig. 2 of@14# and Fig. 8 of@2#. Naturally,
one is led to expect that a narrow but extended region
optimal ~or near-optimal! performance spans the parame
space.

By comparing the optimal line and the operation lines
which h/bm is kept constant, we have studied the toleran
towards uncertainties in parameter estimation. Apparen
the zero-temperature restoration~the MAP estimate! is most
robust. Furthermore, if the MAP estimate is approached
simulated annealing, it may be more effective to consi
rescaling the field strength while lowering the temperature
the same time.

However, we have a few remarks of caution about
MAP estimate.~a! The zero-temperature restoration is op
mal only when the correct ratioh/bm is used, which can only
be found self-consistently in realistic situations; if the inco
rect ratio is used, the performance will be suboptimal.~b!
The existence of the line of optimal performance in finit
dimensional systems remains an open issue. Simulation
two dimensions seem to show that the MAP estimate is s
optimal, although most likely it is still nearly optimal. On th
other hand, the optimal point predicted by Eq.~19! is guar-
anteed to be the best in general cases.~c! The present resul
applies to the equilibrium state of the system, and the
namics remains an open issue. It may happen that the
proach to equilibrium at a low temperature is much slow
or is more prone to being trapped by local minima.

We have also considered the inclusion of exchange in
actions as extra information in image restoration. Expli
examples of images in two dimensions show that the fi
structures are remarkably well restored. We remark that
exchange interactions have some similarities with ‘‘line p
cesses,’’ which has been proposed to improve the qualit
images@11#. If the line variables were quenched, they a
equivalent to binary and multiple interactions among neig
boring sites. However, a major difference is that the li
variables are dynamical in the process of image restorat

g
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whereas the exchange interactions considered here
quenched.

A comment is in order on the amount of information ca
ried by the channel of the infinite-range model. The sig
amplitude of the exchange term in Eq.~29! is j 0r !/Nr 21.
The channel noise causes fluctuations in the output with
standard deviationJ(r !/Nr 21)1/2, which is much larger than
the signal itself whenN@1. This corresponds to an ex
tremely low signal-to-noise ratio, yet the output still contai
significant information of the original message. This demo
strates the power of the infinite-range decoding schem
extremely noisy situations, although in practice such
tremes do not occur frequently.

Finally, we mention briefly the idea of selective freezin
@20#. The Ising spins keep moving under thermal agitat
when we employ the process of finite-temperature rest
tion. Some spins have smaller thermal fluctuations than
others, resulting in larger local magnetic moments. It m
thus be interesting to fix~freeze! those relatively stable spin
to 61 according to the sign of̂s i& and repeat the finite
e
s

re

l

e

-
in
-

n
a-
e

y

temperature decoding/restoration process for the other
stable degrees of freedom. We call this idea the selec
freezing, which turns out to enhance tolerance against un
tainties in parameter estimation. The details will be presen
in a forthcoming paper@21#.
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APPENDIX A: THE INEQUALITY FOR GENERAL DECODING AND RESTORATION

To prove the inequality~19!, we first note that the argument of the summation in the definition~17! is bounded by its
absolute value:

M ~b,h,Pm!5(
j

) E dJFr~J!) E dtF1~t!expS bJ( Ji 1••• i r
j i 1

•••j i r
1bt( t ij i D Ps~$j%!j i sgn̂ s i&

<) E dJFr~J!) E dtF1~t!U(
j

j i expS bJ( Ji 1••• i r
j i 1

•••j i r
1bt( t ij i D Ps~$j%!U, ~A1!

whereusgn̂ s i&u has been replaced with 1. Using the identityuxu5x sgnx, we get

M ~b,h,Pm!<(
j

) E dJFr~J!) E dtF1~t!F(
j

j i expS bJ( Ji 1••• i r
j i 1

•••j i r

1bt( t ij i D Ps~$j%!GsgnS (
s

s i expS bJ( Ji 1••• i r
s i 1

•••s i r
1bt( t is i D Ps~$s%!

(
s

expS bJ( Ji 1••• i r
s i 1

•••s i r
1bt( t is i D Ps~$s%!

D . ~A2!
Thus the right-hand side can be interpreted as the averag
the product ofj i and sgn̂s i& at the optimal parameter value
b5bJ , h5bt, andPm5Ps , yielding Eq.~19!.

APPENDIX B: THE INEQUALITY FOR MEAN-FIELD
IMAGE RESTORATION

To derive the inequality~20!, we start with the definition
~17!. Substituting Eqs.~11!, ~8!, and ~7! we obtain, for i
51 in the average,
of
M ~h,bm!5

1

Z~bs!
)

i
E dt iF1~t i !(

j
j1

3expS bs

z (̂
i j &

j ij j1bt(
i

t ij i D
3sgnF(

s
s1 expS bm

z (̂
i j &

s is j1h(
i

t is i D G .

~B1!
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In the exponential argument of the Boltzmann factor containing$j%, j1 only appears in the expressionz21bs(^1 j &j1j j
1btt1j1. Hence, if we multiply and divide this expression by the partition function of$j i% excluding site 1, we have

(
j i

j1 expS bs

z (̂
i j &

j ij j1bt(
i

t ij i D 5(
j i

\1 expS bs

z (̂
i j &

\1 j ij j1bt(
i

\1 t ij i D
3K (

h i

h1 expF S bs

z (̂
1 j &

h j1btt1Dh1G L
H(bs ,bt)\1

, ~B2!

where^ &H(bs ,bt)\1 represents the thermal average taken over the Hamiltonian with inverse temperaturebs and random-field

strengthbt , excluding site 1. Similar arguments can be applied to the argument of the sign function in Eq.~B1!, yielding

M ~h,bm!5
1

Z~bs!
)
iÞ1

E dt iF1~t i !(
j i

\1 expS bs

z (̂
i j &

\1 j ij j1bt

3(
i

\1 t ij i D E dt1F1~t1!2K sinhS bs

z (̂
1 j &

h j1btt1D L
H(bs ,bt)\1

sgnK sinhS bm

z (̂
1 j &

s j1ht1D L
H(bm ,h)\1

.

~B3!

For mean-field systems,(^1 j &h j and(^1 j &s j are self-averaging quantities@22#, and the thermal average of the hyperbolic si
functions can be replaced by a single function of the thermal-averaged argument. ThusM (h,bm) reduces to

M ~h,bm!5
1

Z~bs!
)
iÞ1

E dt iF1~t i !(
j i

\1 expS bs

z (̂
i j &

\1 j ij j1bt(
i

\1 t ij i D
3E dt1F1~t1!2 sinhS bs

z (̂
1 j &

^h j&H(bs ,bt)\11btt1D sgn sinhS bm

z (̂
1 j &

^s j&H(bm ,h)\11ht1D . ~B4!

For mean-field systems with large valency, the averaging over the neighbors of site 1 reduces to the disordered
Consider@^h j&

\1#, which is the thermal and disordered average ofh j taken over the HamiltonianH(bs ,bt)
\1,

@^h j&
\1#5

1

Z~bs!
\1 )iÞ1

E dt iF1~t i !(
j i

\1 expS bs

z (̂
i j &

\1 j ij j1bt(
i

\1 t ij i D(h i

\1 h j expS bs

z (̂
ik&

\1h ihk1bt(
i

\1 t ih i D
(
h i

\1 expS bs

z (̂
ik&

\1 h ihk1bt(
i

\1 t ih i D .

~B5!
w

n

t
ve
After canceling terms in the denominator and numerator,
arrive at

@^h j&
\1#5

1

Z~bs!
\1 )iÞ1

E dt iF1~t i !

3(
h i

\1 h j expS bs

z (̂
ik&

\1 h ihk1bt(
i

\1 t ih i D ,

~B6!

which reduces to@^j j&
\1#5m0, namely, the magnetization i

the prior distribution. Similarly,@^s j&
\1#5m, which is the

magnetization in the model distribution.
Substituting these results, and using the normalization

the probability(j
\1Ps($j i%

\1)P($t i%
\1u$j i%

\1), Eq. ~B4! re-
duces to
e

of

M ~h,bm!5
2Z~bs!

\1

Z~bs!
E dtF1~t!

3sinh~bsm01btt!sgn~bmm1ht!. ~B7!

The rest of the proof is similar to Appendix A. Noting tha
the integrand oft is bounded by its absolute value, we ha

M ~h,bm!<
2Z~bs!

\1

Z~bs!
E dtF1~t!

3sinh~bsm01btt!sgn~bsm01btt!.

~B8!

The right-hand side is the value ofM (h,bm) when Eq.~21!
is satisfied, since in this case, sgn(bsm01btt)5sgn(bmm
1ht).
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