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Diffusion in discrete ratchets
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The phenomenon of noise-induced transport in ratchet devices offers an explanation for directed motion on
the molecular scale observed in many biological systems. Net transport through a series of discrete states,
occurring in cyclic processes or reactions, can be related to widely investigated continuous ratchet models in
the context of thermally activated transitions. The transport process can be described effectively in terms of
two characteristic coefficients: velocity and diffusion. Their relation to model parameters and limitations for
the ratchet mechanism are discussed in this paper. As an application we consider a four-state model for uphill
transmembrane transport and compare theoretical results with existing data from a related experiment.
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[. INTRODUCTION fying and comparing currents that can be achieved when us-
ing different mechanisms to drive the system out of equilib-
The phenomenon of noise-induced transport offers an exdum: rocking (e.g., [8—10)) or flashing(e.g.,[11,12) the
planation for directed motion observed on the molecularatchet, applying dichotomi¢e.g.,[11,12), harmonic[13],
scale. It has been mainly discussed in the context of biologier Ornstein-Uhlenbeck(e.g., [8,14,19) noise, including
cal systems, e.g., actin/myodih], kinesin/microtubule$2] (e.g.,[10,16,17) or ignoring inertia(the majority of publica-

or transmembrane transp¢8]. tions), etc. Moreover, the phenomenon of current reversal
The two indispensable prerequisites for this moleculatas attracted much intere&.g.,[16—19).
transport mechanism afenbiased bytnonthermal fluctua- In contrast to these efforts, only a few authpt®,20,2]

tions and a broken reflection symmetry. Whereas the firshave payed attention to diffusion accompanying the transport
requirement becomes transparent in connection with the se@rocess in a ratchet. [r10] the authors considered a periodi-
ond law of thermodynamic] the second is needed to se- cally rocked, purely deterministic ratchet including inertia
lect a preferred direction of net transport. The broken symeffects. Their system possessed regular or chaotic attractors
metry is usually introduced by choice of a periodic butdepending on the system parameters. In the chaotic regime
asymmetric potential, a so-called ratchet or washboard pahe asymptotic distribution tended to a dispersing Gaussian
tential. just as for ordinary diffusive systems. This motivated an ef-
Depending on the system under consideration the coordiective description based on a cumulant expansion with
nate may be a spatial axis or a reaction coordinate. As adominant corrections accounted for by a universal scaling
example for the latter case we mention the transport of daw.
substanceion) through a membrane. The catalyzing macro- The same observation of an effective Gaussian was also
molecule is apt to conformational changes and possesses difie basis for an envelope description applied to a dichotomi-
ferent binding sites. This situation has led to the formulationcally flashing overdamped ratchgt1]. Explicit expressions
of a four-state mode[5] and underlines the practical rel- for the velocity and effective diffusion coefficient could be
evance of discrete ratchet models. derived; however, they still required numerical evaluation of
Transport in spatially continuous systems can be deinvolved functions. In this paper we will apply the same
scribed by means of a Fokker-Planck equati6h Within  approach adapted to a discrete three-state model first intro-
this framework the central quantity of interest, the stationaryduced and analyzed in the context of various flashing modes
current, can be formulated rigorously. However, analytic re{22]. The discrete system has the advantage that velocity and
sults can be found for a few examples only. On the othediffusion coefficient can be explicitly related to system pa-
hand, for a discrete-state model, and especially for chemicahmeters. Thus we can study their analytic dependence on
kinetics, a formulation in terms of rate equations is possiblethe system parameters. We should mention that the investi-
In mathematical terms this involves simple linear algebragation of velocity and diffusion constant in a periodic one-
hence, allowing for analytical expressions quite generallydimensional hopping model was done ear(i28] in a dif-
Both descriptions are connected by Kramer’s theory relatingerent context.
rates to the shape of potenti§d. It should be noted that the Diffusion counteracts the desired transport. To illustrate
kinetic description is only valid in some appropriate adia-this statement consider some molecular system that requires
batic limit. the cargo to be delivered at its destination reliably, i.e.,
So far, most investigations have concentrated on quantiwithin a small time interval. In this case large diffusion
means large variance of the times of arrival, i.e., low reliabil-
ity. As another example we might think of some separation
*Electronic address: Jan.Freund@physik.hu-berlin.de device. Here, diffusion affects the efficacy of the separation
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FIG. 2. The discrete three-state ratchet model.

for large Pe this probability will become vanishingly small
(cf. Summary and Conclusion
The break-even point beyond which drift wins over diffu-
0 la sion defines a critical length .=2D/v. Demanding this
FIG. 1. After the timer;=la/v the peak of the distribution has Iengt.h to be not larger than the length of a ratchet anit
shifted | units to the right. The probability that the particle still is reduires Peclet numbers not smaller than 2.
left of the starting point, i.e P(x<0,7;), corresponds to the shaded
regions. The distributions are shown for a lafgep) and a small II. A MINIMAL DISCRETE RATCHET MODEL
(bottom) Peclet number.

As a starting point for discrete ratchet models we consider

mechanism. Recently the use of two-dimensional sieves Wa@g' 2.1t Compfises three states interconnected b_y tre_m_sitions
proposed for a continuous sorting of differently sized moI-W(n__’m'U) (with n,m=1.2,3 _anda= _.1’+1)' I.t IS mint-
ecules(DNA fragments [24,25. Lateral diffusion, i.e., in a mal since the ratchet mechanism requires spatial asymmetry,

direction perpendicular to electrophoretic drift, effects theV_VhICh cannot be _dewsed W|th_le_ss than three states. The
separation; however, it also limits the range of sufficient“near ordering indicates the chainlike character with the con-

resolution nection between 1 and 3 accounting for its periodicity. Due
The cdmpetition between drif¢ and diffusivity D in to flashing there exist two disjoint transition sets represented
advection-diffusion problems is often expressed by a dimen® the upper ¢ 1). and '°".Vef (1) ladder. The switching is
sionless number, the’ Blet number, modeled by a dichotomic procegsandom-telegraph pro-
ces$ with y denoting the average switching rate. The proba-
bilistic evolution of the system is described by a related mas-
lvla ter equation of the form

Pe= T (1)

. ) ) P(n,o,t)=[W+T]P(n,o,t). (5)

Herea is a typical length scale, in our case the length of a

single ratchet element. The larger thécke number, the The master matrixW+1I"] has dimension &6 and is com-
more net drift predominates over diffusion. pound of lateral transition rates(n—m,s) (in W) and the

To discuss this point quantitatively we consider the situ-switching ratey (in I').

ation sketched in Fig. Icf. Fig. 4. Net transport moves  The dichotomic switching provides the basic mechanism
particles to the right. After the time;=la/v the peak has to drive the system out of equilibrium. The second prerequi-
moved! units to the right. The probability to find the particle sjte for a nonvanishing net current, namely, the broken re-
still at the starting point or even left of it is given by the flection symmetry, is induced by appropriate choice of tran-
expression sition rates. In the context of thermally activated transitions
we have to endow a modified sawtooth potential with meta-
stable states. This is done by deforming the potential giving

_ 2
P(x<0,r)= ;JO exr{ — M)dx, (2)  rise to three local minima each separated from its neighbors
VanD7 )= 4D by barriers, cf. Fig. 3. In the context of Kramer's the¢®}
the parametersAU,,U;,U,,U3,AU,,AU,3, and AUz,
can be chosen to yield
1 vT| 2
=—|" —exp — —|dy, 3
N A p( 2) Y @ k=w(1—2,+1)=w(2—3,+1)
B 1 B 1 5
| Cw(2—1,+1) w(3—2,+1)’ ©)
=d| — \/5Pe|. (4
2
i k2=w(1—3,+1)= ! 7
Referring to the statements above and to Sec. Ill we have =w(l-3,+1)= WES1A1) (7)

made use of the fact that the distribution effectively becomes
a dispersing Gaussian. For Pe approaching zero the particle
will be found on the left side with probability 0.5 whereas 1=w(n—n+1,—-1) (8)
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eters determining the ratchet system, i.e., to the flipping rate
v and to the parametércoding the shape of the asymmetric
unit. These parameters enter the description through the dy-
namics ruling the evolution o, which is nothing but the
master equatioii5). Consequently, a connection between
andP will yield the desired relation. This connection is given
by the following gradient expansion:

1 1 1 P(x,a,t)=20 p(M(x,0) ATP(X/\,t). (10)

It involves an infinite set of periodic functions™ of period

a. Small n terms describe the smooth components and,
hence, one would expect only the first functign®, p™®,

and perhapp'® to be involved in the envelope description.
Indeed, this is the case as can be seen when inserting the
fansatz(lo) in the master equatios). Equating terms of
order 1K" yields

FIG. 3. The continuous linear on-off potentiatkashed are en-
dowed with a well structurésolid). By an appropriate choice of
barrier heights it is possible to map the continuous system show
left to the rate system sketched schematically right.

(cf. Fig. 3. We specify rates in this way for the sake o
computational convenience and in order to be compatibl
with existing literaturg 22].

[W+T1p©@=0, (12)
Ill. EFFECTIVE DESCRIPTION OF NOISE-INDUCED
TRANSPORT ~
[W+T]pP=—(v=V)p®, (12
Considering transport in a ratchet potential one wants to
quantify the probability that the particle has moved some
units to the left or to the right of the initial unit. This means [W+T1p®@=(D-T)p©@—(v—V)pW), (13
that one is interested in a description on a coarser scale for-

mulated through an envelope function. As already mentionegith v and T being two operatorématrices involving rates
in the introduction it was observdd0,21] that the evolution w(n—m,a) (cf. the Appendix. Equation(11) reveals that
of the probability envelope effectively becomes that of a dis;(0) s the stationary solution of Ed5). Taking traces and
persing Gaussian, see Fig. 4. Before approaching this notio(gbeying correct normalization,

in a systematic waycf. [21]) let us introduce some notation.
By P we denote the envelope function whereas the distribu-
tion defined on the refined scale will be denotedyThe (M — YN
observation of a spreading Gaussian means that we have the t{p }_0:2—1 izl p(i,0)=0dnp0 (14)
following equation for the envelope:

+1 3

yields the desired relations for the effective coefficients:
HP(XIN1) =0, (—Vv+Ddy)P(XIN,1)], 9

with A denoting some length scale, which is large as com- v=tr{Vp}, (15
pared to the lengtla of the asymmetric unit. Note that an
expansion in powers of spatial derivatives thus corresponds
to an expansion in powers ofA\L/Hence, we can understand
Eqg. (9) as a truncated series expansion. We have introduced () i
two effective coefficients, namely, the velocity and the The fact that the functiop'<’ is not involved becomes trans-

diffusion coefficientD. We want to relate them to the param- Parent when taking the traces of E¢s1)—(13). Due to the
norm-conserving property of the operaf+1"] traces of

the left sides vanish identically. The functiop®) andp®
are achieved solving Eq§ll) and(12), respectively.

In [21] where a continuous ratchet model was investigated
the traces required integration and scalar products with the

v continuous functiong® andp™®. A quantitative evaluation
of these expressions, hence, required numerical computation.
QJW/\ In contrast, in the discrete ratchet model all manipulations

D =tr{Tp@} —tr{VpM}. (16)

necessary to yield Eq¢15) and(16) are done in the frame-
work of linear algebra. They can be performed by an alge-
FIG. 4. The probabilistic evolution of an ensemble in a ratchetbraic computer program likIAPLE. The resulting expres-
potential is reduced to a consideration of a time-dependent envesions are rather long and cannot be simplified. However, they
lope. The latter can be effectively described by a dispersing Gausstill grant the benefit of being analytically exact and explicit.
ian moving with constant drift. In particular, exact limits can be evaluated.
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FIG. 5. The relation between velocityand diffusion coefficient
D for the flashing ratchet when varying the flashing rator three
different asymmetry parameterk=0.1 (dashegl k=0.2 (solid),
andk=0.5 (long dashed

FIG. 6. The Pelet number Pe for the flashing ratchet when
varying the flashing ratey for three different asymmetry param-
eters:k=0.1 (dasheg k= 0.2 (solid), andk=0.5 (long dasheg

. o . the substance. Applying an external varying field induces
In the remainder of the present paper we will visualizeyansitions between the conformational states of the macro-
and discuss the dependencevoandD on the parameters  molecule, thus creating and maintaining a nonequilibrium

andk of our discrete ratchet model. In the following we set gt ,ation. The indispensable asymmetry comes in through

the unit lengtha=1. different affinities on both sides of the membrane. In this
way the uphill transport, i.e., against a concentration gradi-
IV. DRIFT VS DIFFUSION FOR THE MINIMAL ent, can be modeled by a discrete four-state ratchet. Besides
DISCRETE RATCHET experiments with oscillating field6,27] there was also an

experiment with a randomly fluctuating electric sigifign-
In this section we apply the method to the flashing three- P y g g

g ; dom telegraph noig€g28]. The influx, i.e., the number of
state ratchet sketched in Fig. 3. The alternation betweeBarticles B%Rb) crossing the membrarief human erythro-
asymmetric concentration of probability in ten stat¢ and

. e . ; cyteg against a concentration gradient, was measured as a
free d!ffusm_n, .e., over the bar_nersAUO (in the .Off function of the applied bia® (related to the electric signal
state, gives rise to a net transport directed to the left, i.e., theamplitude) and mean switching rate. Nonmonotonic be-

net velocity is negative. As a generic feature of the ratCheﬁavior with respect to both parameters was fo{2@l. The

mechanism the net currgnt becomes extremal for an Opthweasurement data could be reproduced by simulations based
mally choseny; the flashing rate has to be tuned to maxi-

i ; on a four-state kinetic descriptidifor a sketch of the model
mally experience the asymmetry between motion to the Ieff/ve refer to Fig. 3 of28)).

and to the right. The important question is now whether large
net currents can be achieved simultaneously avoiding largg;
diffusion. To this end we consider how the diffusion constanty
D(y,k) varies with the flashing rate¢ and plot-related val-
ues ofv andD in Fig. 5. The tendency to simultaneously
attain extremal values clearly can be seen from the diagonal 60
structure of the curves.

In Fig. 6 we depict the related Blet numbers Pe. We see
that Peclet numbers never reach values of the order of 1. This
basic example clearly demonstrates that diffusion effects are
far from being negligiblgcf. the discussion in the Summary
and Conclusioh In passing we mention that the same quali-
tative result was found in the analysis of a discrete rocking
ratchet.

With the rates given if28] (specified there in the legend
Fig. 3 we can compute the net velocity together with the
iffusion coefficient. The results are shown in Figs. 7 and 8
for varying bias® and v, respectively. The unit fov was

40

v, 20

V. APPLICATION TO TRANSMEMBRANE TRANSPORT 0

In this section we want to show how this analysis applies
to a realistic biochemical system. The active transport of 20 , ‘
substancegions) through biomembranes has been described 0.0 05 ® 1.0 1.5
successfully in terms of a four-state modél. The four
states are defined through combining some electroconforma- FIG. 7. The effective coefficients (dashedl and D (solid) for
tional polarity of a membrane macromolecy®inting ei-  the four-state electroconformational coupling model specified in
ther inside or outsidewith the bound or dissociated states of [28] as a function of varying external bias.
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FIG. 8. The effective coefficientg (dashe@l andD (solid) for
the four-state electroconformational coupling model specified in FIG. 9. The probabilityP(x<0,7;) that a particle, initially lo-
[28] as a function of varying mean switching frequengy cated atx=0, never crosses to the preferred side within the time
7 =lalv strongly depends on the &let number Pe.

chosen asttomol of ion substance per erythrocyte per hour
to allow for comparison with the cited literatuf@8]. The ACKNOWLEDGMENTS

unit for D follows in accordance. As before, we find that Hints to literature by P. Fraggi, P. Jung, and D. Astumian

diffusion and velocity are increasing simultaneously. The re- .o greatly acknowledged. Thanks are due to T. Harms for
lated Peclet numbers never reach the value 1.5. fruitful discussions.

VI. SUMMARY AND CONCLUSION APPENDIX

We have analyzed net transport in discrete ratchet models ) . ) -
relevant for(biochemical cyclic reactions moving “uphill.” Here we derive explicit expressions for the operatdrs
Asymmetry was reflected by asymmetric rates whereas nor@nd T involved in Egs.(12)—(16). We start by inserting Eq.
equilibrium was prepared by switching betwe@mo) differ- (10 in the left side of Eq(5). Making use of Eq(9) yields
ent sets of transition rates. A description in terms of a dis@ power series
persing probability envelope yielded expressions for two
effective coefficients, drift velocity and diffusivity D, as a
function of given rates. We applied the theoretical results to -
discrete versions of a flashing and a rocking ratchet. Finally, zl Cn (NAX)"
as a rather practical application, we considered diffusion ac-
companying active transport of substances across a biomem-
brane. with ¢;=—vp©® andc,=Dp""2—yp"~Y for n=2 and

As a general feature we found that maximal drift is linked Ax=a/3. The right side of Eq(5) explicitly reads
with rather high diffusion. The limitation diffusion imposed
on the transport efficiency can be considered quantitatively
in terms of the dimensionless &et number Pe. As ex- [W+T]P(i,o):=w(i—1—i,0)P(i—1,0,1)
plained in the Introduction, for net drift to overcome diffu-
sion at a distance of one unit Peclet numbers should not be

1 "Py,t)
—(7—yn|y: ne (A1)

+w(i+1—i,0)P(i+1,0,1)

smaller than 2. In contrast to this demand we found Peclet —W(i=i—10)+W(i—i+1,0)]

numbers as small as 0.15 for the flashing ratchet, 0.6 for the

rocking ratchet, and 1.5 for the transmembrane model. XP(i,o,t)—9y[P(i,o,t)—P(i,—o,t)].
A more sophisticated interpretation relateglBenumbers (A2)

to the probabilityP(x<0,7;) that particles, initially located

at x=0, never move to positive valued locatiofthe pre-

ferred sid¢ within the timer,=la/v. Of course, with elaps- Inserting the gradient expansiof®) here and expanding
ing time 7, this probability(cf. Fig. 9 will diminish. Never- ~ P(y=1/\) aroundy=i/\ also leads to a power series
theless, small Réet numbers stir the question whether

ratchets really work. This criticism even holds true when

considering a collection dfl independent ratchets. However, 1 I"P(y,t)

synchronization effects induced by an external si§&8] or “h TVONAX)T T gyn ly= i (A3)
by a feedback mechanisi@1] may generate coherent behav- y

ior and thus might yield an effective suppression of deterio-

rating diffusion. with




PRE 60 DIFFUSION IN DISCRETE RATCHETS 1309

n

o™i oy e lw(i —1 i o™i —
T0= 2, [(~1)w(i=1-1,0)p" (i~ 10) VPR ey=lwi Lo o pi = L)

—w(i+1—i,0)p™M(i+1,0)]AX, (A5)
+w(i+1—i,0)p" D(i+1,0)]

(Ax)'

X+ W+ TpM (i, o). (A4) Tp™(i,a) s=[w(i — 1=i,0)p™(i— 1,0)
. . . _ _ _ (Ax)?
From this we can readily write down Eq§l1)—(13) and +wW(i+1—i,0)pM(i+1,0)] )
define the operator¥ and T through their action on the 2
functionsp(™ as (AB)
[1] J. Finer, R.M. Simmons, and J.A. Spudich, Nat(rendon [16] F. Marchesoni, Phys. Lett. 237, 126(1998.
368 113(1994. [17] B. Lindner, L. Schimansky-Geier, P. Reimann, Pniai, and
[2] K. Svoboda, C.F. Schmidt, B.J. Schnapp, and S.M. Block, Na- M. Nagaoka, Phys. Rev. B9, 1417(1999.
ture (London 365, 721(1993. [18] M.M. Millonas and M.l. Dykman, Phys. Lett. Al85 65
[3] R.D. Astumian, P.B. Chock, T.Y. Tsong, and H.V. Westerhoff, (1994.
Phys. Rev. A39, 6416(1989. [19] P. Haanggi and R. Bartussek, Monlinear Physics of Complex
[4] M.v. Smoluchowski, Phys. Z13, 1069(1912. Systemsedited by Jrgen Parisi, Lecture Notes in Physics Vol.
[5] R.D. Astumian, J. Phys. Cheri00, 19 075(1996. 476 (Springer, Berlin, 1996 pp. 294-308.
[6] H. Risken,The Fokker-Planck Equation: Methods of Solution [20] H. Gang, A. Daffertshofer, and H. Haken, Phys. Rev. L#&d.
and Applicationd Springer-Verlag, Berlin, 1989 4874(1996.
[7] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Ph§g, [21] T. Harms and R. Lipowsky, Phys. Rev. Let9, 2895(1997).
251(1990. [22] L. Schimansky-Geier, M. Kschischo, and T. Fricke, Phys. Rev.
[8] M.O. Magnasco, Phys. Rev. Leftl, 1477(1993. Lett. 79, 3335(1997).
[9] R. Bartussek, P. Haygi, and J.G. Kissner, Europhys. L8, [23] B. Derrida, J. Stat. Phy81, 433(1983.
459 (1994). [24] T.AJ. Duke and R.H. Austin, Phys. Rev. Le®0, 1552
[10] P. Jung, J.G. Kissner, and P @i, Phys. Rev. Let{Z6, 3436 (1998.
(1996. [25] I. Derenyi and R.D. Astumian, Phys. Rev. 8, 7781(1998.

[11] R.D. Astumian and M. Bier, Phys. Rev. Lef2, 1766(1994). [26] E.H. Serpersu and T.Y. Tsong, J. Biol. Che@b9 7155
[12] J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev. (1984.

Lett. 72, 2652(1994). [27] D.S. Liu, R.D. Astumian, and T.Y. Tsong, J. Biol. Che265
[13] R. Bartussek, P. Hmgi, B. Lindner, and L. Schimansky- 7260(1990.

Geier, Physica 009, 17 (1997. [28] T.D. Xie, P. Marszalek, Y. Chen, and T.Y. Tsong, Biophys. J.
[14] R. Bartussek, in Stochastic Dynamigs edited by L. 67, 1247(1994).

Schimansky-Geies and T. 8thel, Lecture Note in Physics [29] The nonmonotonic dependence of the current on the external

Vol. 484 (Springer, Berlin, 199} p. 69. field amplitude was interpreted in the framework of stochastic
[15] B. Lindner L. Schimansky-Geier, P. Reimann, and Pngta, resonance in A. Fuliski, Phys. Rev. Lett79, 4926(1997).

in Applied Nonlinear Dynamics and Stochastic Systems Neaf30] A. Neimann, L. Schimansky-Geier, and F. Moss, Phys. Rev. E
the Millennium San Diego, CA, 1997, edited by James B. 56, R9 (1997).

Kadtke and Adi Bulsara, AIP Conf. Proc. No. 41AIP, [31] I. Dereayi and R.D. Astumian, Phys. Rev. Le®0, 4602
Woodbury, NY 1997, p. 309. (1998.



