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Polymorphic phase transitions in systems evolving in a two-dimensional discrete space have been studied.
The driving force of the transitions appears to be a difference between two main energetic contributions: one,
related to the thermal activation of the process, and another, being of quantum nature. The(fdgimer
temperature limjtis naturally assigned to the expansignelting part of the transition, while the lattélow
temperature limjt has much in common with the contractigsolidification part. Between the two main
physical states distinguished, there exists a certain state, corresponding to a discontinuitggdeimn the
morphological phase diagram, represented by the well-known Bose-EiriBlaimck formula, in which the
system blows up. This point is related to an expected situation in which the contour of the object under
investigation stands for the Brownian or purely diffusional path, with the fractal dimenkjer2, and the
situation can be interpreted as some emergence of an intermediate “tetratic” phase. This, in turn, recalls a
certain analogy to the equilibriuttorder-disorderphase transition of Kosterlitz-Thouless type, characteristic
of, e.g., rough vs rigid interfaces in a two-dimensional space, with some disappearance of interface correlation
length atd,,=2. Otherwise, the contours of the objects are equivalent to fractional Brownian paths either in
superlinear or “turbulent” ¢,,<2; the expansion cageor sublinear, viz., anomalously slovd(>2; the
contraction caseregimes, respectively. It is hoped that the description offered will serve to reflect properly the
main subtleties of the dynamics of the polymorphic transitions in complex “soft-matter” systems, like forma-
tion of lipid mesomorphs or diffusional patterns, with nonzero line tension eff8063-651X99)08706-1

PACS numbgs): 05.70.Fh, 71.16-w, 05.60.Cd, 81.30.Fb

[. INTRODUCTION loids, surfactants, complex fluids, amphiphiles, etc., having
their prerequisites in some rather old but perennially alive
A main challenge of recent developments is the recognieritical phenomena, like ferromagnetic-to-paramagnetic
tion of the interplay of microscopic interfacial dynamics with phase transitions or transformations in superfluiciéHg),
external macroscopic fields in the determination of the morare presently a subject of intense studi, [6,2], and refer-
phology of evolving patterns. The real challenge, howevergnces therein An intriguing task here seems often to be a
appears when a system under study is complex, i.e., it poseasonable though phenomenologi¢aver) description of
sesses quite nontrivial dynamif$|. This is very often the the system under study in terms of some heterogeng@ous
case of many biophysical systems, like, e.g., lipid mem-oking this notion, we wish to stress an important role of the
branes, liquid-crystalline assemblies, protein crystals, modehterface or quasicrystal’'s surface, or finally, of the grain
biomaterals, etc., which manifest high viscosity, sensitivityboundaries or, in particular, polymorphic phase transition
to some changes of external physicochemical conditionsoncept, being applicable to a “soft-matter” system, where a
(temperature, pressureyH, light, strain-stress response, thermotropic, barotropic, as well as lyotropic mesomorphism
etc), chemical reactivity, presence of fluctuations of either(for example, of phospholipidsappears to be a key feature
thermal or athermal nature; moreover, since we may alsthereof[7].
consider a behavior of individuals of nanometer sizes and in  While trying to describe the phase changes we have to
very short time(low temperaturg scales, a certain role of know whether they take place near the equilibrium point or
guantum effects cannot be excludadriori [2]. rather out of it(sometimes also: how far from)itWe have to
The scaling concefimore generally, the renormalization- know as well whether we will be interested in some static
group approach[3], being a fundamental theoretical idea of picture of the process, such as, for example, diagrams of
a microscopic-to-macroscopic adjustment of systems comeoexisting phases, or perhaps we wish to know, how might
posed of a certain number of elementary subufit®l- the phases intermingle if, for instance, the temperature is
ecules; individuals was frequently used to characterize thechanged, and how does the process look just in the course of
behavior of such systems in both statime-independentas  time? It is also a possibility to work in a certain “combined”
well as dynamic domains. Quite often the random walk conway. E.g., we can benefit from some knowledge of the
cept was attached to [i3], being in the last few decades (statig equilibrium phase picture, just for attempting to use it
intensively developed in the both above mentioned direceffectively in constructing the so-called morphologi¢dy-
tions; se€1,4]. The concepts listed above have often beemamig phase diagrams. This method will be exemplified by
accompanied by the concept of anomalous kinetics in comeertain known scenarios, in which some emergence of
plex systems, usually named the glassy dynamics or dispeteis)ordered shapes under nonequilibrium growth conditions,
sive (in some sense, fracjakinetics[5]. like various mesomorphs in lipid§7], Hele-Shaw or
The phase changes in “soft-matter” systems, e.g., col-‘diffusion-limited-like” patterns in the so-called dense-
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some basic steps of construction of the morphological phase
diagram are proposed, whereas in Sec. |V its basic properties
A, in terms of the synchronized dynamitsollective or coop-
/SN E < erative dynamicshave been revealed, and the physical ori-
’ | gin, touching somehow the quantum character of the ther-
| Ay ; mally activated transition process, has been pointed out. In
A ! this section, the thermodynamic-geometrical adjustment
A, mentioned above has been utilizédprovokes discussion of
the self-organization or some other type of effectiveness of
the growing proceskl4]). As a result, a Bose-Einstein-like
T  TRIANGLE (A) relation has been deriveee also Appendix Band dis-
— ggﬁ;ﬁ"ég"}m? cussed in terms of the so-called Kosterlitz-Thoul€&3)
o PERIMETER POINT order-disorder phase change&s. Appendix A), for which
. E%ERRTNHAE'-EF?IX“JGLE) both the dynamic structural adjustment and discreteness of

the physical space play an important rple]. Conclusions
FIG. 1. Schematic representation of the Steinhaus@leThe  regarding some examples based preferentially on studying

areas of the triangle, trapezium, and square are designatéd by the lipid, and similar, e.g., bacteria systefis7,11], com-

A,, and A, respectively, and are evaluated to be 9, 8, and 4; th@lete the investigations presented in this work.

internal as well as perimeter points of the triangle have been drawn

as well (for the other symbols, see the legend of the pigture Il. DISCRETE PICTURE OF THE PROCESS

_ _ Certain physically valuable information is accumulated
branching morphology regime, e{&-13. Moreover, to get  ghqut 4 clustefmolecular “condensate” or crystalat a

a physically consistent picture we do postulate a kind ofyynamic quasiequilibrium with its surroundings and located
thermodynamic-geometrical adjustment of the system undef, 5 2p spacdsquare latticeon its nucleus, if one provides
study, just to let the complex system evolve at criticality in a(j) an “averaged” statistical-thermodynamical description in

self-organized mannga.4]. _ terms of the scaling concept, like
In this work, to study both the nondynamic as well as

dynamic aspects of polymorphic phase transitions in a two- (A)~pPws, D,se[02), Dy,s*1l, p>1 (1)
dimensional (2D) discrete space, we propose (simple
model that merges a discrete picture of a polygon embeddedherep stands for the number of the perimeter periphery
in the square lattice with some thermodynamic-geometricasites of the polygon of averaged arg®) embedded in a 2D
concept. The thermodynamics means here certain scaling aspace; the periphery cluster’s sites are the most outer occu-
guments[12], while geometry is “reduced” to use a Stein- pied sites of the object under consideration, &ngl repre-
haus rule for evaluating the polygon’s aré@g. 1) [15]. sents the random walk size expongctt [9,12,13, for some
Since the main goal of this paper is mostly to reveal a genexamples; the scaling formuld) has proved to be useful at
eral mechanism leading to the determination of the “averdeast for, e.g., vesicles or Eden clusters, withs~3/2, i.e.,
aged” velocity of the evolving ensemblgluster of mol- approximated by theself-avoiding random walKSARW)
ecules; “molecular condensate;” quasicry$tahile passing trajectory, or diffusion-limited aggregaté®LA) grown un-
(slowly or vigorously through many states of quasiequilib- der vanishing surface tension conditions, widh,~1, but
ria, e.g., in ordered spin glass€s|, the dynamics of the not precisely equal to 110,11,9]; (i) exact information
process will be of interest. Yet, some equilibrium propertiesabout the are& (not to be confused witkA)) of a convex
of the contraction-expansiofspecifically, solidification vs single polygon(clustey embedded in the square lattice, and
melting phase transformation will be mentioned, too. Espe-spanned on a certain number of lattice nodes that are either
cially, we wish to recall the role of structural defed®) the internal[denoted byi; herei>1, cf. Eq.(1)] or the ex-
when considering the transition procdsse Appendix A ternal (perimetey points, designated by (again, found by
Thus, as is probably expect¢8,13], by imposing a dis- Steinhaug15] to be (see Fig. 1; for convincing the reader,
crete time dynamics on the system under investigation andome examples with a triangle, trapezium, and square have
working within the concept of existence of a set of dynamicbeen offeredl
quasiequilibria(and also by assuming that the system is ca-
pable of passing through thg¢mwe are able to get some .. b
evolution rules for the surface fractal in a 2D spdsguare A=i E_l' 2
lattice). The surfacdenveloping ling is proposed to be mod-
eled by a random walk trajectory, which is a fractal of di- To enter the physics of the clustgrolygon at the equi-
mensiond,, [4]. The process is, in general, highly curvature librium point, let us, for example, suppose that bptandi
driven, which is very characteristic of many phenomena ofsites, placed on the square lattice nodes, are occupied exclu-
biological interest, like solidificatiofcrystallization in com-  sively by lipid molecules, and that the centers of inertia of
plex media, wetting, formation of biomembrangessicles, the macromolecules correspond to the precise locations of
micelles, bubbles, and interfacg¥,10,17. p’s andi’s. Note also that the molecules undergo, indepen-
The paper is organized as follows. In the next section, walently and with their own frequencies, oscillations around
present a picture of the growing process in a discrete 2he position of the centers of inertia at equilibrium. Invoking
space(the reader is also encouraged to EE®). In Sec. Ill, a simplest and well-known approximation, they can be rec-
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ognized as harmonic oscillatofdppendix B, though some In consequence, all the above stated points result in the
extension to the anharmonic case is plausif¥ate that the following: (i) i and p must be functions of time, i.eij,
oscillating ensemble as a whole does oscillate with an aver=i(t,) and p=p(t,), for n=0,1,2 .. .; (ii) if the system

age frequency, being the arithmetic mean of individualleaves one dynamic equlibrium stat t,,_;, for example
eigenfrequencies.Going back to Eqs(1) and (2), let us for another neighboring statatt,), then the prefactoa as
accept in our further studies some negligibly small statisticalvell as the(dynamig exponenD,,; may change their values
uncertainty in the systerfi‘compact” lattice objects grown because the move is certainly caused by a change of the
from a nucleus; no fuzzy or “dispersive” aggregates physicochemical conditions controlling the cluster formation
namely,e=|(A)—A|, for a certaine so that 0<e<1, which  process; in this case, we have to write down explicitly that
results[by comparing directly Eqg1) and(2)] in a=a(pierm andD =D« Perm)» Wherepiem is generally
related to a control parameter taken from the parametric set
o b of physicochemical conditions of the cluster formation pro-
I=i(p)=ap-v—3+1, (3 cess. Let us notice, in this moment, that by making use of
assumptiongi) and (i) in our further studies, we are going

with D, [02), butD,,<# 1, e.9.,Dy<~3/2[12]. Note that to postulate something like the existencg of a certain equiva-
ais a positive proportionalitythermodynamicalparameter.  lence between temperatufthermodynamic parameteand
It can be called the area-expansi@, contraction param-  time (temperature-time or Williams-Laudel-Ferry equiva-
eter[see Eq(1), in whicha may always enter as a prefacjor !ence principle5,1]) since any sufﬂuently detectable change
The biggera is the larger the averaged area of the cluster cai? value of the controlthermodynamig parameter should
be. If, in turn, a attained smaller values, then the clusterc@use a “jump” of the system towards another dynamic
would shrink by decreasing its area. Let us notice thaiust ~ €quilibrium state detected at tinig, wheren=1,2,... .
depend upon temperature and may vanish at a critical tem?Uch a situation is very characteristic of, e.g., polymeric sys-
perature for whictD,,<=1 so that Eq(3) will be useless if t€ms in polycrystalline or amorphou§ states of characteristic
taken for further analysis becauie can be negative, even elaxation(Vogel-Fulcher-Tammanntime [3,5,2; see Ap-
thoughp will be the smallest, i.e., whep=4 [look at Eq.  Pendix B for further discussion.
(2): if p=4 andi=0, thenA=1, and the possibly smallest
cluster in the square lattice consists exclusively of molecules Ill. MAIN STEPS OF CONSTRUCTION
located at its periphety OF THE MORPHOLOGICAL PHASE DIAGRAM

Relation(3) stands for some equilibrium global character-

istics of the cluster formation process the mechanism of If a general p|cturr:e (;I]rawn n Secl. I IIS acce{ated, let us
which has not yet been specified. It is taken at a single dy!foM NOW try to push the systerimolecular agglomerate

namic (sic) quasiequilibrium point. It goes without saying, through the_dynam|c|qua.:,]|equ|llbdrla, or to_lllnt;pqse a d|s%r9te
however, that the usefulness of relati@@) in such a form time dynamics on it. In other words, we will be interested in

can easily be questioned, e.g., because of its incompletene&f10Wing what is the total number of the internal subunits of
which means that we do not know the locationsi @indp ~ (1€ cluster at time instant, [denoted byi(t,)], having
points, so that we ar@t this stage of our consideratignsot known that at the preceding time momenpt , their number
able to reconstruct how the cluster looks, just from the infor-'S €qual t0i(t,_,). We can obtain it, if we simply perform
mation contained in Eq(3). But, we believe that the “sta- dlscrgte differentiation over both sides of Eg), which re-
tistical information measure” given by Eq3) is properly ~ Sults in
constructed, at least, because it is straightforwardly obtain- .
able from Eqgs(1) and (2), and because it includes the de- ﬂz
sired thermodynamic-geometrical content that we wish to At
have. Perhaps, an appealing simplicity is here the main ar-
gument for keeping Eq3) in our further study; segl3], for ~ where Ai=i(t,)—i(t,_;) and Ap=p(t,)—p(t,_,); obvi-
further analysis of Eq(3). ously, At=t,—t,_;. Some discussion of the derived equa-
Now, let us make the two next physically motivated as-tion in both discrete At finite and sufficiently smallas well
sumptions. The first is that the system under study apas continuous 4t—0) regimes has been presented 113]
proaches not one single dynamic quasiequilibrium state, bifor a case mostly pertinent to the formation of vesicles,
rather passes, in subsequent time instabtst,,..., Wwhere the surfacéin a 2D space, one has a line “envelop-
through, in general, infinitely many states of dynamic equi-ing” the object under growthwas modeled by a SARW
libria so that it is eventually driven out of the single equilib- trajectory. Notice that for a close-to-equilibrium case, in
rium from which we start at,=0. We are here mostly mo- turn, one getssp/ i =(aD,gpPws t—1)"1 where sp and
tivated by well-known facts concerning either extremally éi stand for very small departures pfandi from the corre-
vigorous or apparently slow transport as well as relaxatiorsponding equilibrium values, and one may expect a certain
dynamics in many “soft-matter” systems, like polymers, number of physically interesting effects, like existence of
model biomaterials(ordered glassy or polycrystalline sys- some “tetratic” (intermediatg phase, provided that there ex-
tems, etc[3,5,4. The second is, in fact, a presumption thatist two main types of phasda low temperature contracted,
the scaling form(1) simply survives for a quite broad range for D,,<<1 and a high temperature expanded, wHep
of growing processelsl, 11,12, no matter how far the physi- >1), and disappearance of the coherence length, or even
cochemical conditions controlling the process, e.g., temperasertain indications of a topological defects’ mediated transi-
ture, will be changed. tion [16] (see Appendix A for detai)s

1\ Ap
E)A_t’ (4)

a DwspDWS_ -
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Now, let us be interested in a more general case far ex- It is equivalent to extract a quantity, designatedpy:,
ceeding the case for whicB,,;=Dgarw, Where Dgagw  Which one may call a critical number of perimeter points
~4/3 [9]. Namely, we wish to consider a quite generalattained if the system would undergo a first order phase tran-

physical situation sition (or, specifically, a kind of pirroelectric effect could be
noticed, if one presumed that we are working with ferroelec-

2 tric 2D quasicrystals with some release of a transition heat,
Dws:a: ©) and when the system eventually arrives at one of the two

main transition states discontinuougly sharp peak in),

whered,, represents a dimension of the random Browniana”d if there is no chance to detect any intermediate sta

path that is either of pure Brownian nature, with=2 (i.e., ?'SCUSZ'On ﬁbO\)e In ther words, gne (I:Oclj"ld St‘?l_tﬁ_ that the
our singularity point on the nonequilibrium morphological ISt order phase transition cannot be ruled out. This can cer-

phase diagram that we are going to inyent the surfaces of tainly happen a’g a temperat_u(mzansmolr) point Tp,. Thus,
the objects are equivalent to fractional Brownian paths i€ @ove mentioned quantity looks like

superlinear, viz., extremely fagsay, turbulentd,,<2), or _ 1Dy 1

sublinear, i.e., anomalously slovd(>2) regimes, respec- Pmc=(2aDus) =7 a0 Duse[02), DWS#(lg')
tively; see[4,5] for some basic information.

Throughout the rest of the paper, we wish to explore, Let us state explicitly that the first morphological smash
according to what has been proposed8hand also by oth-  (¢—x) assigned to the evolving system is to carry it to-
ers[10,11], some analogy between equilibrium phase dia-wards a globalcontrary to infinitely many states of dynamic
grams, like that presented in, e.§12,6], and the nonequi- quasiequilibria which can be anticipated as looaduilib-
librium morphology diagrams offered for systems with therium point, assigned either to a solidifie@ollapsed or
shapes which are observed to change their characteristicshrunken or to a molten(expanded or extendgdtate. We
from being more or less orderéquasicircularto exposinga may name this type of catastrophe shock undercooling or
rather irregular(disorderd peripheral microstructur€DLA-  shock overheating, respectively, depending on the direction
like fractal, seaweed, or dendritic objedtee[10]) in the  of the driving force, e.g., undercooling.0,11. Following
case when the driving force of the process is slowing downihe rationale expressed above, however, we should like to
e.g., Hele-Shaw patterns, or systems manifesting the seepp,,. constant because global equilibrium characteristics
called dense-branching morpholggysee Ben-Jacob and have to be more or less balanced by a play of parameters
Garik in [8] for details. In particular, in their studies, the driving the system. There is also such a possibility in our
authors[8] propose to examine relationships between arjescription. It can be realized by noticing that if one ob-
“averaged” growth velocity(designated byr), i.e., the ve-  serves some changeln,s, caused by a change in the physi-
locity “weighted” according to the geometric-dynamical cochemical conditions of the process, then it must be an
characteristics of the interfadén our model, the relative adequaténatura) compensation of this effect by changiag
changes irp stand for the excess quantity, when comparedand vice versa, so that fd,,s# 1, one would assume that

with the changes of of the same type; see Eq®) and(7)  there exists a limiting constant value p#,
below], and the control parameter, just representing some

guantitative characteristics of the surface of the evolving ob- pr=(2aD,s Pws 1=const>0. (10
ject[in our case, it must be eith&, or d,,; see Eq(5)].
The velocitya will be derived in a way similar to that pro- ~ Let us mention that in this way we have, in some sense,
posed in[8], i.e., a=a,/a;, where the twa’s are defined ~Worked out the thermodynamic quantipy to be indepen-
as dent of an interplay betwedn,, s anda, i.e., of the dynamic
interface characteristics when compared with the expansion
ptAp i ~1Aj or contraction magnitude of Fhe cluster. Note., however, that
Wp="Ar 0 AT A (6) by doing that some constraints have been imposed on the

system; cf. Appendix A. Keeping this in mind, one can re-

Rearranging Eq(4) and usinga=ap/a; as well as re- write Eq.(7) as

calling Eg.(6), we obtain 2i 1
a(Dyg)= — —p =17 (11
N 1 . P ar !
T W T Yy 2aD,pPus -1 whereqr=p/pr stands for a kinetic-thermodynamical quo-

tient. There exists another factor being rather of kinetic-
This way, we get a certain prerequisite of the morphologygeometrical nature. Let us denote it bg=2i/p [see Eq.
(dynamig phase diagramwx(D,,s) which can be drawn for (11)].
respective time intantsg,tq,t,, ... . The first thing that Now, we wish to introduce a nextopologica) simplifi-
must be noticed, however, is that looking at E, one sees cation of our description. It relies on considering exclusively
a possibility or even danger of some morphological catastrothe geometrical objects spanned on the nodes of the lattice
phe (escape ofx to «©). This can surely happen jsee Eq. that are of quasicircular forngsee discussion ih13]). In
(7), again consequence, we take into account such 2D objects which
are quasicircles of radius* u(¢) 8= v(¢$) 5%+ - - -, where
2aD,,pPws 1=1. (8) o, the perturbation amplitude, being usually very small when
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compared withr, and u, v are continuous perturbing func- IV. POSTULATE OF SYNCHRONIZED EVOLUTION
tions of angular argumenp; cf. [17,18. DYNAMICS: EMERGENCE OF A BOSE-EINSTEIN
Next, let us simplify the system even more. This means, “MOLECULAR CONDENSATE”

let us assume that the evolving quasicircular object is of . . . .
. . In this section, we propose another very interesting and
constant density. Under such an assumption, the constan;1

; ; : sically motivated simplification to be built into our ap-
number density of internal points of the cluster, denoted b)P y
pi, is given byi/zr? while the constant number density of proach. Namely, we postulate thaf., Egs.(10) and (13)]

perimeter points of the clusteg,,, can be written ap/27r. Pr andpg can take on a common valy, namely,

Using these trivial arguments, one can write explicitly P.=pr="Pe (16)

qGEﬂzﬂ, (120 Which results inq=qgr=qg (let us believe that such q
P Pe exist9. This can be called the assumptitor postulate of
the synchronized dynamics, which means that the kinetic de-
scription proposed has reached a kind of thermodynamic-
prpz geometricalconsensuslt may happen when the process in
pg=—, (13 question proceeds gradually rath@dike in chemical reac-
Pi tions, for example, where the system quite frequefiti]

and is constantNotice that, for the sake of clarity and sim- 9€ts self-organizgdthan under some “hard” physical con-
plicity, we have assumed that the evolving object is quasicirditions. So, we claim here, in fact, that the process goes in a
cular, as e.g., in the case of Mullins-Sekerka or SaffmanSelf-organizedi.e., possibly efficientway. We see that it
Taylor instability concept§11] which have proved to be May be the'e_a3|est way for the system to evolve. It reflects
useful, at least, in the description of the crystal or fingered®!SO our opinion that the complex physical systems behave

growth) Using Eq.(13) we can rewrite our basic relation as duite “economically” when they follow their evolution un-
der the sometimes very cumbersome influence of physico-

do chemical factors causing certain changes in the system be-
@(Dys)= —p5—— (14)  havior, i.e., at the vicinity of a critical parameter poy ;
Grws -1 cf. Egs.(16) and (10). In other words, by postulating Eq.
(16), we assume that the system near criticality organizes
itself to pass smoothly through the “landscape” of dynamic
quasiequilibria, which is very characteristic of, e.g., biologi-
cal processefl9b|. Another rough but quite general inter-
é)retation may be proposed: the system probably “sees” that
it is (energetically better for it to proceed in an evolutionary
rather than a revolutionary way.
Dys=1, (15) Assuming Eq.(16) (with all the consequences of doing
that) one gets immediately
which corresponds to a situation in which the interface “mo-
lecular condensate” vs surroundings is represented by the q
pure Brownian pati{a most disordered or “disorganized” a(Dys) = qPws I—1° (17)
casg. In this case, we have again to observe some escape of
a to «. This type of morphological crash we will rather  Let us notice that we have perhaps surprisingly gotten,
assign to the continuous phase transition concept, with ne.g., a formula that resembles very closely the Bose-Einstein
release of the transition heat, but with a certain appearance @BE) distribution of phonons in an insulat¢R0]. This is
strong microstructural disorder at the interface. This kind ofeven its generalization. Obviously, some applications of the
disorder may lead to a detection of some intermediate phas®ose-Einstein or Planck formula much exceed the case men-
which can be called the “tetratic” phaséppendix A), by a  tioned. It is more general. E.g., it concerns the superconduc-
certain verbal analogy with the well-known hexatic phasetivity (mostly of second typeas well. Generally speaking, it
mostly observed in melting phenomena realized in a trianguelescribes the behavior of some superfluid or superconducting
lar lattice. Notice that formul&l4) is the most general rela- condensates. Do we have also in our case behavior which
tion representing the morphological phase diagrams that weesembles, at least in part, a BE condensaf®g., an en-
offer in our present description, and that the jumpaeofo  semble of atoms oscillating around their equilibrium posi-
infinity may appear for either the first ordeD{ #1, but tions, and eventually spreading out or collapsing, as is ex-
with appearance op;) or the continuous, =1, exclu- pected in the case studied
sively) phase changes. In particular, it may throw more light Before really trying to answer this question let us proceed
on the classification of the transitions in all the systems unfurther in that field. Namely, utilizing Eq.16), let us make
dergoing diffusional growth, with nonvanishing surface use of the(discrete time-temperature equivalence principle
(line) tension effect{10,8,17,18. It would also be of use mentioned in Sec. Il. In other words, let us “measum@in
when studying the polymorphic phase transformations irterms of discrete time instants or in terms of temperature
phospholipids[7,6,1], especially when some terminology values assigned to the subsequent states of dynamic
borrowed from physical metallurgy, like the martensitic or quasiequilibria. It can be done, e.g., for a finite number of
diffuse phase transitions, may ent&i. measurements, and when one states in a naive way that

where

Note thatqg, like g7, is also independent d,,; anda,
and that bothg’s are dynamidthey implicitly depend upon
time) as well as dimensionless variables.

At the end of this section, let us realize that another mor
phological catastrophe may appear, when looking at formul
(14), namely,
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q=e*" n=12...N (18) D,s<1, so that the argumentalso takes on positive values

) ] [20]. (It also means that there is, in fact, no reason to take
where e~2.71 stands for the Napier constant aNdis a  gpolute values of.)

natural number that can be interpreted as a last time or tem- Thys, we have arrived at a more or less consistent picture
perature quantity measuredo not forget thatj=p/p.). The  of the phase transition during the evolution process that we
+ sign preceding the exponent * is introduced here to propose to study in terms of the morphological phase dia-
distinguish between the two main growiriquite general  grama’(2). It represents a relation between an “averaged”
situations that we immediately recognize: the system eitheﬂg] and “thermally weighted”[see Eqgs(19) and (20)] ve-
collapsegshrinks, solidifies, or “coagulates’in the course locity ' of the evolution of a molecular cluster in a 2D
of time [ —" sign in the argument in Eq(18); Dy,s<1] or  giscrete space and the interfacial free energy extiassi-
expandggets molten or swollen; " sign in the argument  aply associated with a change of surface tengi®j), rep-
in Eq. (18); Dys>1]. [Note that in the contraction regime, resented by, realized during the phase transformation.
and when the time-tempel’ature equivalence principle is ful- The morpho|ogica| phase diagram shows that there are
filled [5], Eq. (18) stands for a Boltzmann energy teim. two evolving phases: an expandirigpecifically, molteh
There is also a certain case “in between,” i.e., when the(AES>O andD,,>1 or d,<2) and a collapsingsay, so-
evolution of the system is stopped or disturbed somehowjdified or “frozen”) (AE;<0 andD,¢<1 or d,>2); cf.
e.g., by extremal freezing or heating, or interfacial structuraEq_ (5). The important case “in between” corresponds to a
breakdown D,,s=1) assigned to the interfacial or surface “morphological crash” at the interfacksee Eq(15)], which
behavior of the evolving object. These situations COfreSpO“%athematicalIy means that (z) blows up(the main math-
to a blow up ofa mentioned above. Notice here that by ematical reason is thddys=1 or d,=2, which is equiva-
assuming Eq(18) the number of perimeter sitgsis mea- |ent to the fact that the interface growing object—external
sured either as a multiple @f;, which corresponds to some medium is a pure Brownian trajectoryThis scenario en-
expansion of the agglomerate, or as a fractiopof which  aples us also to recall some rationale about the presence of
indicates the contraction or shrinkage. Combining E@#%)  the intermediate phagétetratic” phase [21]. Thus, the ex-
and(18), and multiplying both sides of the resulting equationstence of a discontinuitgpole) at D=1 in a’(z) makes a
by "', one can accurately arrive at the BE formitd.  choice for interpreting it in terms of KT order-disorder phase
[20], Chap. 6 019]) change; see Appendix A for further discussion. If one defines
a characteristic interface length or a correlation length,éay
@' (Dws:N)= —15 }1 i, n=12,...N (19 asezz*_l (but taken also per unit interface lengtthen one
e=Ows™ D7 may notice tha® vanishes, just atl,,=2 at some transition
] ) . . temperature point. This again resembles quite apparently the
where, instead ofr, an exponentially weighted quantity’  scenario usually assigned to KT phase transitidi&} (best
=ae’" (the prime means that this quantity is primed, notknown for 2D Coulomb lattice gas, where the transition be-
differentiated was introduced. For a more convenient analy-tween an “ordered” state of “frozen dipoles” and a plasma
sis let us rewrite Eq(19) in a compact as well as more djisordered state is noticedespecially for systems such as
readable form, namely, rigid vs rough interfaces in a 2D spak22]. Such transitions
are classified to be of infinite order according to the Ehren-
(20) fest scheme; sefel6] for details. Moreover, let us note that
the analytical description of the transformation process is
given, when the synchronized dynamics is presumed, by the
wherez *=+AE/Ey, and AEs=D,s—1 as well asE;r  BE relation (see Fig. 6.2 in Chap. 6 d®0]), much more
=n (n’s indicate the subsequent time instants of dynamigyronounced in the expansion than in the contraction (fase
equilibria taken at corresponding temperature valugbe  the latter,D,e[0,1), exclusively, or its generalization; cf.
first energetic termAEs, corresponds to a change of the Egs.(14) and (16). The synchronized dynamics would be a
interfacial free energyrelated very much to the surface ten- Jandmark of self-organized criticalitisee, the beginning of

al(z):ewz—_l‘

sion) which is either released to the surroundirigth “ +”  the sectiop and would manifest some defense of the system
sign; the expansion caser taken from it(with “ —" sign;  against undergoing the phase transition of the first order.
the contraction cageBecause the time-temperature equiva-Under the assumption of relatively “lazy” dynamical behav-
lence principle is fulfilled, the second energetic tei,, ior, observed, e.g., ifordered spin glasses as well as in
corresponds to the Boltzmann thermal energy. biosystemgi.e., under some presence of constraints and hi-

A few remarks seem to be appropriate here. First, noterarchy of degrees of freedom, from slow to jd&t1,2,21,
that|z|>1, which means that for a small free energy changeone can arrive at the Vogel-Fulcher-Tammann characteris-
a'=z (for a givenn), i.e., a linear case appears, which istics, and its relations to the quantum ground state averaged
even the case of~1 [20]. If, in turn, |z|<1, we get a energy of the ensemble as a whole; see Appendix B.

nonlinear(of large free energy change’=e~ 7, also for a
givenn. V. CONCLUSIONS
Second, as was mentioned before, the expansion dynam- '
ics is taken with a plus signfAE;) and because db, In this study, a phenomenological approach to the poly-

>1 [4], in this casez remains positive. If, in turn, the con- morphic phase transition in complex systelia3], where the
traction (shrinkage dynamics is realized, the change of in- structure formation process takes place on a seed located
terfacial free energy is of opposite sign, but fortunately,somewhere in a square lattice, has been proposed. The main
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idea was to apply both the scaling argumentation as well asping” over an intermediate phase to eventually ending at the
planimetric Steinhaus rule, within some level of uncertainty liquid expanded state, along with increase of temperature,
and to postulate that the system passes, in principle, througres been reported(iii) as impressively illustrated by
infinitely many dynamic quasiequilibrium points, like in the Laggner, Kriechbaum, and co-work€ig|, the thermotropic
“long-tail” or dispersive kinetics concept in biophysics Or barotropic phospholipid phase transitions may result in a
[24,5]. The result is that a nonlinear realtionshify. (3); see ~ Multitude of polymorphic forms, such as, e.g., lamellae or
Sec. Il] has immediately been recovered, and by imposing dexagonal patterns, and there_ are some processes that con-
(discrete time dynamics on the system, one is able to arriveOrm to the scenario sketched in the paper, like the lamellar-
at an evolution equatiofdifference scheme; cf. E¢4)] that ~ (©-inverse hexagonaH,) transition or even a pretransition
includes inherently a curvature change tdit8] very char- N phosphatldyl_c_hollnes, where, in the course of fcemperature
acteristic of the growing phenomena, like crystallizationchange, a positional order of macromolecules is gradually
(also, single crystalline domains in lipid monolayégs]), lost (an orllentatlongl order is at least shghtjy pertu_rbeghd
solidification (faced 2D quasicrystal,18]), emergence of Where an intermediate order-disorder z¢wéth its disclina-
bubbles and vesicles and microdomain grofiith,2,21, for-  tion lines emerges during the process; aie) Gruner[25]
mation of biomembraneénterfaces [9,25), etc. It is worth and _others{6] also pointed out some interesting apprqaches
stating here explicitly that the description offered is based o/@nd ideas, mostly related to the concept of the curvaiore
utilizing the random walk concept, which has proved to pethe spirit of Helfrich[6]) of model biomembranes; there, one
useful in this subjeck12,9,4,3. considers the normal micellar-bilayer-inverse micellar inter-
The procedure for the morphological phase diagram inPassage as a good candidate c_onforming to th_e expansion
vented in Sec. Ill apparently shows that the kinetics of thehead groups outvv_ar}jss_contragtlor(h_eziq groups inwardis
growing process can only very crudely be interpretsee phase transformatmn, W|.th the “tetratic” intermedidtesad
Binney et al. [16], Chap. 1 as that of first ordefsee Eq. 9roups in a planephase in between.
(10); the discontinuity ap; as well as some common expec- _ Listing the above examples, we may firmly say that there
tation that the transition heat is released suggest doifig sdS Nere a place for BE statistics as a tool for describing the
like that of diffusional growth: cf.[10], and references evolution process in te_rms of the_ morphological d!agram that
therein. But we see a more subtle and self-consistent intelY® Propose. It is so, indeed, since the BE statistics is the
pretation of the transition process that we have studieddu@ntum statistics, and specifically, the velocity[compare
Namely, it resembles very much order-disorder phase transEdS: (14), (20), and(B4) in Appendix B| emerges as a con-
tions of KT type(see abovk e.g., those for rigidordereg ~ S€duence of a difference of the two energetic contributions,
vs rough (disordered interfaces’in two-dimensionaldis- i.e., one related to the thermal excitations of the cluster’s

cretd spacd22]. The characteristiéor correlation interface ~ Molecules, and another one, which is the averaged energy of
length 6, inversely proportional ta (see Sec. IV, vanishes the quantum ground states; cf. Appendix B. In other words,

right at the point of disorder picked up Bt,s=1, or equiva- the fundar_n_e_ntal “engine™ of the process is a diff“erence be-
lently, d,,= 2. tween activities of the thermal phonons of the “molecular

To be more specific, and for convincing the reader of thecondensate,” associated somehow with oscillations of indi-
’ idual molecules, and the dislocational phonons “stuck” to

usefulness of our approach, a few examples have been ju I~
taposed below. These af® as reported by Ben-Jacob and E € gro%psf ck)‘f moltcaicules, cofnstltgn)g (str;;c(tura;l de;ects
21,26,27 of the condensate; cf. Eq&4), (B5), (A5), an
co-workers[ 8], mostly for Hele-Shaw patterrid 8], and b e i ’ . ' ’
8] y D 48] y (A6) in Appendixes A and B, for compariso(By the way,

Brener, Miller-Krumbhaar, and co-workefd 0], there exist h . ) lati b he density of
very complex dense-branching morphologi@BM) that, note that some quite strict relations between the density o
states of phonons in solid crystals, and the anomalous ran-

under nonequilibrium growth conditions, produce objects . i L )
with ordered shapes, and the accompanying interfacial paf10m walk concept, given by a walk visiting d'St'r.'Ct sites .Of
tern formation process includes certain selection rules; the crystal, which is a key feature of the dispersive kinetics,
same was confirmed ifL0], where some morphology dia- S€€ Ptonka 5], have been presented, e.g., by Bunde in

grams for diffusional growtj17] have been sketched, and [18]_') Moreover, a selection mechanism _naturally operates
where, as a result of interplay between the driving faree ~ 9Uring the transition procesgee Appendices A and)B

dercooling and the surface anisotropy, a variety of mor- since the dislocationéviz., disclination pairs, characterized

phologies, from, e.g , compact seaweed, via some intermedfy their Frank index[21,26) as well as the quantum

ate fractal dendritic to compact dendritic have been obtainef 12ncK time scale effects do enter. Thus, by making use of
s observation, and realizing the elementary driving force

(yet, the processes have been preferentially assigned to t . ) :
first order phase transition processes, though a chaotic r Eq (}‘34) In A_F?,pe”F"X B] of t_he process, under the disper-
gime has also been mentiondd0J; (i) comparing to(i),  SIv& (‘long-tail”) kinetic regime[24], we may attempt to
similar patterns have been obtained, and analogous scenarfgicidate various morphologies mentioned above. .
have been drawn by Mwvald and co-worker§23] for am- _ Fln_ally, Iet_us underscore that it is not the first physical
phiphilic monolayergwith plenty of structural, e.g., fractal situation[3,4] in V\_’h'Ch the random walk concept may prove
forms thereif, Ben-Jacob and co-workef8], and Mat- useful, fand_ that it provides some reasonable argumentation
sushita and co-workeréhey also deliberated about some fOF €lucidating complex phenomena.

application of the random walk concegdbr bacteria, also
Nittmann and co-worker§l1] for 2D myristic acid mono-
layers, where a passage with characteristic surface develop- A few ideas related to this study have been presented at
ment, commencing from a liquid condensed phase, “skipthe XI Marian Smoluchowski Symposium on Statistical
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brane. If, in turn, one defined a coherence length of the sys-
APPENDIX A: LANDMARKS OF THE CONTRACTION tem, x, as «x1/a, and wished to look after a critical
VS EXPANSION KOSTERLITZ-THOULESS-LIKE exponent v  of the transition process, v
PHASE TRANSITION =In(1/p.)/In(dD,/dx) at k.= 1/a. and forp.—, one ob-

tains at once some striking loss of coherence because.

It was noticed at the beginning of Sec. Il that for a close-gpyigusly, one must be aware of the very crudeness of the
to-equilibrium case one provides approximation offered here.

op

-1
5i DyyspPws™1— E) , (A1) 2. Topological defects’ mediated transition:

Similarity to a crystal’s disclination approach for nematics
due to Landau and Lifshitz

where dp and i stand for very small departures pfandi

from the corresponding equilibrium valugNote that the If one cares about mechanical singularities that support
right-hand side of Eq(A1) depends exclusively upon one of KT transitions well[16,21], one can notice that E¢AL) is
two main dynamic variables, that means, upenvhich will exactly of the form of that used by Landau and Lifshitz to

also be helpful for specifying the transition as being medi-describe an effect of homogeneous disclination for nematics
ated by a disclination lin¢26].] After applying a boundary [26] [see Eq(37.2 in the seminal book of Landau and Lif-
condition [16], i.e., dp/si=1 (approximately around p shitz, and the analysis thereaftefransforming the results
=p, to Eq.(A1), wherep, [recall Eq.(16)] will provide the ~ presented if26] to our language, we should notice that here
renormalizatior(scale magnificatiorfactor, and after rewrit- @ “configurational disorder” ofp and i points or some
ing the resulting equation in a logarithmic form, one getscrowding(a loss of positional and a perturbation of orienta-
[see Eq.(3), agair tional order$ of the internal and mostly peripheral points
will be responsible for a change of the disclinatigtrank
rank m. (Recall that ifm=0, i.e., the index vanishes, the
structure of the crystal is not unperturbed mechanigaliy-
der the asumption that the total number of points in the crys-
Even a very crude analysis of EA2) may lead to a tal, j=i+p, changes periodically according to a ryfg],
certain number of physically interesting effects, like a simplelike j(i +p¢)=]j(i) +2p:Dys, One provides
analytical demonstration of the presence of some “tetratic”
(intermediat¢ phase, and disappearance of the coherence
length, or even certain indications of a topological defects’
mediated transition. Since necessary details can be found

elsewherd[16,21,26, it will be shown below in a sketchy which would mean that the disclinations were generated
way. mostly at the periphery of our 2D crystal, and that they grew

or shrank as a result of some competition between the
expansion/contraction magnitude, givendgnd the “renor-
malization factor,” represented Ly, ; cf. Sec. IV. One can
also explicitly write down that

3
(Dyws—1)Inpe+In DWS—Ingzo. (A2)

m=1+

D 1 1 o
apl"” —5) , (AS)

1. Simplified D,,s renormalization: Existence of a “tetratic”
phase and disappearance of the coherence length

After making use of Taylor expansion for Iy, up to
third order, i.e., ID,s=D,,c— 1+ 3(D,,s—1)? sinceD,,s may In[(m+1)/2a(m—1)]
also be greater than one, one physically interesting solution Dys=1+ Inp : (A6)
to Eq. (A2) has to be recast, namely, ¢

Note that by comparing EqA6) with Eq. (A4) the linear
Dus=V1+Indc—Inp, (A3)  approximation mentioned above also provideas a func-
tion of mandp.. For completeness, it should be stated that
m can be either positive or negative, and cannot take any real
value, but the multiples of 1/2, or must be an inte[@®8§]. In
hat sense, the “spectrum” dD,, is definitely not a con-
tinuous spectrum. This way, we agree with another con-
straint of the transition proce$s].

[d.=p.(3/2a)?], which, after linearizing the square root in
Eqg. (A3) (let us call it the linear approximation, designated
by D!Ns; it may be more suitable for the expansion cas
rather, unless some adequate compensatiod,dy p. is
provided, which is going to favor the contraction case, in
turn) reads

vz APPENDIX B: HARMONIC APPROXIMATION
Dl=1+In——. (A4) TO THE THERMAL ACTIVATION OF THE
Pe “MOLECULAR CONDENSATE"—QUANTUM EFFECT

. . . AND VOGEL-FULCHER-TAMMANN BEHAVIOR
The critical pointD,,q=1 corresponds to a criticad,

=3/2p. which both mathematicallfhexagonal shift as The class of processes that we are going to describe here
well as physically] 7] means that one can “feel” the pres- is undoubtedly a type of process that is driven by a differ-
ence of the “tetratic”(“hexatic”) phase. E.g., after Laggner ence between some macroscopic and microscopic fields. As
et al.[7], if the first (Bragg [1,0] dg spacing were equal to pointed out by Schck [27], the contribution of the macro-



1260 A. GADOMSKI PRE 60

scopic field is often equivalent to thermal activatif®6]  where, as before, the+" sign corresponds to the expansion
[given by a thermal energy contributiefw,n), n stands for  case, while the “-" sign represents the contraction case. It
the temperature hefef the ensemble, which is important for is worth comparing Eq(A6) with Eq. (B5) to really antici-
the high temperature limit of the process, whereas near thpate the quantum contribution to the process under study. Let
low temperature limit of the clustef‘molecular conden- us bear in mind that the “tetratic” case &,,=1 occurs
sate”) formation, one may expect the quantum effects, at avhen eithero=0 (a completely “frozen,” i.e., unrealistic
first approximation given, in the semiclassical approach, bycasg or the “quantal” timetq, being of order of the Planck
the averaged energy of the ground states,=(h/  constant, is sufficiently small. Since the latter is very well
2m)(w/2) (h represents the Planck constant, andavill be  fulfilled, one can try to conclude that the emergence of the
specified beloy to be of prior importanc§27,26,18. “tetratic” phase is mostly caused by the quantum contribu-

Assuming that the quantum contribution may ed®r],  tion, which is true in the low temperature lini¢f. [21,16],
there is, in our opinion, a place for taking into considerationand references thergirthat means, fob,,<1.

the following natural redefinitiongcf. Egs. (11) and (12)], Moreover, it is interesting to report that for the low tem-
namely, perature limit, by comparingr andg¢ [see Eqs(B1) and
o (B2)], one easily recovers the well-known Vogel-Fulcher-
ar=e"", (BL)  Tammann[5,28 relaxation timen, for a partly (at least
h disordered system, simply by noticing that
qe—zww, (B2) w:woe—lln, (B6)

wheren is the temperaturétime) variable frequently men- where r,=w !, and wy=(h/27) *. This means that this
tioned above(recall the time-temperature equivalence prin-sjowly varying anomalous relaxation behavior is mostly
ciple, cf.[5]), andw stands for the averaged frequency of themanifested in the low temperature limithe contraction
ensemble taken as a set of harmonic oscillators; cf. Sec. llgase. In particular, it would be a case of the relaxor high
Notice that, by introducing a dissociation energy term, soméerroelectric films, in which this behavior is observed, being,
anharmonic contribution is also possifj7]. The redefini-  for example, responsible for a “diffuse” phase transition,
tions (B1) and (B2 ) enable us to present E(L4) (see, Sec. where there is a nearly continuous spectrum of transition

IV for comparison as follows: points, as in our situation, where a multitude of dynamic
h/2 guasiequilibria is presenf8].
(h/2m) o (B3) Let us also state clearly that the oscillating part of the

o= _+(—_ﬂ_,
| total energy of the molecular ensemblg,., related to the

. . . . attraction potential of the disclinatiof$6], is quantizedsee
which straightforwardly implie$27] that « is given by the  £qq (aAg) and (B5), and realize the contribution of Frank
difference between the two types of energetic contributiong,ndex m], namely

mentioned before, namely,
In[(m+1)/2a(m—1)]
In p? '

a=¢e(w,n)—€q, (B4) E. .=+

osc

(B7)

i.e., some elementary flux-fordd.4] relation is recovered.

Moreover, it is easy to evaluate the wdknveloping ling@  From Eq.(B7) it clearly follows that the quantization &,
dimensionD,, to be is assured bym [26], whereasa [see Egs.(1)—(3) again
accounts for whether we are near the contraction regime or
rather beyond it. Note that &t,.= 1 (“tetratic” phase), E

h
Dys= 1iﬁw’ (B5) gets a singularity, because=0.
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