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We study an integrable discretization of the nonlinear Sdinger equationNLS) under the effects of
damping and periodic driving, from the point of view of spatially localized solutions oscillating in time with
the driver’s frequency. We locate the equilibrium states of the discret28il.S) system in the plane of its
dissipationI" and forcing amplitudeH parameters and use a shooting algorithm to construct the desired
solutions (1) = ¢,, exp(t) as homoclinic orbits of a four-dimensional symplectic map in the complex
bn,dn+1 SPace, for—o<n<oo, We derive, in thd”=0 case, closed form expressions for two fundamental
such solutions having a single humpring, , andy,, , and determine analytically their threshold of existence
in the (I',H) plane using Mel'nikov’s theory. Then, we demonstrate numerically that above this threshold a
remarkable variety of multihump structures appear, whose complexity in terms of their spatial extrema grows
with increasingH. All these solutions are numerically found to be unstable in time, excepffarwhich is
seen to be stable over a certain region in theH) plane. In the continuum limit our results are in close
agreement with recent studies on the NLS equation. From a more general perspective, we view these DNLS
multihump solutions as homoclinic orbits of a higher-dimensional map thereby providing a possible mecha-
nism for explaining the occurrence of similar structures called disdratéti-) breathers found in a wide
variety of one-dimensional nonlinear lattic§$1063-651X%98)10511-]

PACS numbgs): 02.30.Jr, 02.60.Lj, 52.35.Sb, 52.35.Mw

[. INTRODUCTION In the present paper we consider a spatially discretized
version of the periodically driven damped nonlinear Sehro
Integrable nonlinear evolution equations and theirdinger equatioDNLS)
spatially discretized counterparts, integrable nonlinear
differential-difference equations, are of great interest in

many fields of physics. In fact, their applicability becomes o d Uni1t a1 )

even broader as soon as nonintegrable perturbations are con- 16 o Ynt 2 (1+[¢l®)

sidered. In particular, the sine-Gordon equation and its small

amplitude limit, the nonlinear Schiinger equatioriNLS) in =(1-iy)yp—hexpit), neZ (1)

the presence of damping and periodic driving have been ex-

tensively studied since they are related to such systems as

long Josephson junctions, easy-axis ferromagnets, rf-driveand address the question of how the existence chart of its

plasmas, and nonlinear optits—5]. solitonlike solutions is affected by discretization. By a soli-
As first realized in an adiabatic inverse scattering apionlike solution of the DNLS we mean any localized solution

proach by Kaup and Newell6], the periodically driven that is asymptotically flat in the discretized space variable

damped NLS admits two coexisting soliton solutions, if theand oscillates periodically in time. In fact, in accordance

damping and driving terms are small enough. The lowewith recent terminology we shall refer to these solutions as

driving threshold for the existence of these solutions wadreathers and multibreathdrs2,13.

found to be a linear function of the damping constant. One of To construct(multi)breathers, we eliminate the time de-

these solutions, called the bright soliton, is always unstablg@endence of the DNLS systefi) and write the stationary

in time, whereas the dark soliton is stable for certain combipart of the equations as a four-dimensioféD) mapping,

nations of damping and driving. which we study in Sec. Il by means of fixed point analysis
Recently, Barashenkov and Smirn&] extended the ex- and Mel'nikov theory[14—-16. The integrable part of the

istence and stability chart for these NLS solitons to largemmapping corresponds to the Ablowitz-Ladik discretized ver-

parameter values. Moreover, in a subsequent p@jérwas  sion of the NLS[17].

demonstrated that these single-hump solutions can give rise Flat solutions of the DNLS correspond to fixed points of

to multihump structures in certain regions of the parametethe map, whereas breather solutions approach a fixed point

plane. The possibility that NLS solitons could form bound asymptotically agn|—cc. In the language of nonlinear map-

states had been predicted earlier using a variational argumepings these orbits are called homoclinic or heteroclinic, de-

[9,10] and adiabatic inverse scattering thepi,11]. pending on whether their asymptotic valuesiat—« and at
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n=co coincide or not. In this paper we do not consider het- (x t)=kW (kx,k2), Q=k2Q, T=Kk2I, H=k3H.
eroclinic orbits and formulate the following existence crite- (3)
rion:
A necessary condition for the existence of breather soluwhich leaves Eq(2) unchanged. We follow heff&] and fix
tions is that the 4D mapping obtained by eliminating the timeQ)=1.
dependence in Eql) possesses a hyperbolic fixed point  The Ablowitz-Ladik discretized version of the NLS is ob-
equipped with a 2D stable and a 2D unstable manifold. If thgained by replacing the dispersive term and the nonlinear
intersection of these manifolds is not empty, then the conditerm in Eqg.(2) with their symmetric discretizations on an
tion is also sufficient. infinite lattice[17]. Denoting byA the distance between sub-
Using this criterion, we obtain the domain of DNLS sequent lattice points artf,=W¥(nA) these terms become
breathers in the plane of forcing versus damping parameters.

More precisely, in Sec. Il A, the upper boundary of this re- Vo1tV 12V, )

gion is derived from a stability analysis of all fixed point of A2 HW A (Wt W) (4)

the DNLS. The line defining this boundary coincides, up to

scaling, with the line obtained ifv] for the NLS. For the purpose of numerical calculations and comparison

The lower boundary is obtained in Sec. Il B from the with similar results in the literature we work throughout this
tangential intersection of the invariant manifolds of a hyper-paper with the lattice spaciny=1 unless stated otherwise.

bolic fixed point. Using a Mel'nikov approach proposed in gxpressing now the NL®) with (4) in the rescaled quanti-
[15] we derive a vector whose zeros correspond to transveligg

sal intersections of the invariant manifolds. As we have dem-
onstrated in an application of this approach to a system of  ¢,=AV¥,, §=3A2 y=1A2T, h=31A°H (5
coupled DNLS equationgl6], any Mel'nikov zero is suffi-
cient to approximately construct a homoclinic solution. Tan-we arrive at the DNLS systerfl). With the ansatzj,(t)
gential intersection of the manifolds yields the lower exis-= ¢n€" (¢, time independentve obtain stationary solutions
tence threshold. Thus, we are able to extend the result aff this system from the map
Kaup and Newell6], obtained for the NLS, by providing
correction terms that are purely due to the discretization. Pni1t éna (1+]¢ |2):( —iy)¢,—h, neZ (6)
In Sec. lll, single-hump structurgsr breathersare dis- 2 n LY@~ T <
cussed in some detail. For the undamped caseythand
¢~ solutions are given analytically and are shown to be marWith =1+ 4. These solutions may be stable or unstable in
ginally stable. For finitey>0 we describe these solutions time (see Sec. Il
numerically under variation of damping and driving param- It is useful to remark that the transformatiof® and (5)
eters. are by no means equivalent, in spite of their formal similar-
In Sec. IV, we employ a shooting algorithm to locate ity. In the first transformation the driving frequency is elimi-
multibreather solutions. Our method exploits the smoothnesgated by rescaling all time and space parameters. In the sec-
of the unstabldstablé manifold along the outgoingncom-  ond, the DNLS is brought into standard form by rescaling the
ing) direction. The increasingly complex structure of theseeémaining parameters once more, yielding an extra freedom
solutions can be labeled by the number of extrema of theiflue to discretization. Conversely, in order to take the con-
spatial oscillations. Defining an order parameter by the surinuum limit of Eq. (6) one has to let$,,6,y,h—0 and
of | ¢,|2, we varyh and observe certain bifurcation phenom- Simultaneously keep the following ratios fixed:
ena involving a single solution or pairs of solutions and oc-
curring at turning points of the order parameter.
Finally, in Sec. V, we summarize our results and propose
that multibreathers can be explained geometrically in terms
of intersections of higher order lobes of the invariant mani- We are now going to analyze the stationary DNI6Sfor

2y I3

=const, F = m =const. @)

s 1
y T

folds of an unstable fixed point. complex ¢, in terms of a 4D mapping
Il. THE PERIODICALLY DRIVEN AND DAMPED DNLS = _[On = = Re(¢n)
' Zn+1—F(Zn)+G(Zn)a Zn= Pn)’ On=Pn+1= |m(¢ )
n n
The NLS equation, including effects of damping and pe- (8)
riodic driving, is given in continuous time and space vari-
ables by the partial differential equatigpde with
W+ W, +2| V|2 =—iT¥—He ™, (2) ot 2u On
F(Zn) = " qﬁ"' 1 1
In agreement with7] we assume that both the damping co- Un
efficientI” and the driving amplitudél are real and positive. (9)

(An extra phase factor il may always be removed by a ya, X €, — hex
translation in time. As was realized i17,18,19, one of the s we
three parameter®, H, I can be scaled out using the trans- G(zy)= Qﬁ+ 1 '
formation 0
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el being the unit vector normal to the Comp|¢% p|ane and TABLE l. EXiSFe.nce of fixed pOintSi , i:0,1,2,3 in intervals of
exe the unit vector in the real direction. One verifies easilyd@mpingy and drivingh.
that Eq.(8) is volume preserving even if,h#0. Thus, the

damping termi vy, of the pde(1) plays the role of a con- 0<y<dlv3 AV3<y
servative perturbation in the mapping. h,<h r<r_
Furthermore, in the unperturbed case<0) the mapping h_<h<h. F<r_ <r,<r,<rg o
is symplectic and completely integraljEs]. The integrabil- h<h_ Fo<fs
ity follows from the two analytic invariants
_ 2 2
11(z0) = (1+0p)(1+Pr) = 2400 Pn, (108 grouped in pairs with their product being unity for each pair
B [21]. Consequently, DNLS breathers can emerge only from
12(20) = (A0 X Pn) - €, - (0D gych fixed points where all eigenvalues of the 4D map lin-

nearized about the fixed point are off the unit circle; i.e., there

exist two stable and two unstable modésdeed it is not

gufﬁcient to have only one pair of eigenvalues hyperbolic

v,h#0. In the case of zero damping we find that one integraf"‘nfj the Oth‘?f e!liptic, since_ this would lead to “r“hef asymp-

is conserved in the modified form totically oscillating homoclinic or to heteroclinic solutions
that have been excluded from the present treatment.

11(z) = (1492 (1+p> —2uGn-Prn—2N(An+ Pr)€re. (1) We first identify all fixed points and consider their stabil-
ity under iterations of the mapping. Every such fixed point of

It is worth noting that in the completely integrable caseEg. (8) represents a flat solution of the stationary DNI6%

(G=0), all solutions of this mapping can be parametrized indefined by

terms of Jacobi elliptic functionig0]. For the purpose of this :

paper, however, we shall be concerned only with homoclinic _ _ 0 o

solutions. Sincex=1+ 6>1, they=h=0 system(8) has a $n= 1= e =p (07 rtiy) (15)

saddle point at the origin with a 2D unstaklend a 2D

stable manifold, on which the solutions are given by a two for all n. The squared modulusof this solution satisfies the

parameter family of homoclinic orbits. The union of thesecubic equation

solutions(also calledhomoclinic connectionis an essential

and the symplectic structure from the invariant Poisso

ingredient of the Mel'nikov analysis carried out in Sec. |l B P(r)=r[(r—8)*+~*]-h*=0 (16)
below. The homoclinic connection is given &y=(q,,p,) o
with and the phasé is given by

A - S.(7)cos 6 Y

Qn(7,60) = Pn+1(7, Q)Zi( S,(7)sin 6 (12 tan 6= S—r- (17
where Both equations are exact rescaledth Eq. (5)] versions of

. 1 the corresponding equations for the NLS;[¢f]. Depending

Sn(7)=sinhw seclinw+7), w=cosh'® u, O<7<W. e damping and driving parameters, Etp) may have
(13 either one real solution, (for v> 8/v3) or three real solu-

For the derivation of Eq(12), the parametrizing variables ~ tions (for 0<y<é/v3). In the latter case the three ampli-

and 0 play the role of time in a Hamiltonian flow with the tudesr;,i=1,2,3, are separated from one another by the

integrals (10) being the corresponding Hamilton functions €xtremar.. of the polynomialP(r) in Eq. (16) such that

(see Appendix A In fact, 7 can be thought of as an interpo- F1<F-<r<r.<rg with

lating variable between the flow and successive iterations of 1

the map. The corresponding interpolation penog almost _ [ a2

equal to the lattice constant singe=cosh {(1+A%2)~A =g sy Vo =37, (18

—A3%/24. Itis also related to the largest eigenvalueof the

origin by Furthermore, these fixed points exist only in the driving re-

gimeh_<h<h, with
w=cosh' ! u=In(u+Vu?—1)=In \". (14 ’

6
_ 7
A. Flat solutions and the upper boundary for breathers he(y)= 9 V8%£ (62— 3923+ 9592 (19

By virtue of Egs.(8) and(9) the real and imaginary parts
of any stationary solution of the DNLS are given by the firstAt either boundary of this interval two of the fixed points
two components of the phase vectorin particular, as ex- annihilate in a saddle node bifurcation, (andr, ath, ,r,
plained in Sec. |, breather solutions can be identified withandrs ath_). All this is summarized in Table I.
orbits that asymptotically go to a constant value, emerging The stability of each fixed point depends crucially on the
from and ending at a fixed point. InN2dimensional sym- sign of the polynomial in Eq(16) evaluated at=1y. It is
plectic mappings the eigenvalues of fixed points can beeasily seen that this sign changes wievaries across
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FIG. 1. Breather phase diagram in NLS parametdrisving H vs dampingl’) with lattice constantfA=0.2. (a) Existence domain of
breathergshadegl (b) Fixed point existence and stability regioheertical axis rescaled withi* (I')]. Shades as follows: 1 elliptic point
(white), 1 hyperbolic pointlight gray), 1 elliptic, 1 hyperbolic, and 1 mixed poitgray), 2 elliptic points and 1 mixed poirtblack. The
regions, which are shown here only near the the critical poitl/2, extend to the rest of the phase diagram show@)in

h* (y)=127y3— 2872+ 62v. (20) the NLS, after rescaling with the lattice spacing. The lower
existence boundary, on the other hand, differs somewhat

The stability analysis for each fixed point in its respectivefrom the continuous case, as explained in the next subsec-
existence regime is carried out in Appendix B. We distin-tion.
guish several regions of the plaherersusy, which must be
studied individually while the resulting phase diagram con-
tains five regions of qualitatively different behavior.

These regions are best observed in the neighborhood of As mentioned above, the stationary DNLS with damping
the pointy= 8/2,h=h*(y)=h,(¥), as shown in Fig. ().  and driving can be described using a 4D mappigyg (9).
For weak driving (light shadé we find one double- Since the solutions of the integrable pgrare known explic-
hyperbolic fixed point. It coincides with, for strong damp- itly, one can apply a Mel'nikov approach to derive condi-
ing y>4&/v3 and with r; otherwise. For strong driving tions that are necessary for the existence of homoclinic or-
(white) there exists one stable fixed point, given for strongPits. Thus, in order to treat the ter@ as a perturbation we
damping byr, and otherwise byrz(h>h.),r,;(h<h_). takeh and y small. Considering the scaling relati@b) this
Both fixed points persist in the darker region where they arénay also include the case of largleandl” provided that the
accompanied by a mixeghyperbolic-elliptio fixed pointr,. lattice constant is small enough.
The fourth region(black) is limited horizontally to the tiny More generally, one can develop a Mel'nikov analysis of
interval of moderate damping/2<y<&/v3 and vertically ~2N-dimensional mappings of the ty®) if the integrable
in betweenh, andh*. It does not contain a double hyper- termF has the following two properties: It possesses a hy-
bolic fixed point and here the points andr 5 are both stable  Perbolic fixed point with a homoclinitheteroclini¢ connec-
whereasr, remains of mixed type. Finally, for ultrastrong tion and this fixed point transforms smoothly @sncreases
driving h>2, there exists another region where the stabléVhile its stability properties remain unaffected. We then say
fixed point r5(r,) changes into an unstable elliptic- that the f|_xed point survives the perturbation. No restrictions
hyperbolic one not visible in Fig. (cf. Appendix B. need be imposed o8 apart from boundedness.

From the condition formulated in Sec. | we conclude that ©One then can construct a vector functibh called the

breathers can only exist in regions 1 and 3. Hence the uppéfi€!'nikov vector [15], which is related to the distance be-
boundary of the existence domain is tween the invariant manifolds of the hyperbolic point of the

nonintegrable composite mappifg- G. More precisely, the
hi(y), y=6/2 and h*(y), vy=6/2. (21) projections of these manifolds onto the homoclinic connec-
tion of the integrable mapping yield components oM, to
The global phase diagram is presented in Fig) In  lowest order in a small parameter proportional3o Trans-
which the shaded region denotes the domain of existence akrsal zeros oM correspond to homoclinic points which, in
breather solutions. In the regime of moderate dampify  our DNLS application, yield solitonlike solutio46]. Tan-
< y<8lV3 the functionsh* andh are graphically indistin- gential zeros, on the other hand, are obtained at critical pa-
guishable since their difference is less thah(5)3, with ~ rameter values where homoclinic orbits are cre&tecease
h,=h*. At the critical point y=&/2 the two functions to exi_s'b in a glo_bal _bifurcation. The general form of the
match and so do their first, second, and third derivatives witd1€!'nikov vector is given by{15]
respect toy. "
So far, our analysis of the upper branch of the existence — =(k) LG(5 —
domain coincides with that of Barashenkov and Smirnov for Mi(t) n;oo Gn+a(D)-G(AM), k=1.... K (22

B. Homoclinic tangency and lower boundary for breathers
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Z,e R?N being the separatrix solutions on the homoclinic It is interesting to note that the vanishing Mdf; for all y
connection ofF parametrized bye RN. K is the dimension ~andh may be related to the fact th&) M, is independent of
of the bounded subspace of the variational solutiong,of v and(b) the system possesses an integralyer0, i.e., Eq.
andq( is thekth independent solution of the adjoint varia- (11). This integral could, in principle, by used to reduce the

n . .
tional problem. These solutions are readily obtained from théD system(9) to a nonintegrable 2D map in the cage-0,

constants of motiom, via h#0. Furthermore, the identical vanishing b, implies
that under suitable conditions one may anticipate a one pa-
~§1k>(t)zvz| (Za(1)). (23 rameter family of zeros of the Mel'nikov vector, in contrast

to the case of two or more coupled DNLS syste(its))
SinceM is obtained from the first order variational equa- Where the zeros occur only at isolated points. .
tions of the perturbed mapping, the error in measuring dis- Let us now concentrate on the case of homoclinic tan-
tances between the invariant manifolds is quadratic in thgency. Following[15,16 the invariant manifolds intersect
size of the perturbatiors. Numerical calculations of ho- tangentially if and only if at some point$ = (7*,6*) on the
moclinic tangency carried out {r15] suggest that the size of homoclinic connection
the perturbation can be defined using a suitdbiaximum
norm. M(t*)=0, defdM(t*)/at]=0, (28)
Now, as shown in the previous subsection, the double .
hyperbolic fixed point, forG=0 located at the origin, sur- and an extra nondegeneracy condition holds on the second
vives the perturbation foy andh in the range21). Thus, in derivatives ofM. In our case, however, due to the fact that
this range we can apply the Mel'nikov theory developed inthe determinant of the Jacobian in E@8) vanishes, this
[15] to the 4D map of the periodically driven damped DNLS nondegeneracy condition is violated everywhere on the ho-

as follows. moclinic connection.
First we use Eq(23) to derive the adjoint variational ~ ON€ way to overcome this problem is to relax the tan-
solutions from the integral&10) yielding gency condition by requiring only that the partial derivatives

of M, vanish at some points*. This modified notion of
tangency is sufficient to obtain the threshold function
(249 hy(y), as shown below.
Note that for our mapping the tangency equations

PnXe

~(1)_2 an(1+ﬁﬁ)_ﬂﬁn ~(2)_
' e Xay)

no f)n(l""aﬁ)_/f*an .

whence the Mel'nikov vectof22) can be calculated using
Egs.(9), (12), (13), and(24). In particular, one finds that the
first component oM =(M,M,) vanishes identically:

M(t*)=0, JIM,(t*)/at=0 (29

are satisfies witl9* = = 7/2 and can be rewritten in terms of
7 using Eq.(26) as

. . . YOnX e —heg
M1=42) [ 2(1+E7) + o] qT H ;
n o *\_ "
=2=a(m)=5oa(™), (30
:47|2_2h; (Gn-17Gn+1)8Re=0, @9 where the choice of signs corresponds to the sigi*oand

q(r) is defined by
where we have used the mappit®) for y=h=0, setting
I,=0 on the homoclinic connectiofsince # is independent 2Sy(7)Sh1a(7)
of n). q(7)= 5S.(7)
The second Mel'nikov component is given by

(31)

For small lattice spacing\, implying w—0, the evalua-
Yan X €, —here tion of Eq.(30) is straightforward: Replacing the sums in Eq.

M,=2 q, X e ; ;
2 ; (dnxe) 21 (31) by integrals one finds
Sﬁ S, . . fw .
_ _ ; E S,(7)=~sinhw sechtdt= 7 sinhw, (323
=2 E 2h sin 02 =~ n
’4 S2+1 noSE+1 n=0 -

[’

:% ¥>, S:Si.1—hsin6>, S, (26) nzz_w Sn(7)Sh1(7)~sint? wf_m secht secfit+w)dt

in which we have made use of E(L3) and the following =2w sinhw. (32b

identity of the hyperbolic functions: With these estimates the tangency threshold below which no

2 coshw sechx=(1+ sinf? w sech x) ?é)é)ngglinic points exist follows from the first equality in Eq.
X [sectix—w)+sectix+w)],
2w

x,weR. 27) hind v)=— - (33)
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FIG. 2. Nodelines of the Mel'nikov componeM, over a unit cellre[—w/2w/2], de[—m,7]. (@ h=Avy, (b) h=A%/3. (¢
Mel’nikov ratio q(7), re[ —w,w]. Note thatq(r) depends very weakly om even for large discretizatiod, here A =1/2,w=cosh (1
+A%2)~A.

Next we consider the effects of discretization. For latticeSmirnov[7] show small deviations from Kaup and Newell's
spacings considerably larger than zero the infinite sums ifinear law[6], but not more than 10° even for large values
Eq. (31) cannot be calculated analytically. Also the subse-H andT".
quent application of the Poisson formula and residue theory, One can even show that our DNLS result gives the exact
by which other types of perturbed NLS equations are tracthreshold of the continuous NLS system: Taking in E3h)
table[20,14], fails here due to removable singularities. Thusthe continuum limitA—0 and arguing that the Mel'nikov
we restrict our discussion to specific valuesrof analysis in this case is accurate for gllh—0, the exact

From the fact that both sums in E¢81) arew periodic  validity of the linear law is verified even for large valus
and symmetric at the points=0 andr=w/2, it follows that andT.
they also have extrema at these points. More precisely, 0 is a Of course the question arises whether the corrections in
minimum andw/2 a maximum ofq(7). It is therefore rea- Eq. (35) are of any significance, since they have been ob-
sonable to assume that, as the driving increases and the seéained by a perturbative Mel’'nikov treatment. Noting, how-
ond Mel'nikov component26) decreasesM, will vanish  ever, that the Mel'nikov error is of second order in the per-
first at the point7* =0. Some numerical results concerning turbation, one sees immediately that Mel’'nikov inaccuracies
the zeros of the Mel'nikov vector that are obtained from thecaused by finite values af~ A2 enter only at fourth order in
relation ygq(7)=h sin @ and the ratiog(7) in the caseA A while those caused by~ A2 occur at sixth order. Conse-
=1/2 are presented in Fig. 2. Note that even for this rathequently, the secon¢even third order inA correction to the
large value ofA the variation inq(7) is very small. Using threshold(35) is purely due to the discretization.
the exponential decay of the sech function we evaluate the

infinite sums atr=0 replacing them by their partial sums lll. SINGLE-HUMP STRUCTURES (BREATHERS)

with |[n|<Nw. Typically with N=5 the remainder can be ] )

neglected. For sufficiently small values of q(0) can be A. Stationary solutions

expanded in powers af yielding the threshold value In the domain of existence of the DNLS solitons, defined

by Egs.(21) and (34), we find a pair of stationary single-
2 1, . hump solutions emerging from the flat background. On the
hin=y9(0)=— y| W+ z W'+ O(wW")|. (34 line y=0 they are real and have the exact form

bn =, (t=0)

In this way we recover the previous result for small spacings,

plus corrections of third order in. The inequalityh>hy,,

can be considered as a necessary condition for the existence =r| 1+
of breather solutions. Numerical calculations of breathers all

point to the fact that indeed for afi values larger thainy,,
and smaller thar, (h* for large damping such solutions
can be found.

2a
1+ /b coshn cosh ! k+r7)

., (36

wherer is the smallest root of Eq16), 7eR is a free pa-
rameter and

Now we are in a position to describe the effects of dis- 1+6—2r (3+8)(1—«)
cretization on the lower existence boundary. Equati®f K=—7  » as 2k—1=0)
expressed in the NLS parameters, cf. B5), gives K
2 b=1+ ° (37)
Hi=—T[1+3A%+0(A%)]. (35) -7 1+48(1+a)/(2a+3)”

In agreement with12,13 we shall call such single-hump
This result confirms and generalizes to second order thstructures breathers, owing to the fact that they are oscilla-
boundary given for the NLS by three independent perturbatory functions of time. Both are very similar to the corre-
tive methodg6,22,19. The numerical computations of the sponding breather solutions of the NI3], the three con-
lower existence boundary of the NLS by Barashenkov andtants in Eq(37) differ from their continuum values in such
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FIG. 3. Variation of¢~ along a path in thel{,H) plane.(a) Re(® ), (b) Im(¢"), (c) the path(dotted. In (c) the curvesHy,,, H_,
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a way that in the continuous limit approaches unity and
a,b—o, a/lb—1, in agreement withy,,=AW¥(nA). Simi-
larly, in the integrable limih=0 the sech solution is recov-
ered, with the difference that here=u anda,b—, a/b
# 1. The calculations leading to these constants are given
Appendix C.

The fact that the breather solutiof36) appear as one-
parameter families irris directly related to the existence of
an integrall , i.e., Eq.(11). As already mentioned earlier,

well localized and stays that way along the boundéigm 3

to 4). ¢* cannot be followed here, since it is indistinguish-
able from the fixed point. Decreasing the driving away from
the upper boundy* emerges again, and in approaching the
ithreshold the two solutiong™ and«™" tend to coincidgline

4 to 5. On the threshold line the real part of the solutions
vanishes exactly at the centan0) and remains small at

all other lattice sites. Here the phase angle between the real
and imaginary parts, taken at the breather’'s center, ap-

this integral may be used to reduce the stationary DNLS to @roaches the value/2 from above foryy* and from below
family of 2D mappings all displaying homoclinic chaos in for ¢, in agreement with the Mel'nikov variablé* at ho-
two dimensions. The pair of homoclinic orbits of each of moclinic tangency; compare Fig(@. The behavior sketched

these mappings is given by E(6) for particular values of
the parametet-.

above in approaching the threshold with both solutions being
nearly equal persists if we decrease the driving along a path

The behavior of these breathers as functions of the paranslightly above the threshol® to 6. When we finally switch
eters of the problem can be seen if we follow them “adia-off the damping at constart the difference between both
batically” along a path in the parameter plane. This is ac-solutions increases again until we reach the point 0 we

complished by starting with the analytical soluti86) with
7=0, somewhere on the ling=0 and adjusting it numeri-

cally ash andy are varied. In Fig. 3 this procedure is shown

for y~. Increasing the drivindy, i.e., moving from 0 to 1 in

started from.

B. Time evolution

Fig. 3,4~ becomes more pronounced as the minimum of its The problem of stability of the solution86) in time has
real part becomes deeper. Proceeding then away from tHeeen discussed in detail for the continuous sysf&nby

line y=0 (from 1 to 2 an imaginary part appears. Moving
towards the upper boundatfrom 2 to 3, the 4" breather

discretizing the damped driven NLS in a non-Ablowitz-
Ladik manner and formulating an eigenvalue problem for the

(not shown flattens out, becoming eventually equal to thediscretized version. The numerical solution of this linear

constant background &*. At the same timey~ remains

problem reveals that the bright solitob™ is always un-
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100 0 100 0

FIG. 4. Modulug #;, ()| of breather¢36) in time, forI'’=0. Upper row:H=0.05,(a) ", (b) . Lower row:H=0.25,(c) ¢, (d) #*.
A=0.2. Note the stability occurring at=100 in (c).

stable, whereas the dark solitéh™ is stable below a line . %

: . e U, 1 Ju—iythe,
H(I") with H,=0.08 asI'—0. This fact is interpreted as Jom= (pr)=— —————— Sum
follows: Below the lineH(I') the spectrum of the dark U i6 1+ ¢y | '
solution is bounded from the right by the valuelbimplying .
stability, whereas above, a single pair of eigenvalues ac- 1+ 5 5 39
quires a real part larger thdn, which makes the dark solu- N 2 (Gn+am* On-1m) [ (39)

tion unstable.

For the DNLS system investigated here the stability prop-
erties are qualitatively the same as in the NLS case in thwhered,  is the Kronecker delta, the asterisk denotes com-
sense that a similar stability threshdigi, of the dark so- ~ plex conjugation, and we have used the mapyibg
lution ¢~ appears to exist. In Fig. 4 we show numerical For y=0, the ¢ are real and the matrikdJ is a real
integrations for both solutiong36), which indicate that the almost symmetric matrix with real eigenvalues. Thus, the
times needed for break down due to numerical errors argpectrum of Eq(398) is located on the imaginary axis, mean-
enormous. At a value df corresponding t¢d =0.05 theyy*  ing that both the dark and the bright solutions are marginally
breather begins to deviate from its initial shapetat60  stable in time. It would be interesting to check from E2g)
while ¢~ remains stable for at leagt=500. Even atH that for y+ 0 there is indeed a stability threshdig in agree-
=0.25, which is close the upper existence boundary, the sgnent with the numerical result&ee Fig. 5 for a specific
lutions are numerically stable up te-100, corresponding to value of'=0.2).
20 000 iterations of the numerical time integration scheme. It is interesting to remark that the, breather can be

On the liney=0 it can be shown exactly that both solu- made stable by modifying the boundary conditions of the
tions are marginally stable. This is explained as follows: ReDNLS (1). Namely, enforcing at finite lattice sitas= =N
writing #,, (t)=u,(t)exp(t), the DNLS(1) becomes (typically N=50) the value of the flat solutiony,(t)
=Jrel!, the modulus of the bright soliton exhibits oscilla-
tions in time with a frequency that increases wtih yet
displaying always a single hump in the spatial direction; cf.
Fig. 6. Similar solutions, so-called whiskers, were discovered
whence the stability of the breathers is determined by theor the near integrable damped driven NLS under periodic
spectrum of the linearized flog=J¢ obtained from insert- boundary conditions and discussed in terms oftkhand
ing u,= ¢, + &, in Eq. (38), whereJ is the Jacobian matrix transformationg23]. They also occur in arrays of linearly
with matrix elements coupled optical fiber§24].

unJrl—i_unfl
2

i Su,+ (1+[u)=(n—iy)u,—h (38
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In our case, the numerical calculations show that then the previous section. A number of multihump structures,
whisker solutions disappear at sufficiently large valuedlof in particular, with two and three humps, could be found by
(e.g.,N=65 in the case under consideratiofihis might be = means of a variational method using combinations of single-
understood perhaps in terms of Poincaeeurrence times, hump solutions under an effective potential. In keeping with
which become very large for sufficiently larde or by quali- the terminology adopted in Sec. Ill, we shall call them multi-
tative changes in the structure of high order resonances neBfeathers.

the origin as the number of degrees of freedom increases. _ Numerical calculations performed on the damped driven
DNLS show that this system of equations possesses a great

IV. MULTIHUMP STRUCTURES (MULTIBREATHERS ) variety of multibr_eathers, exhibiting. different numbe_rs_ of
humps and obeying symmetry relations between individual

It was already observed (17,18] that the NLS allows for solutions. In view of the large number of these solutions at
other solutions beyond the single-hump structures discusseadmost any point in the existence domain, one would like to

a)

0.4

0.2

ittt
ittt
|||““‘|||\““|‘

T
i

50 -5%

FIG. 6. Modulus]|#; (t)| of whisker solutions found & =0. Initial wave ,(t=0)= ¢, . (a) H=0.05,(b) H=0.15. Flat background
enforced an=*=50.A=0.2.
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WS 1 1
T= o-— On=— 2 . 2
) 0 e min(p?, &) min(p?, 170)
ws X >, min(p2 &)min(p?, 7).
T o , n=n’
— (40)

Having choserg,= 5y<p?, this gives
/5

&

oo

2 *© 2
Ty D £a=Cy o by D (€M)

FIG. 7. Planar sketch of the 4D shooting algorithm. Lines rep- Eomo =y 9 &omo "M =0
resent 2D areas in phase space, areas represent 4D volumes.
p? exgd—A(n'—n")]
. . - ) ) ~Cq—— _ —A) (41)
classify them according to their increasing complexity. M0 1—exp )

It is beyond the scope of the present paper to give a com- . )
plete classification. We therefore restrict ourselves to deWhereA=0 is the sum of the real parts of two stable eigen-
scribe the numerical method employed for the constructiorf@lues of the fixed poinz.., n” is the first iterate for which
of solutions and the symmetry classes of solutions. We aBPomophmc points within the strip are mapped close to the
survey their occurrence in thad(I') plane in terms of an |nearized stable manifoldn(’<n’), andc, is a factor nec-

area order parameter, illustrating our findings with a feyeSsary to match the Cartesian geometry of the iterated strip
1o the reference sphere.

representative examples. We hope to come to a more satis- L . .
factory picture at a later stage. In a subsequent step, a solution is constr_upted py |_terat|ng
a z, that was found to be close to a homoclinic point in step
1. This iteration procedure works well up to some itenate
>n' at which the orbit approaches closely a point on the
hyperbolic set within the reference sphere and subsequently

scapes to regions far away from the hyperbolic fixed point.

. . e
The shooting algorlthm we have emplqyed 0 ConStrUCtI'he solution is then extrapolated in a smooth way to the
multibreather solutions of high complexity is capable of lo- fixed point value. For a class of solutions, which are degen-

cating any solution with a finite number of humps. Further—erate with respect to a reversing symmetry of the mapping

. ) Qcf. Sec. IV C, below, the accuracy of this procedure can be
as it can be applied to other DNLS systems as well, such as,nanced by some orders of magnitude.

the ones studied ifil6]. Similar algorithms have been used
in studies of pattern formation in complex Ginzburg-Landau
systems with a continuous space varialié]. Our method
uses the smoothness of the unstable manifitdalong the If solutions are symmetric with respectove can avoid
outgoing direction of the fixed point Furthermore, using iterating through the chaotic regime. We then determine the
symmetry relations we can avoid the complicated dynamic€enter of the orbit f=0) and subsequently reflect the left
along the incoming direction. wing of the solutions onto the right wing. To do so, one must
The first step of the algorithm is accomplished by consid-first verify that the result delivered by the shooting algorithm

ering a small 4D cube centered around the hyperbolic fixed® indeed symmetric with respect to This is achieved by

pointz, . This cube will of course be distorted under succes-{h€ following symmetry argument.
Note that the mapping

sive iterations, as shown in Fig. 7, whence we define its
dimensions dynamically by an areg along the unstable an
manifold W" and a perpendicular areg,, the sides of the S(p )=
initial cube being typicallyy/é,= \/7,=10"°. A phase point "
Zy is now'chosen randomly in ?his qube and iterated undefg 4 reversing symmetry of the stationary DN since for
the mapping. Upon return of this point to the neighborhoody)| yandh
of z, we check whether it enters a reference sphere of radius
p=10"* aroundz,. By doing so we isolate those initial S(F+G)=(F+G)~1S. (43
conditions that are close to homoclinic points of the system.

This filter can be made exponentially sharp since the areagonsequently, our system allows for two kinds of orbits:

&n (1) of the 4D strip resulting from iterations of the initial symmetric ones withe,= Sz, and nonsymmetric ones that
cube shrink'spreadi at an exponential rate upon return along occur in pairsz, and Sz, .

the stable manifold\®. The return probabilityr can be cal- An orbit is symmetric with respect t8 if and only if it
culated from the overlap,, between the reference sphere has a point in the fixed set &

and thenth iterate of the cube. With'(p) denoting the time A

upon reentrance in the sphere the return probability is OX(S)={2|S(2) =z} ={z|q=p}; (44)

A. Shooting algorithm

B. Symmetries

Pn
On

. (42
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FIG. 8. Existence diagram of multibreathers localized within= + 75. Driving values are indicated by dashed lines, all solutions found
at a particulaH value are indicated by a 4-digit code above the dashed line. Thengode;n, symbolizes a solution with; maxima and
n, minima of the real partn; maxima andh, minima of the imaginary part. Maxima are counted only above the flat background, minima
only below. Note that solutions may change labels along a path in the parameter plane due to local bifurcations. Antisymmetric solutions
(only atT"=0) with identical labeling are listed once. The cunt¢g,, H_, H*, H, are drawn for orientatiomA =0.2.

cf. [26]. In particular, since all fixed points of the mapping, solutions related by symmetry. For the analytical solutions
includingz., , lie in Eq.(44), the intersection o®™X(S) with ~ (36) it is easily seen that those fall in the first class since each
WY (or W®) contains at most points that are part of a sym-of them has a counterpart that is found by reversing the sign
metric orbit. We also need to consider the possibility that theof the free parameter. In the limit A—0 this parameter
intersection is empty, sinc@™(S) does not divide the tends to zero and the pair of solutions coincides. Similar
phase space. This is exactly the case for drivings below ththings may be expected in the case of multihump solutions,
threshold. Yet, once the intersection®f*(S) with WY (or  where analytical forms are not available. Genuinely nonsym-
W°) has occurred, beyond the lirg;,, of homoclinic tan-  metric orbits, on the other hand, which remain so after taking
gency, this intersection is structurally stable. This followsthe continuum limit, are found only on the ling=0. Here
from the fact that botldb™(S) andW" are two-dimensional they appear in addition to symmetric solutions and have a
manifolds whose intersection in 4D vector space is of codisymmetric real and an antisymmetric imaginary part. They
mension 2. can be explained by the symmetry of complex conjugation,

Focusing on our application to multibreathers, symmetriowhich, in the case of no damping, leaves the DNLS invari-
multihump solutions are distinguished from nonsymmetricant. Complex conjugation produces a pair of orlztsand
ones by the fact that symmetric homoclinic orbits possess 8z, corresponding tap, and ¢, , respectively. For param-
point in ®7X(S) while nonsymmetric homoclinic orbits do eter valuesy>0, however, this symmetry is destroyed. In
not. In fact, although we cannot exclude the existence ohgreement with this result, no such orbits are found with the
nonsymmetric orbits, numerically we found only symmetric shooting algorithm fory>0 if the reference sphere is chosen
ones, for generic parameteysh>0. sufficiently small.

Apart from the reversing symmetf, the reversing sym-
metry (F+G)S may lead to additional symmetric orbit that

form the intersections of its fixed set with! (WS). Orbits C. A survey of multibreathers

arising from reversing symmetriesF ¢ G)™MS(F+G)™, In the following we present an illustration of the rich
m;,m, € Z are equivalent to the ones considered above aftestructure of multihump solutions exhibited by our DNLS
relabelingn. system. In Fig. 8 we have scanned a large part of the exis-

As already mentioned, if there are nonsymmetric orbitstence domain for multihump structures, restricting ourselves
they occur in pairsz, andSz,, due to the reversing symme- to solutions localized within an overall bandwidti <75. If
try (43). These orbits can be distinguished according tathis interval is to be increased, one finds in addition broader
whether in the continuum limit they become degeneratenultihump solutions with in principle an unlimited number
forming a single solution or they remain two distinct genuineof humps. The solutions are labeled by a 4-digit code
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FIG. 9. Modulus|¢,| of multibreathers localized withifn|<75 for I'=0. Columns correspond td =0.001 (left), H=0.01 (cente},
H=0.1 (right). 4-digit labeling as explained in Sect. IV Ga) 0211, (b) 2111, (c) 0321, and 0312(d) 2222. Nonuniform labeling of the
imaginary part is due to complex conjugation symmefxy 0.2.

nin,ngn, wheren, andn, denote the number of maxima strength, thereby keeping track of the multihump solutions.
and minima of the real parth; and n, the number of Note in Fig. 9a) that Reg,) taken at the center site=0
maxima and minima of the imaginary part. It proves suffi-deviates from the flat background in the same measure as the
cient for the labeling to count only maxima lying above anddriving is increased. Similar events are seen in Figs). &d
minima lying below the flat background, as we will do 9(d) at other lattice sites that are located between two well
throughout this subsection. defined single humps and where BgfRe(..) increases in
Focusing ony=0 one sees that this line gives rise to absolute size witth. Viewing multibreathers as being gener-
many more structures than the rest of the existence regiomted by homoclinic orbits, it is reasonable to consider the
This is not caused by multiplicities due to the complex con-largest of these deviations from the flat background as an
jugation symmetry(because symmetry pairs are only listed estimate for the size of the chaotic regidghomoclinic
once herg but rather due to the fact that most solutionstangle located around the hyperbolic fixed point.
appear for infinitely small valueb. In Fig. 9, a number of For y>0 in the rest of the survey diagram of Fig. 8,
individual structures found foy=0 are shown for three val- contrarily to the effectively two dimensional case=0, so-
ues of drivingh corresponding td1=0.001,0.01,0.1. In the lutions appear and disappear as the driving is increased be-
left column, corresponding to the near-integrable chse yond certain values df that in some cases do not coincide
—0, solutions appear as compounds of weakly overlappingvith the lower and the upper boundaries of the existence
isolated humps, which, however, are not always identical t@lomain. A complete picture of the solutions found for
¢~ . Towards the right of the figure we increased the driving=0.3 and localized withijn|<150 is given in Fig. 10 to-
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FIG. 10. Modulus|¢,| of multibreathers found localized withim|<150 forI'=0.3 andH=0.25. Labeling:(a) 2130, (b) 2240, (c)
0260, (d) 0460, (e) 0470, (f) 0790, (g) 06(10)0, (h) 08(12)0. A=0.2.

gether with the 4-digit code as explained above for the vari- *

ous solutions. The fact that some structures with a large A=A D | hn— | (45
number of extrema are missing in Fig. 8 is due to the restric- n=-e

tion to smaller lattice sitepn|<75.

The emergence and disappearance of multihump strucalculatingA numerically as a function ofi, we expect to
tures as functions of the driving amplitude can be better undetect global bifurcations at criticél values where the de-
derstood using an order parameter as a measure of complesvative of A diverges and which are associated with the ap-
ity. While typically any bounded smooth functional g, pearance and disappearance of multibreathers.
suits this purpose, we choose for the sum of the squared In Fig. 11(a) this area order parameter is shown for the
distances between orbit points and the fixed point in theeasey=0 with h varying over the existence intervakth

complex ¢, plane, shortly called the breather’'s “area” =<h, . We observe the four multibreather solutions of lowest
- 3.07
257 . 2111a
i
A 1 A
"""""""""""" T
a) % H 0.272 ) 0318

FIG. 11. Bifurcations of single- and multihumped solutions. A% vs H in the intervalH,,<H<H, . (a) I'=0, (b) I'=0.5. Labeling
as explained in Sect. IVQ\=0.2.
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complexity, which were also seen in Fig. 9, plus the singleschemes, it is interesting to ask what happens to the solutions
humps¢™, ¢~ for which the area has been calculated fromof the pde and their basic properties upon such a discretiza-
Eq. (36). Unfortunately, the shooting algorithm fails to cap- tion. In the case of the NLS this question has attained par-
ture some solutions in certain parts of the figure so we do naficyar significance, in view of its many applications to op-
know their behavior ab approaches the upper bound. Nev-yics njasma physics and field theories if-1 dimensions
e_rtheless the plcturel is clear enough to draw some concl 4], as well as an increasing interest in the dynamical prop-
sions. Breather solutions are often, but not exclusively, bor rties of nonlinear one-dimensional lattid&s.

in pairs and cross the largest part of the existence domain ¢, .hermore, if the discretized form of the NLS is a com-
with only a modest change of their area. Eventually they letely integrable, infinite-dimensional Hamiltonian system,

approach a point of more rapid change in area at a drivingis i ‘the case of the Ablowitz-Ladik discretization adopted

"?"“e that i_s smalle_r tha_n or qual hq. . Plotting _the indi- here, many analytical tools are available to study physically
vidual solution at this point one finds that they join Smoothlyjn«eresting” perturbations of the NLS as well as the DNLS
with another solution. Two of these events are evident fromy, s degree of freedom systems

our data. One of them, the blfurcat_lcﬁﬂlat solution, ) at A particularly interesting class of solutions, which has
h, and A=0 was already stated in Sec. IllA. The other 5yacted the aftention of many researchers, are certain spa-
bifurcation involving the pair (2111,21#]} takes place at a iq|ly |ocalized structures called “solitons” by some due to
driving value considerably away from the upper boundaryeir shape and properties in a moving frame of reference of
Here the multibreather 21alhas evolved from 2222 in @ he jntegrable limit, and “breathers” by others, in view of
local bifurcation, corresponding to a change of labeling,iheir periodic oscillations in time. The existence and stability
which is not recognizable from the area plot of Fig(d1 4 sych structures in the case of a damped and periodically
One other global bifurcation involving the pai(,0211) is  griven NLS was studied recently in a number of interesting
less evident but may be conjectured to take place at or Vel¥apers by Barashenkat al.

close to the upper boundaty; . It is worth noting that no In this paper, we have studied these localized structures in
partner breather has been found at the point where the Str“ﬁ'damped and driven DNLS system of the fot@). Our

ture 0211 is born except from its symmetry related comple@pproach has been to substitute(t) = ¢, expit in Eq. (2)

conjugated version, and that the crossing of 0321 and 2222 ig+4 construct the stationary solutiogts as orbits of a 4D
accidental, i.e., not related to a close approach of these W& mplectic map(6).

solutions in function space. . Our main result is the discovery of a rich variety of local-
As a striking feature of the order parameter analysis, iNzeq structures in the form of homoclinic orbits that are
the casey=0 the lower threshold is equal for all breathers. 55y mptotic to a hyperbolic fixed point along its 2D stable
This is again a consequence of the quasi-two-dimensionalityng 2p unstable invariant manifold. These structures are
of the DNLS system in this case. Namely, it can be qualitacharacterized by an apparently arbitrary number of extrema
tively understood that multibreathers arise from intersection$, the n variation of their real and imaginary parts, according
of the invariant manifolds of the double-hyperbolic fixed  \hich they can be classified, taking also into account their
point. The geometry of these intersections takes place in 8ymmetries.
S|mllgr way as sk_etched in _Sec. Il for single hump solutions, ~ \ore specifically, we have determined analytically, using
the _dlfferenc_e being that smgle hump structures are f_ormeﬂ/lel’nikov’s theory, a threshold line in the,h plane above
by intersections of the primary lobes of the manifolds yich the two simplest such structures are found to exist. As
whereas multibreathers involve secondary, ternary, and othey particular feature of this perturbed DNLS we saw that the
higher order Iob'es. i first component of the Mel'nikov vector vanishes identically.
In 2D maps it follows from geometrical arguments thatthe second Mel'nikov component possesses two distinct al-
homoclinic tangency is a global phenomenon affecting allyost straight node lines generated at the point of homoclinic
homoclinic points or none. Thus if the manifolds intersectiyngency and associated with the pair of breather solutions
tangentially at some parameter value, all homoclinic orbits =" 11is in return allows one to calculate the lower exis-
are createq smul;aneogsly. This statement canr_10t be gen%Dnce boundanh,(v) of these fundamental solutions. Ex-
alized 1o hlgher-d!me_nsmnal maps. In fact, we fmd a couny ressing this threshold in the NLS parameters we conclude
terexample investigating the thrgshold scenario in our DNL hat the linear lawH,,=2I'/ 7 holds exactly in the continu-
system for the general case of finite dampipig0. The bi- ous system far beyond the nearly integrable regime. The up-

fl:[II’C&:tIOI’] dlagramd!s sTgﬂw_nOlnsFll_?. \ folr atlhdarr_lplr:g rc]:on- per boundanh, ,h* of the breathers’ existence domain ap-
stanty corresponding t@ =9.>. Here only € single-hump pears to be identical to the one for the NLS, apart from
pair ¢~ emerges ahy, . Besides that we observe a succes-Scaling

sion of global bifurcgtions involving pa"? of symmetric Here a comment may be in order concerning a possible
mhump structures W|th“n=_2,3, T aI.I having their own i, petween dynamical systems theory and statistical me-
Iowgr threshold vaIu_es that Increase ‘“."’”a“d the ared. IN" chanics. The notion of phase transitions is usually reserved
addition to them pairs one finds in Fig. ib) other multi- 5 he thermodynamical limit at which the range of correla-

breathers whose bifurcation properties remain incompletg, ¢ heyeen the particles of a statistical ensemble gives rise
and do not allow us to draw firm conclusions in these cases, ¢,qden changes of global behavior. In the stationary

damped driven DNLS we also encounter a nonanalytic
change of order at the boundaries of the existence region,

Since the spatial discretization of a pde on the infinite linesince the portion of 4D phase volume filled by chaotic orbits
is an unavoidable step in most numerical integrationis equal to zero outside and different from zero exactly

V. CONCLUSIONS
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within the existence domain. This sudden change is here esiere the dot denotes derivative with respect to some continu-
tablished via a fixed point stability analysis leading to theous time variablé andg; , p; assume the roles of canonically
upper boundary, together with the Mel'nikov analysis lead-conjugate variables=1, 2. Since the Hamiltoniah, is con-

ing to the lower boundary of the existence region. This is theserved, the flow(Al) takes place on the one-dimensional
reason why we refer to the boundaries of the existence dananifold labeled by a fixed value ¢f. For instance, in the
main as phase transitions, and to our Fig. 1 as a phase diaase of the action integra} of Eq. (10) we get

gram.

Furthermore, since the DNLS breathers can be identified p=—alaql = —2q(1+p®)+2up, (A23q)
by the primary intersection of invariant manifolds along one- . 5
loop homoclinic orbits, our approach allows us to understand q=0/dpl1=2p(1+9°)—2ua. (A2b)

qualitatively the emergence of more and more complicate
localized structuregmultibreathers occurring at the multi-
loop homoclinic orbits of secondary and higher order inter-

q\lext p is eliminated from the integrall0) againstq using
Eq. (A2b). Imposingl,=const one obtains

sections be'tween t.he 2D mgmfolds in 4D space. Using the Pla= p2P+(1,—1—- g (1+q?), (A3)
area associated with a multiloop homoclinic orbit as order
parameter we discovered that distinct multibreather solutiongshich  can  be integrated. In  particular, on

can have different driving parameter thresholds. k&0  the homoclinic  connection 1{=1) one finds
these thresholds occur above the single-hump threshold anfi 7) ~ + sinhw sech(2 sinhw).

are also larger as compared to the thresholds of other, less |n a similar manner the angular integtal gives rise to a
complex, multihump solutions. Knowing an analytic integral flow with a time variables. But since the integralk, are in
for the casey=0,h>0, we relate the coincidence of all involution the two flows are commutative, which is accom-
threshold values observed in this case to particular restrictivglished by taking the product of both solutions

features imposed on the intersections of invariant manifolds
in 2D maps.

Thus homoclinic chaos around a hyperbolic fixed point of
Eq. (6) implies the existence of multihump localized oscilla-
tory states of Eq(2) with in principle arbitrary complexity. Using theorems of hyperbolic functions, in particular re-
Indeed, using an appropriate shooting algorithm, we havéation (27), one can specify, , 6, such that Eq(A4) satisfies
been able to construct a large number of multibreather soluithe mappingr,
tions numerically, characterized by an increasing number of
humps ash grows above the existence threshold of the
single-humpsy™.

All these solutions, howeveiexcept foriy~ over a well ] ) . ] )
defined region in they, h plane are found to be marginally The desired two-parameter family of mapping solutions is
stable or unstable when integrated numerically for suffi-then
ciently long times. Thus, our results may be used to describe

cosé

q(7,0)=*=sinhw sech2t sinhw) sin 6

) . (A4

nw+ 71

“2rsimnw "R (A9

t,

in a systematic way the complex spatiotemporal dynamics of n(7,6)==sinhw sectinw+r) cos 0 ,
this system by identifying a large class of solutions that are sinh 6
not only unstable in time but are also characterized by ex- _
w=cosh u, O0=7<w. (AB)

treme irregularity in their spatial structure.

The timesr and 6 of the interpolating flows of typ€Al) are
ACKNOWLEDGMENTS the variables of the Mel'nikov vector. For a more general
treatment of interpolating Hamiltonian flows for mappings
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discussions with I. V. Barashenkov, M. Heerema, and Jthat the DNLS mapping is symplectic even fary#0. In
Lamb. 4D symplectic mappings the eigenvalues of the Jacobian ap-
pear in pairsAjA,=A3\,=1, similar to the 2D area-
APPENDIX A preserving case. Consequently, fixed points may be purely
elliptic (EE) with |\, |=1,k=1...4, orpurely hyperbolic
For the completely integrable mappirfg the invariant  (HH) with all \, off the unit circle, or of mixed type. In
manifolds are found by the following, not necessarilythe latter case we discriminate EH points|A {4
unique, parametrization technique. Consider for each of the-1 |\ ,|=1/x,/<1), and HE points vice versg1]. Ana-
two integralsly(q,p), k=1, 2 in Eq.(10), the Hamilton’s  |yzing the Jacobian of Eq9) one sees that the way fixed
equations of motion points fall into these four categories depends only on their
amplituder; and the damping constant namely, through
p=—dl/dq, q=2al/ap. (A1) the signs of two discriminants

APPENDIX B
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TABLE Il. Signs of Eq.(B1) for fixed pointsrg,rqi,ro,rs. APPENDIX C
fo r r ry The exact one-hump solutioi36) for y=0 are found as
follows: The desired solutions will asymptotically tend to the
foof f f f fo f f smallest fixed point with modulugr. This leads to the an-
0< y<6/2 v o+ o+ - - - saz
o< y< 8IV3 — — + — - - + _
4 dr=\r(1+2a& Y. (&)

SIV3<y - —

Assuming the solutions to be real, the fixed point equation
(16) for r reduces toh=r(S5—r). Substitutingh and Eq.
fo(r)=(u—r)2x2(u—r)Jr2—y?—2r—y>—1 (B1)  (C1) in Eq. (6) we get a mapping i,

+ &,
evaluated at =r;. Since the function$_.(r) have roots at M [§§+r(2a+ E)?)1=2[mwén—2r(a+éy)].
the extremd18), their signs are definite at every fixed point. En+1én-1 2
They are displayed in Table Il. Knowing the signs of (

—7) and Eq.(B1), stability then follows according to Table |n the limit A—0, Eq.(C1) have to yield the NLS dark and

lll. Now we consider each fixed point separately: bright solitons. This implies a solution of the forg,=1
Fixed pointr,: The polynomial(16) increases monotoni- -+ g coshiB+ 1) with 8, 7, B to be determined. Using addi-

cally whenceP(r=1y)>(<)0 for h<(>)h*. Hence for tjon theorems for the hyperbolic functions, the nearest-

drivings belowh* we haver,<y and the fixed point, is  neighbor terms in the previous equation are
HH. For h>h* it follows from ry>y and the signs of Eq.

(B1) thatr, is EE. This fixed point changes quality again for Enr1tén—1=2+2BKX, (C3a
ultrastrong drivings exceeding the value
Eni1én_1=1+2Bkx+ B3(sintt B+x?)  (C3b

5 with k= coshB andx=cosh(B+ 7).
hy (y)=2V2+ 68+ — y*+0(y?8)>2.82. (B2 Next, we insert Eq(C3) in Eq. (C2) and order in powers
42 of x. Since thet,, mapping holds at all lattice siteswe may
equate coefficients of equal powers. With the highest term
In this caserq is of mixed type(EH) because the discrimi- being cubic this gives four equations. The cubic and qua-
nantf_ changes sign again at. , = 5%+ (5+2)%>2. dratic equations are solved as
Fixed pointrz: We notice that _ is an upper bound for
v; cf. Eq. (18). Hencer ;> v. It then follows from the signs I =1+ 2ad
of Eq.(B1) thatr; is EE. For drivings larger than E¢B2) it 2+’ 2a+3+46
eventually turns EH for the same reason as the fixed pgint o
does. or, eliminatingx,
Fixed pointr,: Utilizing that y<r_=<r, and Tables II S
and Il it follows thatr, is always HE. It exists foh_<h r= .
<h, . 3+2a
Fixed pointr,: We consider first the case<h*. As
P(y)>0 andy<r_<r,, r; we havey>r,, and hence,
HH. Second, we consider strong drivitg>h*. It follows

(C4

(CH

The remaining equations involve onty, 8 and are con-
sistently solved by

from P(y)<0 and the upper bound_ for vy that y<r;. Aa=(6+2)(B*—1)-3
Again we conclude the stability from Tables Il and Ill. How-
ever, here we encounter a phase transition at the critical point +\(1+2B%)2+258(1-3B%+2B%) + 6%(1- B2)?,

y=6/2. Below this point the signs of both discriminants

(B1) are positive, and, is HH. Above the critical point both (Co)
signs are negative implying, EE. Note that the latter case 20+3

. : ios: <y b 2= .

includes two different scenarios: Fé¥2< y<=§ there are B=1l+a 2at 3+ o(at 1) (C7)

three fixed points, whereas for6<y<é6/v3 and h* <h

<h- the pointry is the only fixed point. As argued below only the positive root can occur in Eq.

(C6). With B?=b, a=a this leads to the family of solutions

TABLE lll. Stability types as functions of the fixed point am- (36). For the purpose of numerics one determines the coef-
plituder. Labeling of eigenvectors: E for elliptic, H for hyperbolic. ficients in the order. x. B.

In the continuum limit, lettingb—0 one sees that in Eq.

r<v r=y (C6) only the positive square root can occur, a case in which
f.(r)<0 f+ (=0 «a, B reduce to hyperbolic functions in agreement with Eq.
HH f_(r)<o0 EE HE (C7). However, in order to satisfy EC4) we needa= 32
f_(r)>0 EH HH —1—=*c. This gives the continuum dark and bright soli-

tons.
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In the integrable limit vanishes but nod. From Eq.(C4) equal to sinlw. We can eliminatec in Eq. (C4), solve forr
we see that ther=u anda, B==*=. Itis slightly harder to  and using Eq(C7) express the prefactor far— o as
show that this results indeed in the integrable solutitd).

Hereto we write out the general solutiof®5) with « elimi-

nated in favor ofB3, and evaluate in the limig—oo: \/_ 1/2( 2a |12
rB(1+u)= 1+ —| (1+p)
. (B2~ 1)(1+ ) PR 5r2a] (M aes] e
=4r{1
n 1+ B cosi7+n cosh ! ) 5 \l2
=l Atw=N(e-1(1+u)
S+ \rB(1+ w)seckinw+ 7). (C8) 1+p
It remains to show that the prefactor of the sech function is =u?—1=sinhw. (C9
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