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Breathers and multibreathers in a periodically driven damped discrete nonlinear
Schrödinger equation
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~Received 11 May 1998!

We study an integrable discretization of the nonlinear Schro¨dinger equation~NLS! under the effects of
damping and periodic driving, from the point of view of spatially localized solutions oscillating in time with
the driver’s frequency. We locate the equilibrium states of the discretized~DNLS! system in the plane of its
dissipationG and forcing amplitudeH parameters and use a shooting algorithm to construct the desired
solutions cn(t)5fn exp(it) as homoclinic orbits of a four-dimensional symplectic map in the complex
fn ,fn11 space, for2`,n,`. We derive, in theG50 case, closed form expressions for two fundamental
such solutions having a single hump inn, cn

1 , andcn
2 , and determine analytically their threshold of existence

in the (G,H) plane using Mel’nikov’s theory. Then, we demonstrate numerically that above this threshold a
remarkable variety of multihump structures appear, whose complexity in terms of their spatial extrema grows
with increasingH. All these solutions are numerically found to be unstable in time, except forcn

2 , which is
seen to be stable over a certain region in the (G,H) plane. In the continuum limit our results are in close
agreement with recent studies on the NLS equation. From a more general perspective, we view these DNLS
multihump solutions as homoclinic orbits of a higher-dimensional map thereby providing a possible mecha-
nism for explaining the occurrence of similar structures called discrete~multi-! breathers found in a wide
variety of one-dimensional nonlinear lattices.@S1063-651X~98!10511-1#

PACS number~s!: 02.30.Jr, 02.60.Lj, 52.35.Sb, 52.35.Mw
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I. INTRODUCTION

Integrable nonlinear evolution equations and th
spatially discretized counterparts, integrable nonlin
differential-difference equations, are of great interest
many fields of physics. In fact, their applicability becom
even broader as soon as nonintegrable perturbations are
sidered. In particular, the sine-Gordon equation and its sm
amplitude limit, the nonlinear Schro¨dinger equation~NLS! in
the presence of damping and periodic driving have been
tensively studied since they are related to such system
long Josephson junctions, easy-axis ferromagnets, rf-dr
plasmas, and nonlinear optics@1–5#.

As first realized in an adiabatic inverse scattering
proach by Kaup and Newell@6#, the periodically driven
damped NLS admits two coexisting soliton solutions, if t
damping and driving terms are small enough. The low
driving threshold for the existence of these solutions w
found to be a linear function of the damping constant. One
these solutions, called the bright soliton, is always unsta
in time, whereas the dark soliton is stable for certain com
nations of damping and driving.

Recently, Barashenkov and Smirnov@7# extended the ex-
istence and stability chart for these NLS solitons to lar
parameter values. Moreover, in a subsequent paper@8# it was
demonstrated that these single-hump solutions can give
to multihump structures in certain regions of the parame
plane. The possibility that NLS solitons could form bou
states had been predicted earlier using a variational argum
@9,10# and adiabatic inverse scattering theory@10,11#.
PRE 601063-651X/99/60~2!/1195~17!/$15.00
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In the present paper we consider a spatially discreti
version of the periodically driven damped nonlinear Sch¨-
dinger equation~DNLS!

id
]

]t
cn1

cn111cn21

2
~11ucnu2!

5~12 ig!cn2h exp~ i t !, nPZ ~1!

and address the question of how the existence chart o
solitonlike solutions is affected by discretization. By a so
tonlike solution of the DNLS we mean any localized soluti
that is asymptotically flat in the discretized space varia
and oscillates periodically in time. In fact, in accordan
with recent terminology we shall refer to these solutions
breathers and multibreathers@12,13#.

To construct~multi!breathers, we eliminate the time de
pendence of the DNLS system~1! and write the stationary
part of the equations as a four-dimensional~4D! mapping,
which we study in Sec. II by means of fixed point analys
and Mel’nikov theory@14–16#. The integrable part of the
mapping corresponds to the Ablowitz-Ladik discretized v
sion of the NLS@17#.

Flat solutions of the DNLS correspond to fixed points
the map, whereas breather solutions approach a fixed p
asymptotically asunu˜`. In the language of nonlinear map
pings these orbits are called homoclinic or heteroclinic,
pending on whether their asymptotic values atn52` and at
1195 © 1999 The American Physical Society
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n5` coincide or not. In this paper we do not consider h
eroclinic orbits and formulate the following existence crit
rion:

A necessary condition for the existence of breather so
tions is that the 4D mapping obtained by eliminating the ti
dependence in Eq.~1! possesses a hyperbolic fixed poi
equipped with a 2D stable and a 2D unstable manifold. If
intersection of these manifolds is not empty, then the con
tion is also sufficient.

Using this criterion, we obtain the domain of DNL
breathers in the plane of forcing versus damping parame
More precisely, in Sec. II A, the upper boundary of this r
gion is derived from a stability analysis of all fixed point
the DNLS. The line defining this boundary coincides, up
scaling, with the line obtained in@7# for the NLS.

The lower boundary is obtained in Sec. II B from th
tangential intersection of the invariant manifolds of a hyp
bolic fixed point. Using a Mel’nikov approach proposed
@15# we derive a vector whose zeros correspond to trans
sal intersections of the invariant manifolds. As we have de
onstrated in an application of this approach to a system
coupled DNLS equations@16#, any Mel’nikov zero is suffi-
cient to approximately construct a homoclinic solution. Ta
gential intersection of the manifolds yields the lower ex
tence threshold. Thus, we are able to extend the resu
Kaup and Newell@6#, obtained for the NLS, by providing
correction terms that are purely due to the discretization

In Sec. III, single-hump structures~or breathers! are dis-
cussed in some detail. For the undamped case, thec1 and
c2 solutions are given analytically and are shown to be m
ginally stable. For finiteg.0 we describe these solution
numerically under variation of damping and driving para
eters.

In Sec. IV, we employ a shooting algorithm to loca
multibreather solutions. Our method exploits the smoothn
of the unstable~stable! manifold along the outgoing~incom-
ing! direction. The increasingly complex structure of the
solutions can be labeled by the number of extrema of th
spatial oscillations. Defining an order parameter by the s
of ufnu2, we varyh and observe certain bifurcation phenom
ena involving a single solution or pairs of solutions and o
curring at turning points of the order parameter.

Finally, in Sec. V, we summarize our results and propo
that multibreathers can be explained geometrically in te
of intersections of higher order lobes of the invariant ma
folds of an unstable fixed point.

II. THE PERIODICALLY DRIVEN AND DAMPED DNLS

The NLS equation, including effects of damping and p
riodic driving, is given in continuous time and space va
ables by the partial differential equation~pde!

iC t1Cxx12uCu2C52 iGC2HeiVt. ~2!

In agreement with@7# we assume that both the damping c
efficientG and the driving amplitudeH are real and positive
~An extra phase factor inH may always be removed by
translation in time.! As was realized in@7,18,19#, one of the
three parametersV, H, G can be scaled out using the tran
formation
-
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C̃~x,t !5kC~kx,k2t !, Ṽ5k2V, G̃5k2G, H̃5k3H.
~3!

which leaves Eq.~2! unchanged. We follow here@7# and fix
V[1.

The Ablowitz-Ladik discretized version of the NLS is ob
tained by replacing the dispersive term and the nonlin
term in Eq. ~2! with their symmetric discretizations on a
infinite lattice@17#. Denoting byD the distance between sub
sequent lattice points andCn5C(nD) these terms become

Cn111Cn2122Cn

D2
1uCnu2~Cn111Cn21!. ~4!

For the purpose of numerical calculations and compari
with similar results in the literature we work throughout th
paper with the lattice spacingD5 1

5 unless stated otherwise
Expressing now the NLS~2! with ~4! in the rescaled quanti
ties

cn5DCn , d5 1
2 D2, g5 1

2 D2G, h5 1
2 D3H ~5!

we arrive at the DNLS system~1!. With the ansatzcn(t)
5fneit (fn time independent! we obtain stationary solution
of this system from the map

fn111fn21

2
~11ufnu2!5~m2 ig!fn2h, nPZ ~6!

with m511d. These solutions may be stable or unstable
time ~see Sec. III!.

It is useful to remark that the transformations~3! and ~5!
are by no means equivalent, in spite of their formal simil
ity. In the first transformation the driving frequency is elim
nated by rescaling all time and space parameters. In the
ond, the DNLS is brought into standard form by rescaling
remaining parameters once more, yielding an extra freed
due to discretization. Conversely, in order to take the c
tinuum limit of Eq. ~6! one has to letfn ,d,g,h˜0 and
simultaneously keep the following ratios fixed:

d

g
5

1

G
5const,

2g3

h2
5

G3

H2
5const. ~7!

We are now going to analyze the stationary DNLS~6! for
complexfn in terms of a 4D mapping

zn115F~zn!1G~zn!, zn5S qn

pn
D , qn5pn115S Re~fn!

Im~fn! D
~8!

with

F~zn!5S 2pn12m
qn

qn
211

qn

D ,

~9!

G~zn!5S 2
gqn3e'2heRe

qn
211
0

D ,
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e' being the unit vector normal to the complexfn plane and
eRe the unit vector in the real direction. One verifies eas
that Eq.~8! is volume preserving even ifg,hÞ0. Thus, the
damping termigcn of the pde~1! plays the role of a con-
servative perturbation in the mapping.

Furthermore, in the unperturbed case (G50) the mapping
is symplectic and completely integrable@15#. The integrabil-
ity follows from the two analytic invariants

I 1~zn!5~11qn
2!~11pn

2!22mqn•pn , ~10a!

I 2~zn!5~qn3pn!•e' . ~10b!

and the symplectic structure from the invariant Poiss
bracket $pn ,qn%5I2 , with I2 the 232 unit matrix. This
symplectic structure can be shown to persist in the c
g,hÞ0. In the case of zero damping we find that one integ
is conserved in the modified form

I 1~zn!5~11qn
2!~11pn

2!22mqn•pn22h~qn1pn!eRe. ~11!

It is worth noting that in the completely integrable ca
(G50), all solutions of this mapping can be parametrized
terms of Jacobi elliptic functions@20#. For the purpose of this
paper, however, we shall be concerned only with homocl
solutions. Sincem511d.1, theg5h50 system~8! has a
saddle point at the origin with a 2D unstable~and a 2D
stable! manifold, on which the solutions are given by a tw
parameter family of homoclinic orbits. The union of the
solutions~also calledhomoclinic connection! is an essentia
ingredient of the Mel’nikov analysis carried out in Sec. II
below. The homoclinic connection is given byẑn5(q̂n ,p̂n)
with

q̂n~t,u!5p̂n11~t,u!56S Sn~t!cosu
Sn~t!sin u D , ~12!

where

Sn~t!5sinh w sech~nw1t!, w5cosh21 m, 0<t,w.
~13!

For the derivation of Eq.~12!, the parametrizing variablest
and u play the role of time in a Hamiltonian flow with th
integrals ~10! being the corresponding Hamilton function
~see Appendix A!. In fact,t can be thought of as an interpo
lating variable between the flow and successive iteration
the map. The corresponding interpolation periodw is almost
equal to the lattice constant sincew5cosh21(11D2/2)'D
2D3/24. It is also related to the largest eigenvaluel1 of the
origin by

w5cosh21 m5 ln~m1Am221!5 ln l1. ~14!

A. Flat solutions and the upper boundary for breathers

By virtue of Eqs.~8! and~9! the real and imaginary part
of any stationary solution of the DNLS are given by the fi
two components of the phase vectorz. In particular, as ex-
plained in Sec. I, breather solutions can be identified w
orbits that asymptotically go to a constant value, emerg
from and ending at a fixed point. In 2N-dimensional sym-
plectic mappings the eigenvalues of fixed points can
n

e
l

c

of

t

h
g

e

grouped in pairs with their product being unity for each p
@21#. Consequently, DNLS breathers can emerge only fr
such fixed points where all eigenvalues of the 4D map
earized about the fixed point are off the unit circle; i.e., the
exist two stable and two unstable modes.~Indeed it is not
sufficient to have only one pair of eigenvalues hyperbo
and the other elliptic, since this would lead to either asym
totically oscillating homoclinic or to heteroclinic solution
that have been excluded from the present treatment.!

We first identify all fixed points and consider their stab
ity under iterations of the mapping. Every such fixed point
Eq. ~8! represents a flat solution of the stationary DNLS~6!,
defined by

fn5fn115Areiu5
r

h
~d2r 1 ig! ~15!

for all n. The squared modulusr of this solution satisfies the
cubic equation

P~r !5r @~r 2d!21g2#2h250 ~16!

and the phaseu is given by

tan u5
g

d2r
. ~17!

Both equations are exact rescaled@with Eq. ~5!# versions of
the corresponding equations for the NLS; cf.@7#. Depending
on the damping and driving parameters, Eq.~16! may have
either one real solutionr 0 ~for g.d/)) or three real solu-
tions ~for 0,g,d/)). In the latter case the three ampl
tudes r i , i 51,2,3, are separated from one another by
extremar 6 of the polynomialP(r ) in Eq. ~16! such that
r 1,r 2,r 2,r 1,r 3 with

r 65
2d

3
6

1

3
Ad223g2. ~18!

Furthermore, these fixed points exist only in the driving
gime h2,h,h1 with

h6~g!5
A6

9
Ad36~d223g2!3/219dg2. ~19!

At either boundary of this interval two of the fixed poin
annihilate in a saddle node bifurcation (r 1 and r 2 at h1 , r 2
and r 3 at h2). All this is summarized in Table I.

The stability of each fixed point depends crucially on t
sign of the polynomial in Eq.~16! evaluated atr 5g. It is
easily seen that this sign changes whenh varies across

TABLE I. Existence of fixed pointsr i , i 50,1,2,3 in intervals of
dampingg and drivingh.

0,g,d/) d/),g

h1,h r1,r 2

h2,h,h1 r 1,r 2,r 2,r 1,r 3 r 0

h,h2 r 1,r 3
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FIG. 1. Breather phase diagram in NLS parameters~driving H vs dampingG! with lattice constantD50.2. ~a! Existence domain of
breathers~shaded!. ~b! Fixed point existence and stability regions@vertical axis rescaled withH* (G)]. Shades as follows: 1 elliptic poin
~white!, 1 hyperbolic point~light gray!, 1 elliptic, 1 hyperbolic, and 1 mixed point~gray!, 2 elliptic points and 1 mixed point~black!. The
regions, which are shown here only near the the critical pointG51/2, extend to the rest of the phase diagram shown in~a!.
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h* ~g!5A2g322dg21d2g. ~20!

The stability analysis for each fixed point in its respect
existence regime is carried out in Appendix B. We dist
guish several regions of the planeh versusg, which must be
studied individually while the resulting phase diagram co
tains five regions of qualitatively different behavior.

These regions are best observed in the neighborhoo
the pointg5d/2,h5h* (g)5h1(g), as shown in Fig. 1~b!.
For weak driving ~light shade! we find one double-
hyperbolic fixed point. It coincides withr 0 for strong damp-
ing g.d/) and with r 1 otherwise. For strong driving
~white! there exists one stable fixed point, given for stro
damping by r 0 and otherwise byr 3(h.h1), r 1(h,h2).
Both fixed points persist in the darker region where they
accompanied by a mixed~hyperbolic-elliptic! fixed pointr 2 .
The fourth region~black! is limited horizontally to the tiny
interval of moderate dampingd/2,g,d/) and vertically
in betweenh1 andh* . It does not contain a double hype
bolic fixed point and here the pointsr 1 andr 3 are both stable
whereasr 2 remains of mixed type. Finally, for ultrastron
driving h.2, there exists another region where the sta
fixed point r 3 (r 0) changes into an unstable elliptic
hyperbolic one not visible in Fig. 1~cf. Appendix B!.

From the condition formulated in Sec. I we conclude th
breathers can only exist in regions 1 and 3. Hence the up
boundary of the existence domain is

h1~g!, g<d/2 and h* ~g!, g>d/2. ~21!

The global phase diagram is presented in Fig. 1~a! in
which the shaded region denotes the domain of existenc
breather solutions. In the regime of moderate dampingd/2
,g,d/) the functionsh* andh1 are graphically indistin-

guishable since their difference is less than (1
10Ad)3, with

h1>h* . At the critical point g5d/2 the two functions
match and so do their first, second, and third derivatives w
respect tog.

So far, our analysis of the upper branch of the existe
domain coincides with that of Barashenkov and Smirnov
-

-

of

e

e

t
er

of

h

e
r

the NLS, after rescaling with the lattice spacing. The low
existence boundary, on the other hand, differs somew
from the continuous case, as explained in the next sub
tion.

B. Homoclinic tangency and lower boundary for breathers

As mentioned above, the stationary DNLS with dampi
and driving can be described using a 4D mapping~8!, ~9!.
Since the solutions of the integrable partF are known explic-
itly, one can apply a Mel’nikov approach to derive cond
tions that are necessary for the existence of homoclinic
bits. Thus, in order to treat the termG as a perturbation we
takeh andg small. Considering the scaling relation~5! this
may also include the case of largeH andG provided that the
lattice constantD is small enough.

More generally, one can develop a Mel’nikov analysis
2N-dimensional mappings of the type~8! if the integrable
term F has the following two properties: It possesses a
perbolic fixed point with a homoclinic~heteroclinic! connec-
tion and this fixed point transforms smoothly asG increases
while its stability properties remain unaffected. We then s
that the fixed point survives the perturbation. No restrictio
need be imposed onG apart from boundedness.

One then can construct a vector functionM , called the
Mel’nikov vector @15#, which is related to the distance be
tween the invariant manifolds of the hyperbolic point of t
nonintegrable composite mappingF1G. More precisely, the
projections of these manifolds onto the homoclinic conn
tion of the integrable mappingF yield components ofM , to
lowest order in a small parameter proportional toG. Trans-
versal zeros ofM correspond to homoclinic points which, i
our DNLS application, yield solitonlike solutions@16#. Tan-
gential zeros, on the other hand, are obtained at critical
rameter values where homoclinic orbits are created~or cease
to exist! in a global bifurcation. The general form of th
Mel’nikov vector is given by@15#

Mk~ t!5 (
n52`

`

q̃n11
~k! ~ t!•G~ ẑn~ t!!, k51, . . . ,K, ~22!
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ẑnPR2N being the separatrix solutions on the homoclin
connection ofF parametrized bytPRN. K is the dimension
of the bounded subspace of the variational solutions oF,
and q̃n

(k) is thekth independent solution of the adjoint vari
tional problem. These solutions are readily obtained from
constants of motionI k via

q̃n
~k!~ t!5¹zI k„ẑn~ t!…. ~23!

SinceM is obtained from the first order variational equ
tions of the perturbed mapping, the error in measuring d
tances between the invariant manifolds is quadratic in
size of the perturbationG. Numerical calculations of ho
moclinic tangency carried out in@15# suggest that the size o
the perturbation can be defined using a suitable~maximum!
norm.

Now, as shown in the previous subsection, the dou
hyperbolic fixed point, forG50 located at the origin, sur
vives the perturbation forg andh in the range~21!. Thus, in
this range we can apply the Mel’nikov theory developed
@15# to the 4D map of the periodically driven damped DNL
as follows.

First we use Eq.~23! to derive the adjoint variationa
solutions from the integrals~10! yielding

q̃n
~1!52S q̂n~11p̂n

2!2mp̂n

p̂n~11q̂n
2!2mq̂n

D , q̃n
~2!5S p̂n3e'

e'3q̂n
D . ~24!

whence the Mel’nikov vector~22! can be calculated usin
Eqs.~9!, ~12!, ~13!, and~24!. In particular, one finds that th
first component ofM5(M1 ,M2) vanishes identically:

M154(
n

@ q̂n11~11q̂n
2!1mq̂n#

gq̂n3e'2heRe

q̂n
211

54gI 222h(
n

~ q̂n212q̂n11!eRe50, ~25!

where we have used the mapping~8! for g5h50, setting
I 250 on the homoclinic connection~sinceu is independent
of n!.

The second Mel’nikov component is given by

M252(
n

~ q̂n3e'!
gq̂n3e'2heRe

q̂n
211

52g(
n

Sn
2

Sn
211

22h sin u(
n

Sn

Sn
211

5
2

m H g(
n

SnSn112h sin u(
n

SnJ ~26!

in which we have made use of Eq.~13! and the following
identity of the hyperbolic functions:

2 coshw sechx5~11sinh2 w sech2 x!

3@sech~x2w!1sech~x1w!#,

x,wPR. ~27!
e

-
e

le

It is interesting to note that the vanishing ofM1 for all g
andh may be related to the fact that~a! M1 is independent of
g and~b! the system possesses an integral forg50, i.e., Eq.
~11!. This integral could, in principle, by used to reduce t
4D system~9! to a nonintegrable 2D map in the caseg50,
hÞ0. Furthermore, the identical vanishing ofM1 implies
that under suitable conditions one may anticipate a one
rameter family of zeros of the Mel’nikov vector, in contra
to the case of two or more coupled DNLS systems~@16#!
where the zeros occur only at isolated points.

Let us now concentrate on the case of homoclinic t
gency. Following@15,16# the invariant manifolds intersec
tangentially if and only if at some pointst* 5(t* ,u* ) on the
homoclinic connection

M ~ t* !50, det@]M ~ t* !/]t#50, ~28!

and an extra nondegeneracy condition holds on the sec
derivatives ofM . In our case, however, due to the fact th
the determinant of the Jacobian in Eq.~28! vanishes, this
nondegeneracy condition is violated everywhere on the
moclinic connection.

One way to overcome this problem is to relax the ta
gency condition by requiring only that the partial derivativ
of M2 vanish at some pointst* . This modified notion of
tangency is sufficient to obtain the threshold functi
hthr(g), as shown below.

Note that for our mapping the tangency equations

M ~ t* !50, ]M2~ t* !/]t50 ~29!

are satisfies withu* 56p/2 and can be rewritten in terms o
t* using Eq.~26! as

6
h

g
5q~t* !5

]

]t
q~t* !, ~30!

where the choice of signs corresponds to the sign ofu* and
q(t) is defined by

q~t!5
SSn~t!Sn11~t!

SSn~t!
. ~31!

For small lattice spacingD, implying w˜0, the evalua-
tion of Eq.~30! is straightforward: Replacing the sums in E
~31! by integrals one finds

(
n50

`

Sn~t!'sinh wE
2`

`

sechtdt5p sinh w, ~32a!

(
n52`

Sn~t!Sn11~t!'sinh2 wE
2`

`

secht sech~ t1w!dt

52w sinh w. ~32b!

With these estimates the tangency threshold below which
homoclinic points exist follows from the first equality in Eq
~30! as

hthr~g!5
2w

p
g. ~33!
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FIG. 2. Nodelines of the Mel’nikov componentM2 over a unit celltP@2w/2,w/2#, uP@2p,p#. ~a! h5Dg, ~b! h5Dg/3. ~c!
Mel’nikov ratio q(t), tP@2w,w#. Note thatq(t) depends very weakly ont even for large discretizationD, hereD51/2,w5cosh21(1
1D2/2)'D.
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Next we consider the effects of discretization. For latt
spacings considerably larger than zero the infinite sum
Eq. ~31! cannot be calculated analytically. Also the subs
quent application of the Poisson formula and residue the
by which other types of perturbed NLS equations are tr
table@20,14#, fails here due to removable singularities. Th
we restrict our discussion to specific values oft.

From the fact that both sums in Eqs.~31! arew periodic
and symmetric at the pointst50 andt5w/2, it follows that
they also have extrema at these points. More precisely, 0
minimum andw/2 a maximum ofq(t). It is therefore rea-
sonable to assume that, as the driving increases and the
ond Mel’nikov component~26! decreases,M2 will vanish
first at the pointt* 50. Some numerical results concernin
the zeros of the Mel’nikov vector that are obtained from t
relation gq(t)5h sinu and the ratioq(t) in the caseD
51/2 are presented in Fig. 2. Note that even for this rat
large value ofD the variation inq(t) is very small. Using
the exponential decay of the sech function we evaluate
infinite sums att50 replacing them by their partial sum
with unu<Nw. Typically with N55 the remainder can b
neglected. For sufficiently small values ofw, q(0) can be
expanded in powers ofw yielding the threshold value

hthr5gq~0!5
2

p
g Fw1

1

6
w31O~w4!G . ~34!

In this way we recover the previous result for small spacin
plus corrections of third order inw. The inequalityh.hthr
can be considered as a necessary condition for the exist
of breather solutions. Numerical calculations of breathers
point to the fact that indeed for allh values larger thanhthr
and smaller thanh1 (h* for large damping! such solutions
can be found.

Now we are in a position to describe the effects of d
cretization on the lower existence boundary. Equation~34!
expressed in the NLS parameters, cf. Eq.~5!, gives

H thr5
2

p
G@11 1

8 D21O~D3!#. ~35!

This result confirms and generalizes to second order
boundary given for the NLS by three independent pertur
tive methods@6,22,19#. The numerical computations of th
lower existence boundary of the NLS by Barashenkov a
in
-
y,
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e
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Smirnov@7# show small deviations from Kaup and Newell
linear law@6#, but not more than 1023 even for large values
H andG.

One can even show that our DNLS result gives the ex
threshold of the continuous NLS system: Taking in Eq.~35!
the continuum limitD˜0 and arguing that the Mel’nikov
analysis in this case is accurate for allg,h˜0, the exact
validity of the linear law is verified even for large valuesH
andG.

Of course the question arises whether the correction
Eq. ~35! are of any significance, since they have been
tained by a perturbative Mel’nikov treatment. Noting, how
ever, that the Mel’nikov error is of second order in the pe
turbation, one sees immediately that Mel’nikov inaccurac
caused by finite values ofg;D2 enter only at fourth order in
D while those caused byh;D3 occur at sixth order. Conse
quently, the second~even third! order inD correction to the
threshold~35! is purely due to the discretization.

III. SINGLE-HUMP STRUCTURES „BREATHERS…

A. Stationary solutions

In the domain of existence of the DNLS solitons, defin
by Eqs. ~21! and ~34!, we find a pair of stationary single
hump solutions emerging from the flat background. On
line g50 they are real and have the exact form

fn
65cn

6~ t50!

5Ar S 11
2a

16Ab cosh~n cosh21 k1r t!
D , ~36!

wherer is the smallest root of Eq.~16!, tPR is a free pa-
rameter and

k5
11d22r

11r
, a5

~31d!~12k!

2~k212d!
,

b511
a

11d~11a!/~2a13!
. ~37!

In agreement with@12,13# we shall call such single-hump
structures breathers, owing to the fact that they are osc
tory functions of time. Both are very similar to the corr
sponding breather solutions of the NLS@7#, the three con-
stants in Eq.~37! differ from their continuum values in suc
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FIG. 3. Variation off2 along a path in the (G,H) plane.~a! Re(f2), ~b! Im(f2), ~c! the path~dotted!. In ~c! the curvesH thr , H2 ,
H* , H1 and vertical linesG51/2,G51/) are drawn for clarity.D50.2.
-

n

-
f

r,
to
in
o

am
ia
c

n

it
t

g

he

h-
m
he

ns
t
real
ap-

ing
ath

h
we

z-
the
ar
a way that in the continuous limitk approaches unity and
a,b˜`, a/b˜1, in agreement withcn5DC(nD). Simi-
larly, in the integrable limith50 the sech solution is recov
ered, with the difference that herek5m and a,b˜`, a/b
Þ1. The calculations leading to these constants are give
Appendix C.

The fact that the breather solutions~36! appear as one
parameter families int is directly related to the existence o
an integralI 1 , i.e., Eq.~11!. As already mentioned earlie
this integral may be used to reduce the stationary DNLS
family of 2D mappings all displaying homoclinic chaos
two dimensions. The pair of homoclinic orbits of each
these mappings is given by Eq.~36! for particular values of
the parametert.

The behavior of these breathers as functions of the par
eters of the problem can be seen if we follow them ‘‘ad
batically’’ along a path in the parameter plane. This is a
complished by starting with the analytical solution~36! with
t50, somewhere on the lineg50 and adjusting it numeri-
cally ash andg are varied. In Fig. 3 this procedure is show
for c2. Increasing the drivingh, i.e., moving from 0 to 1 in
Fig. 3,c2 becomes more pronounced as the minimum of
real part becomes deeper. Proceeding then away from
line g50 ~from 1 to 2! an imaginary part appears. Movin
towards the upper boundary~from 2 to 3!, the c1 breather
~not shown! flattens out, becoming eventually equal to t
constant background ath1. At the same time,c2 remains
in

a

f

-
-
-

s
he

well localized and stays that way along the boundary~from 3
to 4!. c1 cannot be followed here, since it is indistinguis
able from the fixed point. Decreasing the driving away fro
the upper bound,c1 emerges again, and in approaching t
threshold the two solutionsc2 andc1 tend to coincide~line
4 to 5!. On the threshold line the real part of the solutio
vanishes exactly at the center (n50) and remains small a
all other lattice sites. Here the phase angle between the
and imaginary parts, taken at the breather’s center,
proaches the valuep/2 from above forc1 and from below
for c2, in agreement with the Mel’nikov variableu* at ho-
moclinic tangency; compare Fig. 2~c!. The behavior sketched
above in approaching the threshold with both solutions be
nearly equal persists if we decrease the driving along a p
slightly above the threshold~5 to 6!. When we finally switch
off the damping at constanth the difference between bot
solutions increases again until we reach the point 0
started from.

B. Time evolution

The problem of stability of the solutions~36! in time has
been discussed in detail for the continuous system@7# by
discretizing the damped driven NLS in a non-Ablowit
Ladik manner and formulating an eigenvalue problem for
discretized version. The numerical solution of this line
problem reveals that the bright solitonC1 is always un-
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FIG. 4. Modulusucn
6(t)u of breathers~36! in time, forG50. Upper row:H50.05,~a! c2, ~b! c1. Lower row:H50.25,~c! c2, ~d! c1.

D50.2. Note the stability occurring att'100 in ~c!.
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stable, whereas the dark solitonC2 is stable below a line
Hst(G) with Hst'0.08 asG˜0. This fact is interpreted a
follows: Below the lineHst(G) the spectrum of the dark
solution is bounded from the right by the value ofG implying
stability, whereas aboveHst a single pair of eigenvalues ac
quires a real part larger thanG, which makes the dark solu
tion unstable.

For the DNLS system investigated here the stability pr
erties are qualitatively the same as in the NLS case in
sense that a similar stability thresholdhHopf of the dark so-
lution c2 appears to exist. In Fig. 4 we show numeric
integrations for both solutions~36!, which indicate that the
times needed for break down due to numerical errors
enormous. At a value ofh corresponding toH50.05 thec1

breather begins to deviate from its initial shape att'60
while c2 remains stable for at leastt5500. Even atH
50.25, which is close the upper existence boundary, the
lutions are numerically stable up tot'100, corresponding to
20 000 iterations of the numerical time integration schem

On the lineg50 it can be shown exactly that both sol
tions are marginally stable. This is explained as follows: R
writing cn

6(t)5un(t)exp(it), the DNLS~1! becomes

idun1
un111un21

2
~11uun

2u!5~m2 ig!un2h ~38!

whence the stability of the breathers is determined by
spectrum of the linearized flowj̇5Jj obtained from insert-
ing un5fn

61jn in Eq. ~38!, whereJ is the Jacobian matrix
with matrix elements
-
e

l

re

o-

.

-

e

Jnm5
]un

]um
~fn

6!5
1

id
H m2 ig1hfn

6*

11ufn
6u2 dn,m

2
11ufn

6u2

2
~dn11,m1dn21,m!J , ~39!

wheredn,m is the Kronecker delta, the asterisk denotes co
plex conjugation, and we have used the mapping~6!.

For g50, the fn
6 are real and the matrixidJ is a real

almost symmetric matrix with real eigenvalues. Thus,
spectrum of Eq.~38! is located on the imaginary axis, mea
ing that both the dark and the bright solutions are margina
stable in time. It would be interesting to check from Eq.~38!
that forgÞ0 there is indeed a stability thresholdhst in agree-
ment with the numerical results~see Fig. 5 for a specific
value ofG50.2).

It is interesting to remark that thecn
1 breather can be

made stable by modifying the boundary conditions of t
DNLS ~1!. Namely, enforcing at finite lattice sitesn56N
~typically N550) the value of the flat solutioncn(t)
5Areit , the modulus of the bright soliton exhibits oscilla
tions in time with a frequency that increases withh, yet
displaying always a single hump in the spatial direction;
Fig. 6. Similar solutions, so-called whiskers, were discove
for the near integrable damped driven NLS under perio
boundary conditions and discussed in terms of Ba¨cklund
transformations@23#. They also occur in arrays of linearl
coupled optical fibers@24#.



PRE 60 1203BREATHERS AND MULTIBREATHERS INA . . .
FIG. 5. Modulusucn
6(t)u of breathers, forG50.2. Upper row:H50.15, ~a! c2, ~b! c1. Lower row: H50.20, ~c! c2, ~d! c1. D

50.2.
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In our case, the numerical calculations show that
whisker solutions disappear at sufficiently large values oN
~e.g.,N565 in the case under consideration!. This might be
understood perhaps in terms of Poincare´ recurrence times
which become very large for sufficiently largeN, or by quali-
tative changes in the structure of high order resonances
the origin as the number of degrees of freedom increase

IV. MULTIHUMP STRUCTURES „MULTIBREATHERS …

It was already observed in@7,18# that the NLS allows for
other solutions beyond the single-hump structures discu
e

ar

ed

in the previous section. A number of multihump structur
in particular, with two and three humps, could be found
means of a variational method using combinations of sing
hump solutions under an effective potential. In keeping w
the terminology adopted in Sec. III, we shall call them mu
breathers.

Numerical calculations performed on the damped driv
DNLS show that this system of equations possesses a g
variety of multibreathers, exhibiting different numbers
humps and obeying symmetry relations between individ
solutions. In view of the large number of these solutions
almost any point in the existence domain, one would like
FIG. 6. Modulusucn
6(t)u of whisker solutions found atG50. Initial wavecn(t50)5fn

1 . ~a! H50.05, ~b! H50.15. Flat background
enforced atn5650.D50.2.
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classify them according to their increasing complexity.
It is beyond the scope of the present paper to give a c

plete classification. We therefore restrict ourselves to
scribe the numerical method employed for the construc
of solutions and the symmetry classes of solutions. We a
survey their occurrence in the (H,G) plane in terms of an
area order parameter, illustrating our findings with a f
representative examples. We hope to come to a more s
factory picture at a later stage.

A. Shooting algorithm

The shooting algorithm we have employed to constr
multibreather solutions of high complexity is capable of
cating any solution with a finite number of humps. Furth
more, the method is not restricted to the model studied h
as it can be applied to other DNLS systems as well, suc
the ones studied in@16#. Similar algorithms have been use
in studies of pattern formation in complex Ginzburg-Land
systems with a continuous space variable@25#. Our method
uses the smoothness of the unstable manifoldWu along the
outgoing direction of the fixed pointr. Furthermore, using
symmetry relations we can avoid the complicated dynam
along the incoming direction.

The first step of the algorithm is accomplished by cons
ering a small 4D cube centered around the hyperbolic fi
point z` . This cube will of course be distorted under succ
sive iterations, as shown in Fig. 7, whence we define
dimensions dynamically by an areajn along the unstable
manifold Wu and a perpendicular areahn , the sides of the
initial cube being typicallyAj05Ah051025. A phase point
z0 is now chosen randomly in this cube and iterated un
the mapping. Upon return of this point to the neighborho
of z` we check whether it enters a reference sphere of ra
r51024 around z` . By doing so we isolate those initia
conditions that are close to homoclinic points of the syste

This filter can be made exponentially sharp since the a
jn (hn) of the 4D strip resulting from iterations of the initia
cube shrink~spread! at an exponential rate upon return alo
the stable manifoldWs. The return probabilityp can be cal-
culated from the overlapsn between the reference sphe
and thenth iterate of the cube. Withn8(r) denoting the time
upon reentrance in ther sphere the return probability is

FIG. 7. Planar sketch of the 4D shooting algorithm. Lines re
resent 2D areas in phase space, areas represent 4D volumes.
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as

p5
1

s0
(

n5n8

`

sn5
1

min~r2,j0!min~r2,h0!

3 (
n5n8

`

min~r2,jn!min~r2,hn!.

~40!

Having chosenj05h0!r2, this gives

p5cg

r2

j0h0
(

n5n8

`

jn5cg

r2

j0h0
jn8 (

m50

`

~e2L!m

'cg

r2

h0

exp@2L~n82n9!#

12exp~2L!
, ~41!

whereL.0 is the sum of the real parts of two stable eige
values of the fixed pointz` , n9 is the first iterate for which
homoclinic points within the strip are mapped close to t
linearized stable manifold (n9!n8), andcg is a factor nec-
essary to match the Cartesian geometry of the iterated
to the reference sphere.

In a subsequent step, a solution is constructed by itera
a z0 that was found to be close to a homoclinic point in st
1. This iteration procedure works well up to some iteraten
.n8 at which the orbit approaches closely a point on t
hyperbolic set within the reference sphere and subseque
escapes to regions far away from the hyperbolic fixed po
The solution is then extrapolated in a smooth way to
fixed point value. For a class of solutions, which are deg
erate with respect to a reversing symmetry of the mapp
~cf. Sec. IV C, below!, the accuracy of this procedure can b
enhanced by some orders of magnitude.

B. Symmetries

If solutions are symmetric with respect ton we can avoid
iterating through the chaotic regime. We then determine
center of the orbit (n50) and subsequently reflect the le
wing of the solutions onto the right wing. To do so, one mu
first verify that the result delivered by the shooting algorith
is indeed symmetric with respect ton. This is achieved by
the following symmetry argument.

Note that the mapping

SS qn

pn
D5S pn

qn
D . ~42!

is a reversing symmetry of the stationary DNLS~8! since for
all g andh

S~F1G!5~F1G!21S. ~43!

Consequently, our system allows for two kinds of orbi
symmetric ones withzn5Szn and nonsymmetric ones tha
occur in pairs,zn andSzn .

An orbit is symmetric with respect toS if and only if it
has a point in the fixed set ofS

FFix~S!5$zuS~z!5z%5$zuq5p%; ~44!

-
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FIG. 8. Existence diagram of multibreathers localized withinunu5675. Driving values are indicated by dashed lines, all solutions fo
at a particularH value are indicated by a 4-digit code above the dashed line. The coden1n2n3n4 symbolizes a solution withn1 maxima and
n2 minima of the real part,n3 maxima andn4 minima of the imaginary part. Maxima are counted only above the flat background, mi
only below. Note that solutions may change labels along a path in the parameter plane due to local bifurcations. Antisymmetric
~only at G50) with identical labeling are listed once. The curvesH thr , H2 , H* , H1 are drawn for orientation.D50.2.
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cf. @26#. In particular, since all fixed points of the mappin
includingz` , lie in Eq.~44!, the intersection ofFFix(S) with
Wu ~or Ws) contains at most points that are part of a sy
metric orbit. We also need to consider the possibility that
intersection is empty, sinceFFix(S) does not divide the
phase space. This is exactly the case for drivings below
threshold. Yet, once the intersection ofFFix(S) with Wu ~or
Ws) has occurred, beyond the linehthr of homoclinic tan-
gency, this intersection is structurally stable. This follo
from the fact that bothFFix(S) andWu are two-dimensiona
manifolds whose intersection in 4D vector space is of co
mension 2.

Focusing on our application to multibreathers, symme
multihump solutions are distinguished from nonsymme
ones by the fact that symmetric homoclinic orbits posses
point in FFix(S) while nonsymmetric homoclinic orbits d
not. In fact, although we cannot exclude the existence
nonsymmetric orbits, numerically we found only symmet
ones, for generic parametersg,h.0.

Apart from the reversing symmetryS, the reversing sym-
metry (F1G)S may lead to additional symmetric orbit tha
form the intersections of its fixed set withWu (Ws). Orbits
arising from reversing symmetries (F1G)m1S(F1G)m2,
m1 ,m2PZ are equivalent to the ones considered above a
relabelingn.

As already mentioned, if there are nonsymmetric orb
they occur in pairs,zn andSzn , due to the reversing symme
try ~43!. These orbits can be distinguished according
whether in the continuum limit they become degener
forming a single solution or they remain two distinct genui
-
e

e

i-

c
c
a

f

er

s

o
e

solutions related by symmetry. For the analytical solutio
~36! it is easily seen that those fall in the first class since e
of them has a counterpart that is found by reversing the s
of the free parametert. In the limit D˜0 this parameter
tends to zero and the pair of solutions coincides. Sim
things may be expected in the case of multihump solutio
where analytical forms are not available. Genuinely nonsy
metric orbits, on the other hand, which remain so after tak
the continuum limit, are found only on the lineg50. Here
they appear in addition to symmetric solutions and hav
symmetric real and an antisymmetric imaginary part. Th
can be explained by the symmetry of complex conjugati
which, in the case of no damping, leaves the DNLS inva
ant. Complex conjugation produces a pair of orbitszn and
Szn corresponding tofn and fn* , respectively. For param
eter valuesg.0, however, this symmetry is destroyed.
agreement with this result, no such orbits are found with
shooting algorithm forg.0 if the reference sphere is chose
sufficiently small.

C. A survey of multibreathers

In the following we present an illustration of the ric
structure of multihump solutions exhibited by our DNL
system. In Fig. 8 we have scanned a large part of the e
tence domain for multihump structures, restricting oursel
to solutions localized within an overall bandwidthunu<75. If
this interval is to be increased, one finds in addition broa
multihump solutions with in principle an unlimited numbe
of humps. The solutions are labeled by a 4-digit co
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FIG. 9. Modulusufnu of multibreathers localized withinunu<75 for G50. Columns correspond toH50.001 ~left!, H50.01 ~center!,
H50.1 ~right!. 4-digit labeling as explained in Sect. IV C:~a! 0211, ~b! 2111, ~c! 0321, and 0312,~d! 2222. Nonuniform labeling of the
imaginary part is due to complex conjugation symmetry.D50.2.
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n1n2n3n4 where n1 and n2 denote the number of maxim
and minima of the real part,n3 and n4 the number of
maxima and minima of the imaginary part. It proves su
cient for the labeling to count only maxima lying above a
minima lying below the flat background, as we will d
throughout this subsection.

Focusing ong50 one sees that this line gives rise
many more structures than the rest of the existence reg
This is not caused by multiplicities due to the complex co
jugation symmetry~because symmetry pairs are only list
once here!, but rather due to the fact that most solutio
appear for infinitely small valuesh. In Fig. 9, a number of
individual structures found forg50 are shown for three val
ues of drivingh corresponding toH50.001,0.01,0.1. In the
left column, corresponding to the near-integrable caseh
˜0, solutions appear as compounds of weakly overlapp
isolated humps, which, however, are not always identica
f6. Towards the right of the figure we increased the drivi
-

n.
-

g
o

strength, thereby keeping track of the multihump solutio
Note in Fig. 9~a! that Re(fn) taken at the center siten50
deviates from the flat background in the same measure a
driving is increased. Similar events are seen in Figs. 9~c! and
9~d! at other lattice sites that are located between two w
defined single humps and where Re(fn)-Re(f`) increases in
absolute size withh. Viewing multibreathers as being gene
ated by homoclinic orbits, it is reasonable to consider
largest of these deviations from the flat background as
estimate for the size of the chaotic region~homoclinic
tangle! located around the hyperbolic fixed point.

For g.0 in the rest of the survey diagram of Fig.
contrarily to the effectively two dimensional caseg50, so-
lutions appear and disappear as the driving is increased
yond certain values ofh that in some cases do not coincid
with the lower and the upper boundaries of the existe
domain. A complete picture of the solutions found forG
50.3 and localized withinunu<150 is given in Fig. 10 to-
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FIG. 10. Modulusufnu of multibreathers found localized withinunu<150 for G50.3 andH50.25. Labeling:~a! 2130, ~b! 2240, ~c!
0260,~d! 0460,~e! 0470,~f! 0790,~g! 06~10!0, ~h! 08~12!0. D50.2.
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gether with the 4-digit code as explained above for the v
ous solutions. The fact that some structures with a la
number of extrema are missing in Fig. 8 is due to the rest
tion to smaller lattice sitesunu<75.

The emergence and disappearance of multihump st
tures as functions of the driving amplitude can be better
derstood using an order parameter as a measure of com
ity. While typically any bounded smooth functional offn
suits this purpose, we choose for the sum of the squa
distances between orbit points and the fixed point in
complexfn plane, shortly called the breather’s ‘‘area’’
i-
e
-

c-
-

ex-

ed
e

A5D (
n52`

`

ufn2f`u2. ~45!

CalculatingA numerically as a function ofh, we expect to
detect global bifurcations at criticalh values where the de
rivative of A diverges and which are associated with the a
pearance and disappearance of multibreathers.

In Fig. 11~a! this area order parameter is shown for t
caseg50 with h varying over the existence interval 0<h
<h1 . We observe the four multibreather solutions of lowe
FIG. 11. Bifurcations of single- and multihumped solutions. Area~45! vs H in the intervalH thr<H<H1 . ~a! G50, ~b! G50.5. Labeling
as explained in Sect. IV C,D50.2.
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complexity, which were also seen in Fig. 9, plus the sin
humpsf1,f2 for which the area has been calculated fro
Eq. ~36!. Unfortunately, the shooting algorithm fails to ca
ture some solutions in certain parts of the figure so we do
know their behavior ash approaches the upper bound. Ne
ertheless the picture is clear enough to draw some con
sions. Breather solutions are often, but not exclusively, b
in pairs and cross the largest part of the existence dom
with only a modest change of their area. Eventually th
approach a point of more rapid change in area at a driv
value that is smaller than or equal toh1 . Plotting the indi-
vidual solution at this point one finds that they join smooth
with another solution. Two of these events are evident fr
our data. One of them, the bifurcation~flat solution,f1) at
h1 and A50 was already stated in Sec. III A. The oth
bifurcation involving the pair (2111,2111a) takes place at a
driving value considerably away from the upper bounda
Here the multibreather 2111a has evolved from 2222 in a
local bifurcation, corresponding to a change of labelin
which is not recognizable from the area plot of Fig. 11~a!.
One other global bifurcation involving the pair (f2,0211) is
less evident but may be conjectured to take place at or v
close to the upper boundaryh1 . It is worth noting that no
partner breather has been found at the point where the s
ture 0211 is born except from its symmetry related comp
conjugated version, and that the crossing of 0321 and 222
accidental, i.e., not related to a close approach of these
solutions in function space.

As a striking feature of the order parameter analysis
the caseg50 the lower threshold is equal for all breathe
This is again a consequence of the quasi-two-dimension
of the DNLS system in this case. Namely, it can be qual
tively understood that multibreathers arise from intersecti
of the invariant manifolds of the double-hyperbolic fixe
point. The geometry of these intersections takes place
similar way as sketched in Sec. II for single hump solutio
the difference being that single hump structures are form
by intersections of the primary lobes of the manifol
whereas multibreathers involve secondary, ternary, and o
higher order lobes.

In 2D maps it follows from geometrical arguments th
homoclinic tangency is a global phenomenon affecting
homoclinic points or none. Thus if the manifolds interse
tangentially at some parameter value, all homoclinic orb
are created simultaneously. This statement cannot be ge
alized to higher-dimensional maps. In fact, we find a co
terexample investigating the threshold scenario in our DN
system for the general case of finite dampingg.0. The bi-
furcation diagram is shown in Fig. 11~b! for a damping con-
stantg corresponding toG50.5. Here only the single-hum
pair f6 emerges aththr . Besides that we observe a succe
sion of global bifurcations involving pairs of symmetr
m-hump structures withm52,3, . . . all having their own
lower threshold values that increase withmand the areaA. In
addition to them pairs one finds in Fig. 11~b! other multi-
breathers whose bifurcation properties remain incomp
and do not allow us to draw firm conclusions in these cas

V. CONCLUSIONS

Since the spatial discretization of a pde on the infinite l
is an unavoidable step in most numerical integrat
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schemes, it is interesting to ask what happens to the solut
of the pde and their basic properties upon such a discre
tion. In the case of the NLS this question has attained p
ticular significance, in view of its many applications to o
tics, plasma physics and field theories in 111 dimensions
@4#, as well as an increasing interest in the dynamical pr
erties of nonlinear one-dimensional lattices@5#.

Furthermore, if the discretized form of the NLS is a com
pletely integrable, infinite-dimensional Hamiltonian syste
as in the case of the Ablowitz-Ladik discretization adopt
here, many analytical tools are available to study physica
interesting perturbations of the NLS as well as the DN
multi degree of freedom systems.

A particularly interesting class of solutions, which h
attracted the attention of many researchers, are certain
tially localized structures called ‘‘solitons’’ by some due
their shape and properties in a moving frame of reference
the integrable limit, and ‘‘breathers’’ by others, in view o
their periodic oscillations in time. The existence and stabi
of such structures in the case of a damped and periodic
driven NLS was studied recently in a number of interest
papers by Barashenkovet al.

In this paper, we have studied these localized structure
a damped and driven DNLS system of the form~2!. Our
approach has been to substitutecn(t)5fn exp it in Eq. ~2!
and construct the stationary solutionsfn as orbits of a 4D
symplectic map~6!.

Our main result is the discovery of a rich variety of loca
ized structures in the form of homoclinic orbits that a
asymptotic to a hyperbolic fixed point along its 2D stab
and 2D unstable invariant manifold. These structures
characterized by an apparently arbitrary number of extre
in then variation of their real and imaginary parts, accordi
to which they can be classified, taking also into account th
symmetries.

More specifically, we have determined analytically, usi
Mel’nikov’s theory, a threshold line in theg,h plane above
which the two simplest such structures are found to exist.
a particular feature of this perturbed DNLS we saw that
first component of the Mel’nikov vector vanishes identical
The second Mel’nikov component possesses two distinct
most straight node lines generated at the point of homocl
tangency and associated with the pair of breather solut
cn

6 . This in return allows one to calculate the lower ex
tence boundaryhthr(g) of these fundamental solutions. Ex
pressing this threshold in the NLS parameters we concl
that the linear lawH thr52G/p holds exactly in the continu-
ous system far beyond the nearly integrable regime. The
per boundaryh1 ,h* of the breathers’ existence domain a
pears to be identical to the one for the NLS, apart fro
scaling.

Here a comment may be in order concerning a poss
link between dynamical systems theory and statistical m
chanics. The notion of phase transitions is usually reser
for the thermodynamical limit at which the range of corre
tions between the particles of a statistical ensemble gives
to sudden changes of global behavior. In the station
damped driven DNLS we also encounter a nonanaly
change of order at the boundaries of the existence reg
since the portion of 4D phase volume filled by chaotic orb
is equal to zero outside and different from zero exac
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within the existence domain. This sudden change is here
tablished via a fixed point stability analysis leading to t
upper boundary, together with the Mel’nikov analysis lea
ing to the lower boundary of the existence region. This is
reason why we refer to the boundaries of the existence
main as phase transitions, and to our Fig. 1 as a phase
gram.

Furthermore, since the DNLS breathers can be identi
by the primary intersection of invariant manifolds along on
loop homoclinic orbits, our approach allows us to understa
qualitatively the emergence of more and more complica
localized structures~multibreathers! occurring at the multi-
loop homoclinic orbits of secondary and higher order int
sections between the 2D manifolds in 4D space. Using
area associated with a multiloop homoclinic orbit as or
parameter we discovered that distinct multibreather soluti
can have different driving parameter thresholds. ForgÞ0
these thresholds occur above the single-hump threshold
are also larger as compared to the thresholds of other,
complex, multihump solutions. Knowing an analytic integ
for the caseg50,h.0, we relate the coincidence of a
threshold values observed in this case to particular restric
features imposed on the intersections of invariant manifo
in 2D maps.

Thus homoclinic chaos around a hyperbolic fixed point
Eq. ~6! implies the existence of multihump localized oscill
tory states of Eq.~2! with in principle arbitrary complexity.
Indeed, using an appropriate shooting algorithm, we h
been able to construct a large number of multibreather s
tions numerically, characterized by an increasing numbe
humps ash grows above the existence threshold of t
single-humpsc6.

All these solutions, however~except forc2 over a well
defined region in theg, h plane! are found to be marginally
stable or unstable when integrated numerically for su
ciently long times. Thus, our results may be used to desc
in a systematic way the complex spatiotemporal dynamic
this system by identifying a large class of solutions that
not only unstable in time but are also characterized by
treme irregularity in their spatial structure.
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APPENDIX A

For the completely integrable mappingF the invariant
manifolds are found by the following, not necessar
unique, parametrization technique. Consider for each of
two integralsI k(q,p), k51, 2 in Eq. ~10!, the Hamilton’s
equations of motion

ṗ52]I k /]q, q̇5]I k /]p. ~A1!
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Here the dot denotes derivative with respect to some cont
ous time variablet andqi , pi assume the roles of canonical
conjugate variables,i 51, 2. Since the HamiltonianI k is con-
served, the flow~A1! takes place on the one-dimension
manifold labeled by a fixed value ofI k . For instance, in the
case of the action integralI 1 of Eq. ~10! we get

ṗ52]/]qI 1522q~11p2!12mp, ~A2a!

q̇5]/]pI 152p~11q2!22mq. ~A2b!

Next p is eliminated from the integral~10! againstq̇ using
Eq. ~A2b!. ImposingI 15const one obtains

q̇2/45m2q21~ I 1212q2!~11q2!, ~A3!

which can be integrated. In particular, o
the homoclinic connection (I 151) one finds
q(t);6sinhw sech(2t sinhw).

In a similar manner the angular integralI 2 gives rise to a
flow with a time variableu. But since the integralsI k are in
involution the two flows are commutative, which is accom
plished by taking the product of both solutions

q~t,u!56sinh w sech~2t sinh w!S cosu
sin u D . ~A4!

Using theorems of hyperbolic functions, in particular r
lation ~27!, one can specifytn , un such that Eq.~A4! satisfies
the mappingF,

tn5
nw1t

2t sinh w
, t,unPR, ~A5!

The desired two-parameter family of mapping solutions
then

q̂n~t,u!56sinh w sech~nw1r !S cosu
sinh u D ,

w5cosh2 m, 0<t,w. ~A6!

The timest andu of the interpolating flows of type~A1! are
the variables of the Mel’nikov vector. For a more gene
treatment of interpolating Hamiltonian flows for mappin
related to stationary solutions of integrable pde’s see@27#.

APPENDIX B

Here we determine the stability of the fixed pointsr i , i
50¯3 of mapping~9!. It is shown in following Eq.~10!
that the DNLS mapping is symplectic even forh, gÞ0. In
4D symplectic mappings the eigenvalues of the Jacobian
pear in pairs l1l25l3l451, similar to the 2D area-
preserving case. Consequently, fixed points may be pu
elliptic ~EE! with ulku51,k51 . . . 4, or purely hyperbolic
~HH! with all lk off the unit circle, or of mixed type. In
the latter case we discriminate EH points (ul1,2u
51,ul3u51/ul4u,1), and HE points vice versa@21#. Ana-
lyzing the Jacobian of Eq.~9! one sees that the way fixe
points fall into these four categories depends only on th
amplituder i and the damping constantg, namely, through
the signs of two discriminants
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f 6~r !5~m2r !262~m2r !Ar 22g222r 2g221 ~B1!

evaluated atr 5r i . Since the functionsf 6(r ) have roots at
the extrema~18!, their signs are definite at every fixed poin
They are displayed in Table II. Knowing the signs ofr
2g) and Eq.~B1!, stability then follows according to Tabl
III. Now we consider each fixed point separately:

Fixed pointr 0 : The polynomial~16! increases monotoni
cally whenceP(r 5g).(,)0 for h,(.)h* . Hence for
drivings belowh* we haver 0,g and the fixed pointr 0 is
HH. For h.h* it follows from r 0.g and the signs of Eq
~B1! that r 0 is EE. This fixed point changes quality again f
ultrastrong drivings exceeding the value

h11~g!52A21d1
5

4&
g21O~g2d!.2.82. ~B2!

In this caser 0 is of mixed type~EH! because the discrimi
nant f 2 changes sign again atr 115Ag21(d12)2.2.

Fixed pointr 3 : We notice thatr 2 is an upper bound for
g; cf. Eq. ~18!. Hencer 3.g. It then follows from the signs
of Eq. ~B1! that r 3 is EE. For drivings larger than Eq.~B2! it
eventually turns EH for the same reason as the fixed poinr 0
does.

Fixed point r 2 : Utilizing that g<r 2<r 2 and Tables II
and III it follows that r 2 is always HE. It exists forh2,h
,h1 .

Fixed point r 1 : We consider first the caseh,h* . As
P(g).0 andg,r 2,r 2 , r 3 we haveg.r 1 , and hencer 1
HH. Second, we consider strong drivingh.h* . It follows
from P(g),0 and the upper boundr 2 for g that g,r 1 .
Again we conclude the stability from Tables II and III. How
ever, here we encounter a phase transition at the critical p
g5d/2. Below this point the signs of both discriminan
~B1! are positive, andr 1 is HH. Above the critical point both
signs are negative implyingr 1 EE. Note that the latter cas
includes two different scenarios: Ford/2,g, 4

7 d there are
three fixed points, whereas for47 d,g,d/) and h* ,h
,h2 the pointr 0 is the only fixed point.

TABLE II. Signs of Eq.~B1! for fixed pointsr 0 ,r 1 ,r 2 ,r 3 .

r 0 r 1 r 2 r 3

f 1 f 2 f 1 f 2 f 1 f 2 f 1 f 2

0,g,d/2 1 1 1 2 2 2

d/2,g,d/) 2 2 1 2 2 2

d/),g 2 2

TABLE III. Stability types as functions of the fixed point am
plitude r. Labeling of eigenvectors: E for elliptic, H for hyperbolic

r ,g r .g
f 1(r ),0 f 1(r ).0

HH f 2(r ),0 EE HE
f 2(r ).0 EH HH
int

APPENDIX C

The exact one-hump solutions~36! for g50 are found as
follows: The desired solutions will asymptotically tend to th
smallest fixed point with modulusAr . This leads to the an-
satz

fn
65Ar ~112ajn

21!. ~C1!

Assuming the solutions to be real, the fixed point equat
~16! for r reduces toh5Ar (d2r ). Substitutingh and Eq.
~C1! in Eq. ~6! we get a mapping injn

jn111jn21

jn11jn21
@jn

21r ~2a1jn!2#52@mjn22r ~a1jn!#.

~C2!

In the limit D˜0, Eq.~C1! have to yield the NLS dark and
bright solitons. This implies a solution of the formjn51
6b cosh(nB1t) with b, t, B to be determined. Using addi
tion theorems for the hyperbolic functions, the neare
neighbor terms in the previous equation are

jn111jn215212bkx, ~C3a!

jn11jn215112bkx1b2~sinh2 B1x2! ~C3b!

with k5coshB andx5cosh(nB1t).
Next, we insert Eq.~C3! in Eq. ~C2! and order in powers

of x. Since thejn mapping holds at all lattice sitesn we may
equate coefficients of equal powers. With the highest te
being cubic this gives four equations. The cubic and q
dratic equations are solved as

r 5
m2k

21k
, k511

2ad

2a131d
~C4!

or, eliminatingk,

r 5
d

312a
. ~C5!

The remaining equations involve onlya, b and are con-
sistently solved by

4a5~d12!~b221!23

6A~112b2!212d~123b212b4!1d2~12b2!2,

~C6!

b2511a
2a13

2a131d~a11!
. ~C7!

As argued below only the positive root can occur in E
~C6!. With b25b, a5a this leads to the family of solutions
~36!. For the purpose of numerics one determines the co
ficients in the orderr, k, a, b.

In the continuum limit, lettingd˜0 one sees that in Eq
~C6! only the positive square root can occur, a case in wh
a, b reduce to hyperbolic functions in agreement with E
~C7!. However, in order to satisfy Eq.~C4! we needa5b2

21˜6`. This gives the continuum dark and bright so
tons.
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In the integrable limitr vanishes but notd. From Eq.~C4!
we see that thenk5m anda, b56`. It is slightly harder to
show that this results indeed in the integrable solution~13!.
Hereto we write out the general solutions~36! with a elimi-
nated in favor ofb, and evaluate in the limitb˜`:

fn
65Ar S 11

~b221!~11m!

16b cosh~t1n cosh21 m!
D

˜6Arb~11m!sech~nw1t!. ~C8!

It remains to show that the prefactor of the sech function
is

tt.

A

l-
s

equal to sinhw. We can eliminatek in Eq. ~C4!, solve forr
and using Eq.~C7! express the prefactor fora˜` as

Arb~11m!5S d

312a
D 1/2S 11

2a

21d D 1/2

~11m!

5S d

11m
D 1/2

~11m!5A~m21!~11m!

5Am2215sinh w. ~C9!
ar
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