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Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations
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For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology
that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that
of Metropolis in that it is sometimes possible to arrange for unconditional acceptance of trial moves. It involves
sampling states in a local region of phase space with probability equal to, in the first approximation, the square
root of the desired global probability density function. The validity of this choice is derived from the Chapman-
Kolmogorov equation, and the utility of the method is illustrated by a prototypical numerical experiment.
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In Monte Carlo calculations, it is often necessary to
sample from a probability density functiofPDP) that is J dy K(x—y)=1; (4)
known only to within a multiplicative constant. That is, we
often know an analytic form for
the result is Eq(2). We then note that the choice

F(x)=2Zf(x),
[ i ' | F)T(x=y)
wheref(x) is the PDF from which we would like to sample, K =T minl 1 5
and where the constadtis unknown. In computational sta- (y=x)=Tly=x)mi T(Y)T(y—x) ®

tistical physics, for example, it is often necessary to sample

from the Boltzmann-Gibbs distribution o . .
satisfies Eq(3) and involves only ratios of the PDF.

1 A simple application of the Metropolis method to a sta-
f(x)= Zexp[—[gH(x)], (1) tistical physics problem mig.ht then begin. with stgteand
select a new stat& according to somerial PDF, T(y

o ) —X). A convenient(but not necessajycondition on the trial
wherex coordinatizes the phase spa¢g(x) is the system ppfg s

Hamiltonian, ang3 is the inverse temperature. A simple ana-
lytic form is generally available foH(x) but not for Z.
Indeed, if such a form were known fat, it would not be T(y—=X)=T(X—Y). (6)
necessary to resort to Monte Carlo methods.
One way to break this apparent impasse was provided by
an ingenious algorithm due to Metropolis al.[1] in 1953.  This new trial state is theacceptedwith probability
This algorithm provides a Markov process on the state space
whose time-asymptotic state is the desired PBE), but _
whose transition kernéd (y—x) involves onlyratios of this min{1,exd — BL(H(X) —H(y)]}},
PDF. It does this by noting that a sufficient condition for a

stationary solution of the Chapman-Kolmogorov equation . S
for the Markov process, so that the net transition probability is given by E&).

Thus, the trial state is accepted with probability unity if it
results in a decrease of energy, and with probability exp
f(X)=f dy f(y)K(y—x), (2)  (—BAH) if it results in an energy increase aH. If the trial

is not accepted, then the current state is retained. More so-
phisticated implementations of the Metropolis algorithm bias

is that ofdetailed balance the selection of a trial state so that E6) is violated[2], but
the detailed-balance condition, E®), is maintained.
f(X)K(x—=y)=f(y)K(y—X). (©)) In this paper, we describe a fundamentally different kind

of Markov process for the sampling of a POEx) that is
To see this, we need only integrate both sides of(Bowith known only to within a multiplicative constant. The method
respect toy, using the normalization constraint on the tran-is distinct from that of Metropolis in that moves may, in
sition kernel, some circumstances, be accepted unconditionally. Neverthe-
less, it admitsf(x) as a time-asymptotic solution of the
Chapman-Kolmogorov equation, E®). The proposed Mar-
*Electronic address: bruceb@bu.edu kov process uses a transition rate of the form
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T(y—Xx)g(X) One limit in which Eq.(8) has a trivial solution is that for
K(y—x)= : (7)  which all states are equally accessibleTlfly—x) is inde-
fdzT(y—>z)g(z) pendent ofx, it is easy to see that Ed8) is solved by

g(x) = f(x). This solution is théneat-bathMonte Carlo algo-
whereT(y—x) is the trial PDF, angj(x) is to be determined fithm. The proposed method can thus be regarded as a gen-
in terms of the desired time-asymptotic sté(e). Note that eralization of the heat-bath algorithm for nonuniform trial

this form obeys Eq(4) manifestly. Essentially, it tells us to PDPF'S. _
sample fromg(x), normalized over only those states acces- We can better understand the character of the solutions to

sible by the trial PDFT(y—Xx). We note that the dependence Ed- (8) if we rewrite it as follows:
of g(x) on f(x) may well be complicatednonlinear and/or

nonloca), but it must be such that the transition kernel of Eq. (0= f(x) ©
(7) is unchanged wherii(x) is scaled by a multiplicative 9= '
constant. f dy T(x—=y)L9(y)/g(x)]

If we insist that the trial process be symmetric in the sense
of Eq. (6), then it is straightforward to verify that the | et ys suppose thai(y) is reasonably constant over the set
Chapman-Kolmogorov equation, E@), with transition ker- o y for which T(x—y) is appreciable. For simplicity, let us
nel given by Eq.(7), is satisfied by also suppose that the trial PDF is normalized,

f(x) g(X)f dy T(y—=x)g(y). (8) f dy T(y—x)=1.

Thus we must invert Eg(8) to getg(x) in terms of f(x).

Equation(8) is a nonlinear integral equation fg(x), butthe  Then the integral in the denominator is nearly unity, and
reward for inverting it is a Markov process with specified g(x)~ Jf(x) to first approximation. In this case, it makes
trial PDF, T(y—X), and stationary statg(x). The utility of  sense to solve Eq9) by the following successive approxi-
Eq. (8) is the central observation of this paper. mation scheme:

g(x)= lim g"(x),

/=

g9 (x)=const,

f dy T(x—y)[g" P(y)/g" P(x)]

The first few approximations tg(x) are then

gM(x)=f(x)

f(x)
9P (x)= \/
fdy T(x=y)[VE(y)/f(x)]

(10)
1/2
9= e
jdy T(x—>y){f(y)j dz T(x—>z)\/[f(z)/f(x)]/ f(x)f dz T(y—»z)\/[f(z)/f(y)]]
g9 = f(x) 1/2

f(y)f dzT(x—»z)(f(z)f dw T(x—»w)\/[f(w)/f(x)]/ f(x)f dw T(z—>w)\/[f(w)/f(z)])
f(x)f dz T(y—»z)(f(z)J'dw T(y—»w)\/[f(w)/f(y)]/ f(y)f dw T(Z—)W)\/[f(W)/f(Z)])

f dy T(x—y)
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In all cases, note that f(x) is multiplied by a factolC, the  Note that the diagonal elemenigx—x)=0 so that moves
g“)(x) scale by an overall factofC, but this factor cancels that leave the state unchanged are expressly forbidden. The
when inserted into Eq7) for the transition kernel. Thus the analog of the integral equation, E®), is the set of nonlin-
transition kernel depends only on ratios of the PDF, as promear algebraic equations
ised.

At this point, we make two observations: First, all of the
above considerations apply to a discrete state space, if we fi=0;(0j-1+7j+1),
just replace the integrals by sums as appropriate. Second, all
of the above considerations can be applied to situations for

which T(x—x) =0, so that the walker steps to another stateyhere we have used subscripts modulo 5 to denote func-

with probability unity, though there are no guarantees thatjopg arguments for simplicity. We note that scaling the

Eq. (8) will admit a solution in that case. . by C and thef; by C? leaves the system unchanged, and we
As a first simple example of this methodology for which gearch for solutions only to within an arbitrary multiplicative

the integral equation, E¢8), may be solvedwithout any  constant. It may be verified that the following is such a so-
approximation at all consider a five-state system witly | tion:

€{1,2,3,4,3, so thatT(x—Yy) may be represented as a ma-
trix which we take to be

gj:C(+fj+fj+1_fj+2+fj+3_fj+4)

0 1 0 0%
10100 X(F =t fotfiia—1.a)
7=l ot o010 X(H =t fia—fatfiia), (1)
0 01 01 . :
where again all subscripts are taken modulo 5. The constant
1 00430 C turns out to be equal to

1
c= :
V2(—Fy+ fp—fat fatfo)(—Fotfotfa—fatfo)(+FotTo—Tatfa—fo)(+Ti—To+ gt la—fa)(+T1— o+ fa—Fatfs)

but it is unnecessary to know this in order to use this solution, since only the ratios gf shaatter.

To be concrete, suppose that we tdke- 1, f,=2, f3=3, f,=2, andfs=1; obviously, these should be normalized by the
factor 1/9, but let us pretend that we do not know this normalization factor. The above equatiorts, gige=g,=0s
=3C, andg;=9C. Thus, if we simulate a Markov process with transition matrix

J2 0 0 Js
g>t0s g>t0s
0O L 0 o0 ¢
g1 0 J3 0 0 2 2
g:+03 0:+03 10200
92 94
k=| o 0 o |={o 01 0],
02104 02+04 2 , 2
3 1
0 0 9s 0 9 0030
93195 93195 ; 00 30
01 0 0 Ja 0
04+ 0; 04+0;

the result will be the desired equilibrium state. Note that thisthat a Markov process cannot force us to leave that state with
Markov process is nothing like the Metropolis algorithm, in probability unity every time we are in it, since the result
that trial states are accepted unconditionally. Also note that tvould be our spending half of our time in a much less prob-
is distinct from theheat-bathalgorithm, whereinall states able state. To see how the solution for the five-state system
must be sampled with probability proportional ft(x). breaks down in that case, let us suppose that state 3 has a
It is of course not always possible to do what we havehigh probability f,;, and the other four states have a low
done in the simple example above. If we have one state thgarobability f_. We find that gl=gs=(2f,_—fH)fﬁ , O
is much more probable than any other, our intuition tells us=g,=(2f,_—fy)%f,, and gs=fﬁ. We note that sgmy;)
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TABLE I. Iterative solution withN=5.

a{ig{"? /=1 /=25 /=50 /=175 /=100
j=24 1.41421 1.20022 1.05966 1.01876 1.00600
j=3 1.73205 2.72733 2.90754 2.96972 2.99019

=sgn(@@s) and sgn@,)=sgn(@s) =sgn@,), but that these we letN=50 (without making the functiorf any more rap-
signs will not be the same if,>2f . If they are not the idly varying), the iteration converges much fasté€fhis is
same, our transition matrix will involve negative probabili- €specially evident if we compare the values of the iteration
ties. Hence we arrive at another requirement on the solutiongumber 7 in the two tables. Moreover, we see that the
of Eq. (8): Any legitimate solution foig(x) must be of defi- asymptotic result is not very different from the first approxi-
nite sign. mation, which is proportional to the square root of the dis-
It is one thing to treat a five-state system, but quite andribution function. This suggests that we develop a perturba-
other to treat, say, a two-dimensional Ising model on a 1@ion theory forg(x) about Jf(x), and we turn our attention
X 10 lattice, for which there are'® distinct states. In such a to this approach below.
situation, it will be no more possible to stogx) on a Let us restrict our attention to continuous state spaces, and
computer than it is to stor&(x). Thus, we must search for suppose thafT(x—y)=W(|x—y]), for some norm|-||,
ways to obtain partial solutions to E(B) for large systems where the region of support of/(|ly[) is very small com-
on the fly more specifically, if we are in a state we must  pared to the characteristic soaeof f(x). Then we can Tay-
be able to easily computg(y) for all the states for which lor expandg(y) about the poink in Eq. (8). In particular, if
T(x—Y) is nonzero. This is enough information to samplewe then suppose that the moments of the functéare
the next state and then we can repeat the process. So for the
remainder of this paper we turn our attention to larger sys-
tems. IO | aywayp-1,
It is likely that analytic solutions in the spirit of Eqéll)
exist for arbitrarily large systems, but they seem to become
correspondingly more difficult to find. What is interesting is
that_ the iterative process given in Eq$0) actually be_cor_nes_ f dy W([lyly=t, (12)
easierto solve for larger systems, as long as the distribution
f(x) is smooth in the state space. To see this, let us consider
an N-state system with periodic, nearest-neighbor state con-

nectivity and f dy W(lyl)yy=tt+ o,

f=1+2 sinz(NWle)
wheret is the mean and is the variance tensor, then E§)
for j=0, ... N—1; note that whemN =5 this reduces to the becomes

numerical example used above for which we know that the
exact solution for theg; obeysg,/g91=04/91=05/9,=1

_ 1 . e
andgs/g;=3. (Recall that onlyratios of the g;'s matter) Fx)=g(x)[9(x) +t-Vg(x) +3(tt+0):VVg(x)+ - -]

These results are not particularly close to the first approxi- t-Vg(x) (t-V)2g(x)
mation of the iterative process of EGLO), which would be =[g(x)]? 1+ a0 + 2000
gigM=s/f=1, oS igV=\f,./f1=V2, and

oiMrgM=f4/f,= 3. This is because that iterative pro- o:VVg(X)

cess was predicated on the smoothnesi ¥, and there is 29(X) Y

no obvious sense in which a function defined on five discrete
points is smooth. Nevertheless, as Table | illustrates, the it-
eration does appear to converge. Table Il shows that whewe can invert the above equation perturbatively to find

TABLE II. Iterative solution withN=50.

a{ig{? /=1 /=2 /=3 /=4 /=100

j=10 1.26302 1.26408 1.26378 1.26361 1.26261
j=20 1.66176 1.66450 1.66410 1.66388 1.66301
j=30 1.68466 1.68747 1.68707 1.68685 1.68598

j=40 1.30976 1.31107 1.31076 1.31059 1.31018
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g=\f| 1-

tVE (6VH2 a:VVE o (VE)(VE)
aft | axe 8t qez )

where all functions and derivatives are understood to be evaluate®atce again, it is manifest that the transition kernel, Eq.
(7), computed from thig)(x) will depend only on ratios of (x). When the desired distribution functidiix) is of Boltzmann-
Gibbs form, as in Eq(l), the above equation reduces to

2 2
g=e AH?2 1+ﬂt VH+'B—(t VH)2+ éa VVH—'B—o- (VH)(VH)+ - (13

This form is potentially useful for Monte Carlo simulations Let us suppose that our trial PDF can take us from stéte

of molecular systems, for which the functiét(x) is known  any one of theN statess;sfori=1, ... N. Once again, this
in analytic form and the state space is continuous, so thatondition expressly forbids the system from remaining in its

gradients ofH(x) can also be computed in analytic form. It present state. The analog of our integral equation,(&gis
is interesting that the first approximationd¢x) in this case then

f(x), which is also of Boltzmann-Gibbs form, but at
twice the desired temperature.

To apply Eq.(13) to a molecular system with potential 1 N 1 N
energy e M=g(9 52 9(hi9=0(9 y2 [9(9)+3g()]
Ls oo 1 1S 299
_ _ =[g(s =
V(Q)—EZ’J, v(lgi—qj]) 9 NS g(s)

and PDF exp-pBV(q)]/Z, we calculateg from Eq. (13 so that the analog of our approximation method, &g) is
(with H—V), and consider moves that take the walkegat

=(qq, - -.,0y) to ONne at
e BH(S2
- - g(s)=
qt+tAgq=(q;+oey, ...yt o€y, N A
1+(1N) X [89(s)/9(9)]

where thee are spatial unit vectors, sampled with probabil-
ity g(g+Aq). Note that all of the particles must move a

distances in this scheme. The sampling of unit vectaxs  Solving this involvesO(N) work at the very least and will
may be carried out by the Metropolis or any other suitableyield N values ofg, one for each proposed new state. We
method, but after that is completed the new walker positiorcan sample from these to choose a site whose spin is then
is g+ Aq with probability unity. For sufficiently smalr, this  flipped with probability unity. As with our five-state prob-
method is guaranteed to converge and unconditionally adem, this is likely to become impossible when one state is
cepts moves. A potential pitfall is that this sufficiently small much more probable than any of its neighbors, and this is

value of e may be very small indeed. likely to happen for sufficiently low temperature. A more
As a final example, we turn our attention to the Isingfundamental problem is that the method as stated requires
model withN spinss and Hamiltonian O(N) work to flip one spin(albeit with unit probability.

This is clearly prohibitive, but it may be possible to drasti-
cally improve this situation by more clever choices of the
trial PDF. In particular, it would be interesting to study the
H(s)= —Z Z Jss;, relationship of this method to the various cluster algorithms
IeM that are known for the Ising modg3].
. .. _ In conclusion, the integral equation, E(), is a very
whereN; denotes the neighborhood of spinLet us intro- useful way to frame the problem of developing a Markov
duce the Operat00 such that0 s is the state obtained from process with spec|f|ed equ|||br|um and trial PDF. The
states by flipping spini. We also denote the resulting change method is not a panacea, in that it will not always be possible
in observable~(s) by to find a solution forg(x) with definite sign. The breakdown
of the method whemy has indefinite sign is reminiscent of
R R the sign problemthat is sometimes encountered in quantum
6iF(9)=F (6,9 —F(9). Monte Carlo simulation$4], and it would be interesting to
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study this relationship further. Moreover, unless a trial PDFodology to stochastic lattice Boltzmann methods is presented
is chosen very judiciously, the amount of work involved in in one of the reference$].

finding g may mitigate the advantage of unconditional ac- |t js a pleasure to acknowledge illuminating conversations
ceptance, as with the Ising model example above. In anwith Frank Alexander, Peter Coveney, Mal Kalos, Bill Klein,
case, we have shown that such a solution may be construct€laudio Rebbi, Bob Swendsen, and Jeff Yepez, and careful
perturbatively for sufficiently small step sizes in a continu-critical readings of the manuscript by Harvey Gould and
ous state space, and this observation ought to have immedylark Novotny. The author was supported in part by an IPA

ate application to molecular Monte Carlo problems, as welgreement with Phillips Laboratory, and in part by the U.S.

h | h In additi licati f thi th Air Force Office of Scientific Research under Grant No.
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