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Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations

Bruce M. Boghosian*
Center for Computational Science, Boston University, 3 Cummington Street, Boston, Massachusetts 02215

~Received 23 March 1998!

For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology
that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that
of Metropolis in that it is sometimes possible to arrange for unconditional acceptance of trial moves. It involves
sampling states in a local region of phase space with probability equal to, in the first approximation, the square
root of the desired global probability density function. The validity of this choice is derived from the Chapman-
Kolmogorov equation, and the utility of the method is illustrated by a prototypical numerical experiment.
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In Monte Carlo calculations, it is often necessary
sample from a probability density function~PDF! that is
known only to within a multiplicative constant. That is, w
often know an analytic form for

F~x!5Z f~x!,

wheref (x) is the PDF from which we would like to sample
and where the constantZ is unknown. In computational sta
tistical physics, for example, it is often necessary to sam
from the Boltzmann-Gibbs distribution

f ~x!5
1

Z
exp@2bH~x!#, ~1!

wherex coordinatizes the phase space,H(x) is the system
Hamiltonian, andb is the inverse temperature. A simple an
lytic form is generally available forH(x) but not for Z.
Indeed, if such a form were known forZ, it would not be
necessary to resort to Monte Carlo methods.

One way to break this apparent impasse was provided
an ingenious algorithm due to Metropoliset al. @1# in 1953.
This algorithm provides a Markov process on the state sp
whose time-asymptotic state is the desired PDF,f (x), but
whose transition kernelK(y˜x) involves onlyratios of this
PDF. It does this by noting that a sufficient condition for
stationary solution of the Chapman-Kolmogorov equat
for the Markov process,

f ~x!5E dy f ~y!K~y˜x!, ~2!

is that ofdetailed balance,

f ~x!K~x˜y!5 f ~y!K~y˜x!. ~3!

To see this, we need only integrate both sides of Eq.~3! with
respect toy, using the normalization constraint on the tra
sition kernel,
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E dy K~x˜y!51; ~4!

the result is Eq.~2!. We then note that the choice

K~y˜x!5T~y˜x!minF1,
f ~x!T~x˜y!

f ~y!T~y˜x!G ~5!

satisfies Eq.~3! and involves only ratios of the PDF.
A simple application of the Metropolis method to a st

tistical physics problem might then begin with statey and
select a new statex according to sometrial PDF, T(y
˜x). A convenient~but not necessary! condition on the trial
PDF is

T~y˜x!5T~x˜y!. ~6!

This new trial state is thenacceptedwith probability

minˆ1,exp$2b@~H~x!2H~y!#%‰,

so that the net transition probability is given by Eq.~5!.
Thus, the trial state is accepted with probability unity if
results in a decrease of energy, and with probability e
(2bDH) if it results in an energy increase ofDH. If the trial
is not accepted, then the current state is retained. More
phisticated implementations of the Metropolis algorithm b
the selection of a trial state so that Eq.~6! is violated@2#, but
the detailed-balance condition, Eq.~3!, is maintained.

In this paper, we describe a fundamentally different ki
of Markov process for the sampling of a PDFf (x) that is
known only to within a multiplicative constant. The metho
is distinct from that of Metropolis in that moves may,
some circumstances, be accepted unconditionally. Never
less, it admitsf (x) as a time-asymptotic solution of th
Chapman-Kolmogorov equation, Eq.~2!. The proposed Mar-
kov process uses a transition rate of the form
1189 © 1999 The American Physical Society
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K~y˜x!5
T~y˜x!g~x!

E dzT~y˜z!g~z!

, ~7!

whereT(y˜x) is the trial PDF, andg(x) is to be determined
in terms of the desired time-asymptotic statef (x). Note that
this form obeys Eq.~4! manifestly. Essentially, it tells us to
sample fromg(x), normalized over only those states acce
sible by the trial PDFT(y˜x). We note that the dependenc
of g(x) on f (x) may well be complicated~nonlinear and/or
nonlocal!, but it must be such that the transition kernel of E
~7! is unchanged whenf (x) is scaled by a multiplicative
constant.

If we insist that the trial process be symmetric in the se
of Eq. ~6!, then it is straightforward to verify that th
Chapman-Kolmogorov equation, Eq.~2!, with transition ker-
nel given by Eq.~7!, is satisfied by

f ~x!5g~x!E dy T~y˜x!g~y!. ~8!

Thus we must invert Eq.~8! to get g(x) in terms of f (x).
Equation~8! is a nonlinear integral equation forg(x), but the
reward for inverting it is a Markov process with specifie
trial PDF, T(y˜x), and stationary statef (x). The utility of
Eq. ~8! is the central observation of this paper.
-

.

e

One limit in which Eq.~8! has a trivial solution is that for
which all states are equally accessible. IfT(y˜x) is inde-
pendent ofx, it is easy to see that Eq.~8! is solved by
g(x)} f (x). This solution is theheat-bathMonte Carlo algo-
rithm. The proposed method can thus be regarded as a
eralization of the heat-bath algorithm for nonuniform tri
PDF’s.

We can better understand the character of the solution
Eq. ~8! if we rewrite it as follows:

g~x!5A f ~x!

E dy T~x˜y!@g~y!/g~x!#

. ~9!

Let us suppose thatg(y) is reasonably constant over the s
of y for which T(x˜y) is appreciable. For simplicity, let u
also suppose that the trial PDF is normalized,

E dy T~y˜x!51.

Then the integral in the denominator is nearly unity, a
g(x)'Af (x) to first approximation. In this case, it make
sense to solve Eq.~9! by the following successive approx
mation scheme:
g~x!5 lim
l ˜`

g~ l !~x!,

g~0!~x!5const,

g~ l !~x!5A f ~x!

E dy T~x˜y!@g~ l 21!~y!/g~ l 21!~x!#

.

The first few approximations tog(x) are then

g~1!~x!5Af ~x!

g~2!~x!5A f ~x!

E dy T~x˜y!@Af ~y!/ f ~x!#

~10!

g~3!~x!5S f ~x!

E dy T~x˜y!H f (y)E dz T(x˜z)A@ f ~z!/ f ~x!#Y f ~x!E dz T~y˜z!A@ f ~z!/ f ~y!#J D
1/2

g~4!~x!5S f ~x!

E dy T~x˜y!

f ~y!E dzT~x˜z!S f ~z!E dw T~x˜w!A@ f ~w!/ f ~x!#Y f ~x!E dw T~z˜w!A@ f ~w!/ f ~z!# D
f ~x!E dz T~y˜z!S f ~z!E dw T~y˜w!A@ f ~w!/ f ~y!#Y f ~y!E dw T~z˜w!A@ f ~w!/ f ~z!# D D

1/2

.



e
m

e
f w
,
f

at
ha

h

a-

The

nc-

we
e
o-

tant

PRE 60 1191GENERALIZATION OF METROPOLIS AND HEAT-BATH . . .
In all cases, note that iff (x) is multiplied by a factorC, the
g(l )(x) scale by an overall factorAC, but this factor cancels
when inserted into Eq.~7! for the transition kernel. Thus th
transition kernel depends only on ratios of the PDF, as pro
ised.

At this point, we make two observations: First, all of th
above considerations apply to a discrete state space, i
just replace the integrals by sums as appropriate. Second
of the above considerations can be applied to situations
which T(x˜x)50, so that the walker steps to another st
with probability unity, though there are no guarantees t
Eq. ~8! will admit a solution in that case.

As a first simple example of this methodology for whic
the integral equation, Eq.~8!, may be solvedwithout any
approximation at all, consider a five-state system withx,y
P$1,2,3,4,5%, so thatT(x˜y) may be represented as a m
trix which we take to be

T5S 0 1
2 0 0 1

2

1
2 0 1

2 0 0

0 1
2 0 1

2 0

0 0 1
2 0 1

2

1
2 0 0 1

2 0

D .
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Note that the diagonal elementsT(x˜x)50 so that moves
that leave the state unchanged are expressly forbidden.
analog of the integral equation, Eq.~8!, is the set of nonlin-
ear algebraic equations

f j5gj~gj 211gj 11!,

where we have used subscripts modulo 5 to denote fu
tional arguments for simplicity. We note that scaling thegj
by C and thef j by C2 leaves the system unchanged, and
search for solutions only to within an arbitrary multiplicativ
constant. It may be verified that the following is such a s
lution:

gj5C~1 f j1 f j 112 f j 121 f j 132 f j 14!

3~1 f j2 f j 111 f j 121 f j 132 f j 14!

3~1 f j2 f j 111 f j 122 f j 131 f j 14!, ~11!

where again all subscripts are taken modulo 5. The cons
C turns out to be equal to
he
C5
1

A2~2 f 11 f 22 f 31 f 41 f 5!~2 f 11 f 21 f 32 f 41 f 5!~1 f 11 f 22 f 31 f 42 f 5!~1 f 12 f 21 f 31 f 42 f 5!~1 f 12 f 21 f 32 f 41 f 5!
,

but it is unnecessary to know this in order to use this solution, since only the ratios of thegj ’s matter.
To be concrete, suppose that we takef 151, f 252, f 353, f 452, andf 551; obviously, these should be normalized by t

factor 1/9, but let us pretend that we do not know this normalization factor. The above equations giveg15g25g45g5
53C, andg359C. Thus, if we simulate a Markov process with transition matrix

K51
0

g2

g21g5
0 0

g5

g21g5

g1

g11g3
0

g3

g11g3
0 0

0
g2

g21g4
0

g4

g21g4
0

0 0
g3

g31g5
0

g5

g31g5

g1

g41g1
0 0

g4

g41g1
0

2 5S 0 1
2 0 0 1

2

1
4 0 3

4 0 0

0 1
2 0 1

2 0

0 0 3
4 0 1

4

1
2 0 0 1

2 0

D ,
with
lt
b-
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w

the result will be the desired equilibrium state. Note that t
Markov process is nothing like the Metropolis algorithm,
that trial states are accepted unconditionally. Also note th
is distinct from theheat-bathalgorithm, whereinall states
must be sampled with probability proportional tof (x).

It is of course not always possible to do what we ha
done in the simple example above. If we have one state
is much more probable than any other, our intuition tells
s

it

e
at
s

that a Markov process cannot force us to leave that state
probability unity every time we are in it, since the resu
would be our spending half of our time in a much less pro
able state. To see how the solution for the five-state sys
breaks down in that case, let us suppose that state 3 h
high probability f H , and the other four states have a lo
probability f L . We find that g15g55(2 f L2 f H) f H

2 , g2

5g45(2 f L2 f H)2f H , and g35 f H
3 . We note that sgn(g1)
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TABLE I. Iterative solution withN55.

gj
(l )/g1

(l ) l 51 l 525 l 550 l 575 l 5100

j 52,4 1.41421 1.20022 1.05966 1.01876 1.006

j 53 1.73205 2.72733 2.90754 2.96972 2.990
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5sgn(g5) and sgn(g2)5sgn(g3)5sgn(g4), but that these
signs will not be the same iff H.2 f L . If they are not the
same, our transition matrix will involve negative probabi
ties. Hence we arrive at another requirement on the solut
of Eq. ~8!: Any legitimate solution forg(x) must be of defi-
nite sign.

It is one thing to treat a five-state system, but quite
other to treat, say, a two-dimensional Ising model on a
310 lattice, for which there are 2100 distinct states. In such a
situation, it will be no more possible to storeg(x) on a
computer than it is to storef (x). Thus, we must search fo
ways to obtain partial solutions to Eq.~8! for large systems
on the fly; more specifically, if we are in a statex, we must
be able to easily computeg(y) for all the states for which
T(x˜y) is nonzero. This is enough information to samp
the next state and then we can repeat the process. So fo
remainder of this paper we turn our attention to larger s
tems.

It is likely that analytic solutions in the spirit of Eqs.~11!
exist for arbitrarily large systems, but they seem to beco
correspondingly more difficult to find. What is interesting
that the iterative process given in Eqs.~10! actually becomes
easierto solve for larger systems, as long as the distribut
f (x) is smooth in the state space. To see this, let us cons
an N-state system with periodic, nearest-neighbor state c
nectivity and

f j5112 sin2S p j

N21D
for j 50, . . . ,N21; note that whenN55 this reduces to the
numerical example used above for which we know that
exact solution for thegj obeys g2 /g15g4 /g15g5 /g151
and g3 /g153. ~Recall that onlyratios of the gj ’s matter.!
These results are not particularly close to the first appro
mation of the iterative process of Eq.~10!, which would be
g5

(1)/g1
(1)5Af 5 / f 151, g2,4

(1)/g1
(1)5Af 2,4/ f 15A2, and

g3
(1)/g1

(1)5Af 3 / f 15A3. This is because that iterative pro
cess was predicated on the smoothness off (x), and there is
no obvious sense in which a function defined on five discr
points is smooth. Nevertheless, as Table I illustrates, the
eration does appear to converge. Table II shows that w
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we let N550 ~without making the functionf any more rap-
idly varying!, the iteration converges much faster.~This is
especially evident if we compare the values of the iterat
number l in the two tables.! Moreover, we see that the
asymptotic result is not very different from the first approx
mation, which is proportional to the square root of the d
tribution function. This suggests that we develop a pertur
tion theory forg(x) aboutAf (x), and we turn our attention
to this approach below.

Let us restrict our attention to continuous state spaces,
suppose thatT(x˜y)5W(ix2yi), for some norm i•i ,
where the region of support ofW(iyi) is very small com-
pared to the characteristic scale~s! of f (x). Then we can Tay-
lor expandg(y) about the pointx in Eq. ~8!. In particular, if
we then suppose that the moments of the functionW are

E dy W~ iyi !51,

E dy W~ iyi !y5t, ~12!

E dy W~ iyi !yy5tt1s,

wheret is the mean ands is the variance tensor, then Eq.~8!
becomes

f ~x!5g~x!@g~x!1t•“g~x!1 1
2 ~ tt1s!:““g~x!1•••#

5@g~x!#2F11
t•“g~x!

g~x!
1

~ t•“ !2g~x!

2g~x!

1
s :““g~x!

2g~x!
1•••G .

We can invert the above equation perturbatively to find
61

01

98

18
TABLE II. Iterative solution withN550.

gj
(l )/g1

(l ) l 51 l 52 l 53 l 54 l 5100

j 510 1.26302 1.26408 1.26378 1.26361 1.262

j 520 1.66176 1.66450 1.66410 1.66388 1.663

j 530 1.68466 1.68747 1.68707 1.68685 1.685

j 540 1.30976 1.31107 1.31076 1.31059 1.310
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g5Af F12
t•“ f

4 f
1

~ t•“ f !2

32f 2
2

s :““ f

8 f
1

s : ~“ f !~“ f !

16f 2
1•••G ,

where all functions and derivatives are understood to be evaluated atx. Once again, it is manifest that the transition kernel, E
~7!, computed from thisg(x) will depend only on ratios off (x). When the desired distribution functionf (x) is of Boltzmann-
Gibbs form, as in Eq.~1!, the above equation reduces to

g5e2bH/2F11
b

4
t•“H1

b2

32
~ t•“H !21

b

8
s :““H2

b2

16
s :~“H !~“H !1•••G . ~13!
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This form is potentially useful for Monte Carlo simulation
of molecular systems, for which the functionH(x) is known
in analytic form and the state space is continuous, so
gradients ofH(x) can also be computed in analytic form.
is interesting that the first approximation tog(x) in this case
is Af (x), which is also of Boltzmann-Gibbs form, but a
twice the desired temperature.

To apply Eq.~13! to a molecular system with potentia
energy

V~q!5
1

2(i , j
N

v~ uqi2qj u!

and PDF exp@2bV(q)#/Z, we calculateg from Eq. ~13!
~with H˜V), and consider moves that take the walker aq
5(q1 , . . . ,qN) to one at

q1Dq5~q11sê1 , . . . ,qN1sêN!,

where theêi are spatial unit vectors, sampled with probab
ity g(q1Dq). Note that all of the particles must move
distances in this scheme. The sampling of unit vectorsêi
may be carried out by the Metropolis or any other suita
method, but after that is completed the new walker posit
is q1Dq with probability unity. For sufficiently smalls, this
method is guaranteed to converge and unconditionally
cepts moves. A potential pitfall is that this sufficiently sm
value ofs may be very small indeed.

As a final example, we turn our attention to the Isi
model withN spinss and Hamiltonian

H~s!5
1

2(i

N

(
j PNi

Jsisj ,

whereNi denotes the neighborhood of spini . Let us intro-
duce the operatorû i such thatû is is the state obtained from
states by flipping spini . We also denote the resulting chan
in observableF(s) by

d̂ iF~s![F~ û is!2F~s!.
at

e
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l

Let us suppose that our trial PDF can take us from states to
any one of theN statesû is for i 51, . . . ,N. Once again, this
condition expressly forbids the system from remaining in
present state. The analog of our integral equation, Eq.~8!, is
then

e2bH~s!5g~s!
1

N(
i

N

g~ û is!5g~s!
1

N(
i

N

@g~s!1 d̂ ig~s!#

5@g~s!#2F11
1

N(
i

N
d̂ ig~s!

g~s! G ,

so that the analog of our approximation method, Eq.~10! is

g~s!5
e2bH~s!/2

A11~1/N!(
i

N

@ d̂ ig~s!/g~s!#

.

Solving this involvesO(N) work at the very least and wil
yield N values ofg, one for each proposed new stateû is. We
can sample from these to choose a site whose spin is
flipped with probability unity. As with our five-state prob
lem, this is likely to become impossible when one state
much more probable than any of its neighbors, and this
likely to happen for sufficiently low temperature. A mor
fundamental problem is that the method as stated requ
O(N) work to flip one spin~albeit with unit probability!.
This is clearly prohibitive, but it may be possible to dras
cally improve this situation by more clever choices of t
trial PDF. In particular, it would be interesting to study th
relationship of this method to the various cluster algorith
that are known for the Ising model@3#.

In conclusion, the integral equation, Eq.~8!, is a very
useful way to frame the problem of developing a Mark
process with specified equilibrium and trial PDF. Th
method is not a panacea, in that it will not always be poss
to find a solution forg(x) with definite sign. The breakdown
of the method wheng has indefinite sign is reminiscent o
the sign problemthat is sometimes encountered in quantu
Monte Carlo simulations@4#, and it would be interesting to
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study this relationship further. Moreover, unless a trial P
is chosen very judiciously, the amount of work involved
finding g may mitigate the advantage of unconditional a
ceptance, as with the Ising model example above. In
case, we have shown that such a solution may be constru
perturbatively for sufficiently small step sizes in a contin
ous state space, and this observation ought to have imm
ate application to molecular Monte Carlo problems, as
have also shown. In addition, our application of this me
d
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odology to stochastic lattice Boltzmann methods is presen
in one of the references@5#.
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