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We consider the behavior of open quantum systems through the dependence of the coupling to one decay
channel by introducing the coupling parametgrmwhich is proportional to the average degree of overlapping.
Under critical conditions, a reorganization of the spectrum takes place that creates a bifurcation of the time
scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which
the reorganization process can be understood as a second-order phase transition and illustrate our results by
numerical investigations. The conditions are fulfilled, e.g., for a uniform picket-fence level distribution with
equal coupling of the states to the continuum. Energy dependencies within the system are included. We
consider also the case of an unfolded Gaussian orthogonal ensemble and of a spectrum bounded from below.
In all these cases, the reorganization of the spectrum occurs at the criticaloya|wé the control parameter
globally over the whole energy range of the spectrum. All states act cooperafi8&§63-651X99)02707-5

PACS numbgs): 05.70.Fh, 11.86-m, 64.60-i, 03.65—w

I. INTRODUCTION in the case of the laser, a control parametaran be defined

. which is proportional toI'/D. The information entropy

Recently, the properties of open quantum systems havghanges rapidly in a relatively small region of the control
been studied with a renewed interest in the framework oharameter in both the lasgt5] and the open quantum sys-
different approaches. Mostly discussed is the restructuring aem [4].
the systems taking place at high level density under critical |n other investigationf5] it was realized that the avoided
conditions and the resulting formation of different time crossing of two neighboring resonance states which are
scales in terms of lifetimes of resonance states. The reorg@oupled to one common channel is the basic process of the
nization occurs if the degreB/D of overlapping reaches a restructuring observed globally in the system. As soon as

critical value ([ is the average width obtained by averagingtwo resonances start to overlap, their interaction via the con-

overall M resonance states in a certain energy regionnd tlnuulm can no Ion_ge(; be ner?lecteld. hAS a function of the
is the mean level distangelt is investigated for resonance coup 'rr:g to r‘;’l cehrtalr_l ecay channel, the tw_o res_o_nancez_ap-
ohenomena in nucldil—6], atoms[7.8], and molecule§9].  Proach each other in energy up to a certain minimum dis-

In the meantime it has been considered also in other systeni@nC€ in the complex energy planedt ac; . The avoided
such as, e.g., quantum dof&0] and microwave billiards C"oSSing is reflected in the wave functions of the two reso-

[11]. The numberM of resonance states is usually muchNance states. The biorthogonality reaches its maximum if
larger than the numbé¢ of open decay channels. — agir, and vanishes itv—0 anda—c [5]. As a function

In most of these studies, the projection operator techniquéf further increasingr> a;;t, the width of one of the two
is used, which was introduced about 40 years ago by Fesiiesonance states decreasessonance trappingwhile the
bach[12]. It allows us to investigate, in a direct manner, thewidth of the other one increases further.
corrections to the many-particle states in a subspace of the The local resonance trapping can explain, indeed, the glo-
full Hilbert space which arise from the coupling to the or- bal restructuring of the quantum system under critical condi-
thogonal subspace. The properties ofgrenquantum sys- tions. It determines also, as will be shown in this paper,
tem are described well by using the following division of the whether the restructuring of the system takes place collec-
whole function space: th® subspace contains the discrete tively with the simultaneous participation afl basis states
states of the system while tliesubspace consists of open as or successively by individual trapping of resonance states.
well as closed decay channels. In studying the restructuring, In the following, we will investigate this question in de-
we are interested in the properties of the states of@he tail. In Sec. Il, we write down the basic equations used in the
subspace modified by their coupling to tResubspace play- paper. The model is formulated and the characteristic poly-
ing the role of an environment. This method can be used fonomial is given. The Hamiltonian is non-Hermitian and its
a wide class of open quantum systeft8,14]. eigenfunctions are, generally, biorthogonal. In Sec. lll, the

The question of whether this restructuring may be considproperties of a system with picket-fence distributed levels
ered as a phase transition of second order is posg®] iout  coupled with the same strength to one decay channel are
not considered in detail up to now. A possible analogy to thaénvestigated in detail. The study is performed analytically for
formation of laser light is investigated numerically[#]. As  the limiting case of an infinite number of states as well as for
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a finite number. The results are illustrated by numerical calThey fulfill PQ=0=QP and P+Q=1. The total Hamil-
%ulat!?nz. Flt:\aﬂly, the _regulfts obtam(?d are d:jscuzsedha”ﬂmian acting on the full Hilbert space is split into four terms:
identified with characteristic features of a second-order phasg _ 4@+ OHP - PHO - PHP. It is PH.O=OHP=
transition. The process of formation of a collective state IEDQHQ (? dAHIADQO s 0Q=QH,P=0,
aligned with the decay channel is discussed in detail. It?”t Qq&. andQ °#0. . I

We are interested in the properties of the Hamiltonian of

wave function is coherently mixed in the wave functions of h hich b q
all basis states including those states which r@oé over- the open qu.antum system, which acts onlﬂneu_ spacencd
carries the influence of thE space. The derivation of this

lapped by it. - o ] )
The results obtained in Sec. Ill are underpinned in Sec. n/Hamilton operator is given in the formal scattering theory
-and can be found, e.g., [13],

by considering some other level and coupling-strength distri<
butions being more realistic than those in Sec. lll. The study

is performed both analytically and numerically. General con- HE6(E)=QHQ+QHP GL(E) PHQ. 3

ditions for the appearance of a second-order phase transition

are formulated analytically and illustrated by the results oflt depends on the enerdy of the system(given by the en-
numerical calculations. As a special case, the sharpness ofeigy of the incident particle in the scattering progessd

phase transition is shown to be distorted by an imaginaryonsists of two terms. The first on@HQ) describes the
part in the coupling term. The results are summarized an@ehavior of the closed system of discrete states which in-

discussed in the final section. cludes the configurational mixing due to the two-body re-
sidual interaction, but does not take into account the cou-
Il. BASIC EQUATIONS pling to the decay channels. The second term gives the
o correction due to the coupling of the two subspaces and con-
A. The Hamiltonian of an open quantum system tains the propagator in the SubSp&CéB(F,J’)(E)= IS[E-H 7
Let us consider the Hamilton operator —PHP]1P.
Due to this propagator, the effective Hamiltonian is non-
H=Hy+V (1) Hermitian. Its complex eigenvaluesi,(E)=¢&(E)

—i/2I' (E) give the poles of the resonance part of the scat-

of a many-particle system wherd, describes the mean t€ring matrix
field, i.e., the motion of the particles in a finite depth poten-

tial, andV is the operator of the two-particle residual inter- ges i % Yie(E) Yker (E) 4
action. A convenient method to solve the Salinger equa- cc'_'k:1 E—N\(E) )
tion (H—E)¥ =0 in the full Hilbert space of discrete and

continuous states is to use the projection operator techniq%-here _ Y ; o :
. ; Yieo(E) =1N2m(&(E)|V|Dy) is the transition matrix
introduced by Feshbadli2]. Here the whole function space g|omant hetween a discrete and a scattering state. Thereby,

'S d|\_/|dedf|nr:o two S;Jbsp_acegssnd ﬁ_‘ ;he Q subspacz the complex eigenvalues, get a concrete physical interpre-
consists of the wave function®;”y which are constructe tation as the energy positiodd®=&(£[*Y and total decay

from a (finite) basis set of Slater determinants. The Slater . res._ re .
determinants are antisymmetrized products Afbound widthsT\*=T'(£) of a resonance stafd]. The & differ

single-particle states and are mixed via the two-body residuaiSually from the corresponding eigenvaligsof QHQ, i.e.,

interactionV/. The P subspace consists of the coupled chan-from the energies of the states of the unperturbed system. So

. . the external coupling to the decay channels causes not only
nel wave functiond:(E)) which are constructed from the the finite lifetime of the states but generally also an energy

wave functions of the channels. These wave functions Conéhift

sist of the antisymmetric products of a many-particle wave In the following, we will restrict ourselves to an energy

. SM _ .
funct!on|<I>(A,l)> of (A—1) bpunded particles and the wave region in which the energy dependence of the Hamiltonian is
function of an unbound particle. The coupled channel Wave il in spite of a large numbevl of states lying in it

functions|£.(E)) of the P subspace are mixed in the basis ¢ iher we consider a small numbkrof decay channels

channel wave functions by the same two-body residual interg hich are all open and not coupled among themselves. Then

actionV as the statebp™) of the Q subspace in the Slater the second term of the operat(® in matrix representation

determinants. The total Hilbert space is given by the numbegan be split in a principal-value integral and the sum of the

M of discrete state$®p™) and the numbeK of channel residua. Assuming time-reversal invariance, the matrix ele-

wave functiong&.(E)). The projection operators are defined ments of both the real and the imaginary part can be chosen

by as real numbers. Then, the effective Hamiltonjanin the Q
subspace is, to a good approximatidr3],

M
Q=2 |BN(DRM, H=H—iaVV', )
k=1

(2 whereVV' is a Hermitian operator an#° containsQHO
" as well as the the principal-value integral. As in E8), the
dE'[£(E")){&(E")]. first term 7 ° describes the internal structure of the unper-
c turbed system in th€ subspace. The second teimV V'

K
-3
c=1

—_—

E
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follows from QHI:“’-G(P*)(E) . I5HQ and describes the cou- 9iven byK. That meansvl —K states are almost decoupled
pling between the two subspaces. The parametassumed f.rom the continu_um of decay channels and become long
mostly to be real, characterizes the mean coupling strengtived (trapped while K states take almost the whole coupling
between discrete and continuous states. strength:={C T /2~Im{Tr(H)} and S{L, . ;T'i~0. There-

The Hamiltonian(5) is used successfully for the descrip- fore, two different time scales arise at large see, e.g.,
tion of resonance states in nuclgi3] and moleculed9].  [1,2,4,5.9.
Nowadays, it is applied also to the description of resonance Thus, a reorganization in the open quantum system takes
phenomena in other systems such as, e.g., quantuniifijts place in the transition from small coupling parameterso

The rank of H° is equal to the numbe¥ of states con- large ones whe>K. In the following, we will investigate
sidered. Its nondiagonal matrix elements describe the corthe question of whether and under which conditions the re-
figurational mixing of the discrete states. The coupling ma-Organization of the open quantum system can be understood
trix V is a KXM matrix if the number of open decay as a phase transition in the limil —c. We restrict our-
channels is equal t&. The element? of V describes the Selves to the case with one open decay charikei 1).
coupling of the discrete staté to the channelc; i
=1,...M; c=1,... K. Thus, the rank o/ V' is K. B. The characteristic polynomial

As long asa is small, the second term of the Hamiltonian  \ye consider a system withl =2N+ 1 states coupled to
‘H can be considered as a small perturbatloﬂ-tﬁ. This  gne common decay channéd £1). The unperturbed eigen-
condition is always fulfilled if the average widh is much  values of° are denoted b¥,, ke {—N, ... N}, so that
smaller than the average distanDe between neighboring E;<E if j<k (without degeneration The center of the
resonance states. In this case, the nondiagonal matrix elepectrum is assumed to bekg= 0 without loss of general-
ments of{ are small and the individual resonances are isoity. The coupling vector will be denoted byV

lated. Their positions and widths obtained from the eigenval=(v_y, ..., v _1,00,U1, - - - UN)-
ues\; of H differ only slightly from the real and imaginary Due toK=1, all column and row vectors, respectively, of
parts, respectively, of the diagonal matrix elementg{of VV' are linearly dependent. Subtracting times the row 0

In the opposite case of large, the matrixVV' deter-  from the rowk, one gets the following expression for the
mines the behavior of the system. Then, the rankHofs  characteristic polynomial:

E_N_)\ 0 O e )\U_N
0 E—N+l_)\ 0 )\U—N-Fl 0
0 0 E_;—\N v, 0o - 0
—lav_y —lav_Ny1 -+ —lav_y —lavg—N —lavy --- —lavy
0 o \vg E;—\ - 0
0 Aoy 0 -+ En—\
|
which can be written as whereQy is of the order N+ 1 andRy of the order . If
lv|?=1V k, theQy andRy are related in a simple manner,
N N
Pn(N) = Ex—\)—i 2 d
n(N) EN (Ex ) ak;N |Uk| Ry=— —Qy.- (8
dx
N
x Il (g—n)=o0. (6) In the limit «=0, we find\ =& =E, V k, i.e., the eigen-
j=-Nj#k values ofH are equal to those df° (according to the defi-
nition of the parametes).
Equation(6) can be proven by induction. The limit of large coupling strengtha(—o°) can be ob-

According to Eq(6), Py()\) is the sum of two polynomi- tained when we rewrite the characteristic polynontélas
als,

N 1S, 1
Pu(M) = Qu(\) —i aRy(V), o POl BV 2 ) ©
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The first factor of the product term is zero only at the unper-Equation (15) shows that for large coupling strengths, the

turbed eigenvalueg, of H°. Therefore, fora#0 the solu-

decay widths of &l states decrease as¥lWith increasinge.

tions of Eq.(9) must be given by the zeros of the secondThis decrease is called resonance trapping.

factor, i.e., by the solutions of 14)==[vJ?/(E;—\). In the
limit a— o, there are R solutions lying at real energies:
)\kE(Ek Ek—l) if k>0 and)\ke(Ek Ek+l) if k<0 where
E is the eigenvalue of the unperturbed Hamilton’»‘aﬁ. In
the case of a picket fence distribution wiy=k and equal

coupling, \ approache&«=+1/2. Furthermore, we have ex-

actly one complex solution &,=0 andIl y—~ for a— .

Besides these® solutions for largex, we have a solu-
tion atEq=0 andI'g— in the limit N—oo.

In Secs. Il and IV, we will study in detail the properties
of the characteristic polynomial6) by means of special
cases.

C. The eigenfunctions of a non-hermitian Hamilton operator

Let us now discuss the behavior of the system as a func-

tion of increasing coupling strength. From Eq.(7), we get

dA

dn
o QMO RN i g (10

for the solutions ofPy(N\)=0 and further the differential
equation

dx iRNy(N)
i _ (12)
da Qu(N)—iaRy(\)
with the initial condition\, (a=0)=E.
For smalla, Eq. (11) reads
da iRN(N
St kRN il 12
@ Qy(\y

That means the imaginary part of eigenvalge of H in-
creases, with increasing, proportional to|v,|?> while the
real part of it remains unchanged, as longeas small.

For largea, we have N solutions whose imaginary part
is small while the real parf, is determined byE, <&,
<Ey_; if k>0 and Ex<&<Ey,4 if k<O, since A\ («
—w)=§&,. The relevant part oRN()\) for the solutions of

Pn(N) =0 is thereforeT(\) = H —1(&—N).
Inserting
. gk _2
)\k(a)=5k—l Z+O(a ) (13)
into
0=Qn(N) —iaTy(N) (14
leads in the two lowest orders ind.to
N 2N
0= H E: +|——5k> iall (&§-&+igi/ ).
== k=1
(15
The solution is
N
1 (E-&
gk: - 2N >0 (16)
IT -0

j=1j#k

Another value characterizing the reorganization which
takes place in the open quantum system under critical con-
ditions is the mixing of the wave functions of the resonance
states[1,4]. The mixing caused by the coupling of all the
states to the common decay channels is related, in a natural
manner, to the basic set of wave functions of the closed
system,

M

|<Dir>:j21 aj| ®), 17)

where|®{) are(right) eigenfunction ofH and|(1)°> are those
of 1 °. The eigenfunction§b;) of the non- Hermman Hamil-
tonianH are biorthogonal. The right and left eigenfunctions
are defined by

(H—\)|®{)=0,
(Di[(H—=N)=0, (18)
with the normalization
<<1>|<1>> 8ij, (D[D)#6 ;. (19

In our casgd®!)=(|®!))T [5]. In the following we will drop
the indicesr andl considering only the right eigenfunctions.
Then the second relation of EQL9) reads

(®i|Pj)=b=1 (20
and(®;|®;),i#], is a complex number, generally. The val-
ues b, are fixed by Eq.(19) due to the relation|®!)
=(|®!))T between the right and left eigenfunctions. The be-
havior of theb; as a function of the coupling parametelis
illustrated in[5,16].

A good numerical measure for the strength of mixing is
the numbemNP of principal components in the eigenfunction
@, . For its definition we are using the quantity

(21)

Then, the number of principal components can be calculated
as
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1

M [y 4
=1

(22)

The value ofNP can be understood as a measuréeaterna)
collectivity of the resonance stade, . In the limiting case of
equal mixing of the stateé with all statesj, bj; =1/JMVj,
we getNP=1 (maximum external collectivity In the oppo-
site caseno external collectivity we haveb;; =6, ; and N/
=1/M. Generally, IM<NP<1.

Further, we introduce the value

1Y 1 2
BIM;@%I@OEM;Q;L (23

which characterizes the degree of non-Hermiticityrofac-
cording to Eq.(20). It is a function ofa andB=1 if H is
Hermitian.
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Since the two functions cag(and sink) never vanish for the
same argument, we have to consider two different cases.
(i) sin(@€)=0=E=neZ and

1+ 7a

1-7a

T

e (28)

has a real solutiof’ for <1/ only. For smalla, we have
therefore

F—'l 1+ 7a 29
T\ 1-7a (29)
andl'— —(1/7) Ing for a=(1/7)(1—¢) ande—0.
(ii) cos@E)=0=E=n+13 forne Z and
r Ta+1
e” = . (30
mTa—1

The last equation can be fulfilled only far>1/7. For large
«a it is therefore

Let us consider first the simple case of a picket-fence

distribution ofM =2N+ 1 levels which are all coupled with

the same strengtti‘ideal picket-fence distribution) to the
continuum consisting of one decay chann€1). The ad-

Ta+1

I'=—In py—

(31)

vantage of this simple model is that analytical studies can be

performed.

A. Analytical study for the limiting case N— oo
SupposeE, =k und|v,|=1 V k. Then Eq.(6) reads

Pn(M)=Qn(N) —iaRy(N)
N

N N
=1 k—n-ieX Il (G-N @9
N k=—=N j=—N,j#k

and the relation(8) holds. In order to consider the limit
—oo, we divideQy by a convergence ensuring factor,

N
N A A
Iim(N?N—()z lim N[ ] (1—— 14—
N—oo 2 N—oo k=1 k k
-11 -
k=1
N M\2] sin(an)
=21 [1- —) = . (25)
k=1 k
Then the characteristic polynomial reads
P(N)=sin(7\)+imacogw\)=0. (26)

Denoting the complex eigenvalue Bfby A =&—i(I'/2) and
splitting Eqg.(26) into its real and imaginary part, we ggor
real )

cog wé)[e™(1—ma)—(1+am)]=0,
(27)
sinw&)[e™ (1—ma)+(1+am)]=0.

andl'— —(1/7) Ine for a=(1/7)(1+¢) ande—0.

As a result, the widths of all the states increase up to
infinity as a function of increasing. The singularity at the
critical point a; is determined by Ird). It is logarithmic

Further, the energetical positions of the states remain un-
changed at the unperturbed energigs=k of the system
(eigenvalues ofHy) up to a— 1/7. At agyy= 1/, the real
part & of 2N eigenvaluegall k+0) of H jumps fromk to
k—3 if k>0 and fromk to k+ 3 if k<O, respectively. As a
function of further increasingy, the imaginary part of the
eigenvalues of the ? resonance statdsll k but k=0) de-
creases first as |la§ while it approaches zero asdlfor «
—oo according to Eq(9).

In order to study the behavior of the state in the center of
the spectrum at the energyy=0, we consider only the
highest-order terms of in Eq. (6):

AN 2N+ 1)N2N=0. (32
For largea (a>1/7), the state corresponding to the solution
AN=—ia(2N+1) lies at£€=0 and its width increases lin-
early with a.

Summarizing the results, we state the following. In spite
of the fact that the coupling parameterenters Eqs(5) and
(7) linearly, the imaginary parts of the complex eigenvalues
show a singularity at the finite value= 1/7. For larger cou-
plings, a clear separation of the time scales with respect to
the decay widths of the resonance states occurs. This hap-
pens also in the case of an infinitely extended spectrum. This
is not a local effect of docally broad resonance in a re-
stricted energy region, but it is produced by the whole sys-
tem in acollectivemanner.All basic states, independent of
their energy position, act cooperatively.
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B. Widths at the critical point for finite N: Analytical study

The sum of the widths of all states is, in our simple ex-

ample with equal coupling strengths, given by

Im{Tr(H)} =2 %=

J

a(2N+1). (33

It is Tr(H)=const(). Thus, I{Tr(*)} should be a smooth
function of @ not only far from the critical point but also
near to it in spite of the divergence of the widths fiar
—o at a=1/7 (see Sec. lllA. In the following, we will
prove this statement.

First, let us consider the eigenvaluestoffor finite N. In
this case, we have

N

N
1
PvN)= IT (k=n\)|1-ia > ——|=0
k==N iS=N A

(34)

instead of the simple Eg26) holding for N—o. As dis-
cussed in relation with Eq9), the solutions ofP(\)=0
follow from 1—ia2N _n/(j—A)=0. Here, we are inter-

ested in the dlfference between the solutions obtained for

finite N and those folN— .
It holds that

N
1
O=1-ia 2 k——1+|a7TCOI(7T)\)

©

1
+2iah , 35
“ kEN:+1 kZ2—\2 39
where the correction term is given by
- 1 °° dx = dy
2\ mzxf —=2f
k:%+1 k?—\? N+1/2 X2 — N2 NN Y2 —
y—11~ 1-1]|”
=|In— In
y+1 NIA 1+1k NI
= In(l——+O(y2))
N/X
2|~ 2\ (36
y N/ N

under the assumption yi=X/N<1. This condition is ful-

filled, to a good approximation, in the center of the spectrum.

Splitting Eq. (35) into its real and imaginary parfsvith A
=&—(i/2)I'], one arrives at

0-1 sinh(#I") N r 3
T T CosaT) —cod27E) | EN &7
for the real part. Here the identity
sinh(2x) —i sin(2
cot(x+iy)= n(2x) n2y) (38

cosh(2y)—cog 2x)
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is used. The equation for the imaginary paft{0) reads

sin(2w€) 2a€

0= CMTcosr( 7I')—coqg27E) N’ (39
from which we get
) 2& 28
O=sin(27E)+ —cosiH7l') ———coq27wE). (40)
7N 7N

An estimation for the upper limit of the widthE of the
states aw= 1/ leads to

N7
2—53|n(27r€) ~In (42

N7
€]
Here, we have usel/|&|>1, which is fulfilled only in the
center of the spectrum. Thus,

al'= arcos+cos{ 27wE)—

r 1
E(a:acrit)$zln

N7 42
€
which holds for every one of theN states(for all k but k
=0) at the critical point. It means thdf<InN for «
— 1/ for all N.

Using Eq.(42), one gets the following estimation for the

trace of the imaginary part dﬂ 0q ata=1/m:

% L 2deEl|N7T— Nfl/wl d
2 =2, dE g =N InGodx

j=—N
= —Nlxl Um_ N(l—l 1)
= [xIn(x)—x]g - n;

2N 2N+1
=—[1+|n(77)]~—~ .

(43
w

The comparison of Eq$33) and(43) shows that Eq(33)
holds also at the critical point. This means that the singular-
ity of the decay widthd" at the critical point occurs such that
the sum ruleX;T";=const() is fullfilled also for a— ag;
andN— oo,

At the critical point, the widtl" of the state in the center
of the spectrum can be estimated in leading ordeNihy
integrating Eqs(41) over the interval ¢ 1/2,1/2):

Iy 1 f1/2| N q
?(a Qgrit) = ﬂ _1/2n H

Thus, the width of the broadest state at the critical point is
small in comparison to the total lengtiN2of the spectrum.

1
E=5_[1+In(2aN)].
(44)

C. Numerical illustration

In the following, we illustrate the behavior of the decay
widths by the results of numerical studies for differanand
for some finite values ol between 50 and 5000.

Splitting the sum for finiteN in Eqg. (35) into its real and
imaginary part, one gets
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In Fig. 1(b), the results of calculations are shown with a
fixed number N=1000 and different values of" (I’
=0.5,0.75,1.0). In this case, the average slope of the differ-
ent curves is the same but the amplitude of the oscillations
varies. The larged’, the smaller the amplitude is. That
means, in the case of finitg, that the number of resonance
states havind ' =T is smaller the largel is.

As a result, we state the following. WheM is a finite
number, only a limited number of resonance states has
widths I' =T", wherel is an arbitrarily chosen finite value.
Further, the largeN is, the larger is the number of resonance
states withI",=T". On the other hand, the largé&r is, the
smaller is the number of resonance states Witk I". Thus
we havetwo processes compensating each athérich en-
sures that Eq(33) holds also in the limita— 1/ and N
— 00,

In Fig. 2(a), we illustrate the motion of the eigenvalues in
the complex plane for 0.6« <2 in steps of 0.01 for posi-
tive energy& (the part for negative energy is symmetric to
that for positive energy For each resonance state its eigen-
value follows a certain trajectory with increasiag For the
lowest values ofe, all eigenvalues are near .=k and

3 I'c/2=«. The full line gives the estimation for the upper
(0) € limit of T'/2 ata= a; according to Eq(42). The estimation

FIG. 1. Numerical illustration of Eq45) for different values of IS goo.d in the center of the spectrum. The (_jeVIatlonS at large
N andT in the positive energy rangéa) I'=1, N=500 (full line), ~ €nergies are pure boundary effects. The differences between
1000 (dashed ling 5000 (dash-dotted ling (b) N=1000,r=0.5 the different eigenvalue trajectories arise from the finite
(full line), 0.75(dashed ling 1.0 (dash-dotted ling For details, see  value ofN. In the limit of N—, all eigenvalues acquire the
text. same behavior because of the discrete translational symmetry

on the real energy axis.
k—& We show in Fig. ?o) the behavior of all’, /2 as a func-
(45  tion of & for N=50. At the critical valuea;;=1/7 (indi-
cated by a vertical solid line the width of the collective
resonance statie=0 separates from the widths of the other
ones and increases linearly. The slop&'gfa)/2 is equal to
2N+ 1 over almost the whole range af> a; according to
re2 Eqg. (32). The larger slope of o( @) close toa,; is a bound-
ak:E_N (k—&)2+(T'/2)2 (46) ary effect and disappears in the limit Nf—oo.
Figure Zc) showsN§ as a function ofx for two different
The first equation describes the trajectories of the eigenvaMalues ofN. The curves show a sudden riseagf; and satu-
uesh=&E—(i/2)I' of H in the complex plane while the sec- rate rapidly to 1. The inlet gives a magnification of the curve
ond one contains their parametrization withWe calculated around the critical point, which is marked by a vertical solid
the sum in Eq(45) for differentN and fixed values of and line. The largeN is, the sharper are the changes in the slope
traced their solutions as a function &f of N§(a). This is a clear numerical indication of the coop-

In Fig. 1(a), the results of the calculations for differeNt erative effect acting over thtal length of the spectrum. In
(N=500,1000,5000) and fixdd= 1 are shown as a function spite of the fact that the width of the fast decaying state at
of £ Due to the denominator of the sum, every resonancer~ a.,;; is of the order Ini1), Eq. (44), its wave function
statek with I'y=1 has two solutions while there are no so- carries contributions from basis states which are lying far
lutions whenI'y<<1. The number of solutions and thus the away from the center of the spectrum and aotoverlapped
number of resonance states wltQ>1 depend on the aver- by it. These contributions over large energy scales are
age slope by which the sum approaches the value 0 as achieved via the “chain” of overlapping neighboring reso-
function of £. nances. As a result, we observe a “macroscopic” order over

The result is as follows. For a fixed value Bf=1, there  the whole energy scale of the system being much larger than
are more solutions of Eq45) the largerN is. In the limit  T'.

N—o, Eq. (45) can be fulfilled for all resonances, i.e., all  The curve ofN§, of course, does not jump immediately to
resonance states have widths larger than an arbitrarily chosd®0% at the critical point. The main reason is the finite num-
finite value. This confirms the analytical result for an infinite ber of states taken into account in the calculations. The
number of states, where we have shown that the widtladl of widths of the resonances at the border of the spectrum are in
states diverge ak= ;- general smaller than those of the resonances inside the spec-

k-€
(k-&F + (2]

N
k=N

N
0

TN (K= 6)2+ (T12)?
and

N
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1000 £ . . . . D. Picket-fence level distribution
~ i with disturbed translation invariance

, Let us break the translation invariance of the picket-fence
ol ] model by giving another coupling strength to the state in the

M center of the system. Suppose thigi=k and|v,|=1V k
—{0} andvy=1+D. In this case, the characteristic polyno-
mial (6) reads

N

N
Pvv= I1 (k=n)—ia 2

k==N
0001 1 1 1 1 N
0 10 20 30 40 50
@ € XIT (i-n)—iaD[] (k=N)(k+)N). (47)
j£k k=1
200 T T T
(o]
= 1s0r 1 Dividing by a convergence ensuring factor and identifying
160 - 1 the resulting terms with the product representation ofx¥in(
140 . and cosX), respectively, we get
120 - B
100 . sin(w\) ~_sin(m\)
w0l | P(\)= - +iacogdm\)+iaD — =0 (48
60 [ T
o i in the limiting caseN—-o<. In order to study the behavior of
o b J the state in the cente€E0), we writeh=—iu and get
0 .
0 0.5 1 1.5 2
b acrit 1 l
® o a==|— | (49)
1 i 3 +coth(7u)
0ot . ™

According to this equationg— 1/7r for u—o0. The redistri-
bution of the system takes place at the same finite value of
aqii=1/7 as in the case of constant coupling.

T We investigate now the behavior of the system at the
1 critical point, i.e., the type of the singularity. Suppase 1

. —ma and wu=ce ° with seR. Using the relation

1 coth(mu)—1 for largeu, we get from Eq(49)

D
2 1=(1—g)(1+38+5>. (50)

FIG. 2. (8 The motion of the eigenvalues, in the complex
plane with increasingr for the ideal picket fence distributionN(
=50). The ordinate represents the valued’pf2 while the abcis-
sas those of, . The full line shows the behavior of E¢1). Only
a part of the spectrum is showtb) I'; /2 as a function ofx for
N=50. (c) N} as a function ofx for N=50 (full line), 150 (dotted
line).

In leading order of the singular part afu(¢), this equation

is solved bys=1 andc=D(1—¢&)=D. That means that we
have analgebraic singularity: (wu=D/g). The system ap-
proaches the singularity quicker than in the case of a picket
fence distribution with translation invariance.

In the following we discuss formul@9) in detail with the
help of a numerical illustratiofFigs. 3 and 4 It turned out
that the case with a discriminated stat&€atO is more com-

] ] . ) plicated. Therefore, we have drawn the movement of the
trum. Therefore, the chain of neighboring overlapping stategomplex eigenvalues in the center of the spectrum f@
is interrupted at energies close to the edges. =—0.5[Fig. 3@)]. We useM=2N+1=101 and 301, re-

For all the trapped states, the corresponding quantfty spectively.
always remains in the order of M/ The wave functions of At a= a = 1/, two broad modes arise at the flanks of
these states are mixed only with those of their next neighborthe spectrum a£|~4.5 and 7.5 foN=50 and 150, respec-
and with that of the statk=0. tively. The larger the number of resonance states is, the

All the numerical results show that although the phasdarger is their distance from the center. With increasing
transition appears mathematically fdr— only, the char- the poles of the two resonance states at positive and negative
acteristic features of it can be already seerc@nparably energy approach each other in their real part and collide at
small values oM. £=0 at a certain valuer=a.;. At a> a4, the resonance
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(dashed ling a> a, (dash-dotted ling For details, see text.

proach the valuea+1/2 (with ne Z) if a—oe.
Figures 4a) and 4b) show the graphs ofru coth(mu)

one with decreasing’. The more resonance states the spec—+D for different D (D=—0.5,0,0.5) andu/« for several

trum contains, the smaller ig.;, as one can see in Fig(i3.
Here the imaginary partg, /2 of the eigenvalues, shown

values ofa as a function ofw. The points of intersection are
the solutions of Eq(49) derived under the assumption of an

in Fig. 3(a@) are drawn as a function of the coupling strengthinfinite number of states.

«. The collision point shifts to the critical point of the spec-

trum (aq— agi) if the numberM of resonance states is

In Fig. 4(a) the coupling parameter is set {@=0.1
<agit, and e=1/7=ay;, respectively. For the value

enlarged, in spite of the fact that their distance from one<a; there exists only one point of intersection with each of

another atx, is larger wherM is larger. The two values of
a. corresponding tdvl =101 andM =301 are indicated by
vertical dashed lines. The values @f;; and a., are marked
by vertical solid lines. In the limitM —, the two broad
poles appear af—oc. In this limit, a.;— ai . At this point
of «, the poles jump t&€=0.

Betweena= a.; and the finite valuex= a5, there exist
three resonance stateséat 0: the two broader poles appear-

the curves of coth, lying at small values of Also the state
at £=0 has a comparably small width in the undercritical
regime ofa and the value ol increases with increasir.
In the parameter range< ., o broad mode is separated
from the other ones.

At the critical pointa= a.;, where the phase transition
takes place, the linear curve/a is tangential to the
7 coth(ru)+D for D=0 and is parallel to this function for

ing ata.; and the original one, which is discriminated by the D= —0.5,0.5(lower and upper thick full line, respectively

external coupling byD. The collective mode is one of the
two resonance states arising from the phase transitian at
= a1. Its imaginary part increases with further increasing
The other broad pole decreaseslinwith increasinga. Its
collision with the discriminated resonance stateaat o,
shifts both states away fro&= 0 and the imaginary part of
both eigenvalues decreases. Contrary to the value@f
which approachea.,; with M — o, the value ofx., remains
almost constant as a function bf. For M — o, the value of
ac remains larger thanyg;. As we will see below, it

mainly depends omD. The poles of the trapped states ap-

So each of these curves has a point of intersection witn
at u=o. For the caséd = —0.5, the intersection g =
contains two solutions for the two broad modes, arising at
the bordergat £= =) of the spectrum and colliding &t
=0. Additionally, there is another intersection wjifi« at a
small value ofu which arises from the discriminated state at
EEO = ().

In Fig. 4(b), we see the same curvesu coth(ru)+D as
in Fig. 4(a) together withu/a for different values ofa
>agi a<ac, a~ag, and a>ag. In all cases, the
curves have intersections at=o. This means that for all
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N A sttt finite M the widthI';_, increases linearly witl> a.;; with

209 7 T ] a slope given by the numbev of states included in the
o 1 spectrum.

. (ii) The state in the center of the spectrum is a collective

. one in a global sense. The numerical studies for finite sys-

1 tems show that it contains components of almalstbasic

. states of the system, also of those which roeoverlapped

1 by it. This is expressed by the numblF_, of principal

1 components of the state in the center of the spectrum which

. grows, ata= a;, suddenly from its minimum value to

- g 100% (maximum mixing.

o (iii) At a@= aqi, the widthT';_ of the state in the center
of the spectrum is much smaller than the extension of the
spectrum. Therefore, the system dowest create locally a
collective state which traps, with increasing further reso-
nance states overlapped by it.

(iv) At a@= a;, the system suffers a change in its struc-
) ) . ture: one of the resonance states aligns with the decay chan-
values ofD, a mode exists af=0 with an infinitely large e |ts wave function collects all the corresponding compo-
width if a= aci. The curveru coth(mu)—0.5 shows three  hents from the wave functions of all the other staighich
intersections withu/« in the rangeac<a<ac. The tWo  gnnear with the same weight in all basic wave functions be-
intersections at smaller approach each other #—ac>.  cause of the symmetry of the probleriTherefore, its width

The value ofac, depends obviously on the value Bt In  1._ ‘increases with further increasingwhile the widths of
dependence on the negative shift of cathf, the slope of 4| the other states decrease.

FIG. 5. Numbem} of principal components as a function ef
for the three different picket-fence distributions witty=0.5,N
=50 (dashed ling vo=1N=50 (full line); and vy=2,N=50
(dash-dotted ling 150 (double-dotted-dashed line

the tangent changes and therefore so does the valag,of Generally, the behavior of the order parameter of a system
At larger values of the couplinga(> ac;) only one solution 45 3 function of a control parameter characterizes the type of
remains a=0 with p=co. the phase transition. In the case of a first-order phase transi-

Finally, we have investigated the behavior of the numbetijon, the order parameter shows a jump at a certain finite
N§ of principal components of the broad resonance as a fungzglue of the control parameter= ;. If a higher-order
tion of « for D=+0.5 andM =101 states. The results are phase transition is present, the corresponding derivative of
drawn in Fig. 5 together with the former one r=0. For  the order parameter jumps at;. More precicely, its §
all cases, the sudden rise Mf at a~a.; can be seen. At —1)th derivative jumps in the case of amh-order phase
the critical point the collective state is created, in all casestransition.
by almost all basis states distributed over the whole spec- In our system, the valu€,/M is related to the order
trum. This collective behavior of a phase transition is wellparameter. It is the width of the collective state normalized
pronounced also foD#0. The curve forD=0.5 is, how- according to the number of resonance states contributing to
ever, much smoother than the other ones. It rises up not &g formation. This value increases linearly as a functiom of
quickly as the other ones and does not approach the maxijvith the slope I for a<a.; and with the slope 1 ifx
mum value 100% in the range ef shown in the figure. >a;. So, the first derivative of /M jumps ata= a .
Nevertheless, the characteristics of a phase transition can & to the order parameter fluctuations, we point to the rela-
seen also in this numerical study: Comparing the results fofion between thd", and the coupling matrix elementg,
M=301 states in the case @=0.5 with those forM  _ 1/ /27(¢ |V|®,) between discrete and scattering states
=101 states, we see the following tendency. By increasingsee Eq(4)]. It holds[1,4,5,14 that
the number of stated\§ for D=0.5 comes closer to the
curvesN§ for D=1 and —0.5. This behavior is a hint to a
phase transitiofiin the next section, Fig. (), we show an To=2 [voc?/bo=|701*/bo (51
example in which a phase transition does not occur and the ¢
results as a function of an increasing numbkpf states do
not show such a tendenky in the one-channel case with, defined in Eq.(20). The
| 7012 diverge at the critical valuex;; while beyond the
critical regionI"g~|yo? [4,5,16. Thus, the|yo,|?/M show
the typical behavior of an order paramef&b|. This allows

Summarizing the results of our study with the ideal picketus to identify them with the order parameter in the case stud-
fence distribution, we state the following. ied by us.

(i) For an infinite number of states, the imaginary parts of The jump in the first derivative at the critical point can be
the complex eigenvalues of the effective Hamiltoni&  seen more clearly in the nonfluctuating valig/M than in
show a singularity at the finite value= a=1/7. A bifur-  the fluctuating valugyy;|%/M. Both values show, as a func-
cation in the widths appears: the width_, of the state in  tion of the control parametet, the jump at the critical point
the center of the spectrum increases with further increasing which is characteristic of a second-order phase transition.
while the widths of all the other states start to decrease. AlTherefore, we conclude that the formation of a globally col-
states but the state Et=0 are shifted byt at a=a.;. For  lective resonance is second-ordephase transition. We will

E. Phase transition
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prove in the next sections that this behavior is universal folmccording to the Weierstrass product representation. In order
all systems showing a collective reorganization. to find the solution a€=0, we writeA =i u and get
In Secs. IVE and V, we will see that the phase transition
is accompanied by an essential deviation of the v&BJIE(Q.
(23)] from 1 in the neighborhood of;;. This means the Qn(N)  —i
biorthogonality of the function system plays an important NF =—2[003W\/ﬂ)—003f(7ﬂ/ﬂ)] (56)
role in the reordering process. &

IV. MORE REALISTIC SYSTEMS and finally, with @/d\)Qyn=(1/i)(dQy/du),

In the preceding section, we investigated the properties of
the translation invariant picket-fence model as a function of . 5y 5
the coupling parameter analytically as well as numerically. a= 2 costimy2p) —cod m 2“)_ (57)
The system suffers a second-order phase transition at T sinh(7\2u)+sin(m\2u)
= 1/7 which we studied in detail. We consider now the be-
havior of some more realistic systems as a function of th

parameterx in order to answer the question of whether th
results obtained have a general meaning. In detail, ener
dependencies and fluctuations within the spectrum will bé

considered in the following.

A. System with unequally distributed levels
and equal coupling strength

“The right-hand side of this equation is a monotonically in-

creasing functioni@— o~ with u—oo. The dilution of the

g%’pectrum at largég| therefore prevents a phase transition.

Figure Ga) showsI'\ /2 as a function ofa for N=50
states. A short-lived state is formed, but in contrast to the
ideal picket fence distributiofFig. 2(b)], no critical value of
a can be defined. The width of the state in the center of the
spectrum(at £&=0) increases smoothly as a function @f

We investigate now the behavior of systems when thdrapping step by step its neighbors. The formation of the
level density is not constant but changes as a function o$hort-lived state does not occur by a collective interaction of

energy. Suppose thd,=sgnk)k? und v,=1 V k. This

all basis states but by individual trapping of neighbored lev-

means that the level density is assumed to decrease lineadys. In other words, the short-lived statenist formed by a

with k and to approach the value zero for> .
In this case, the characteristic polynomial reads

N N
Pvv= I1 [sgriiok?=a]—ie 2
N

x 11

1L Isgr(i)j?=A], (52
j=—N;j#k

which can be rewritten as

d
PNV =Qu(\) +ia g Quid), (53)

where QN()\)zﬂﬁ':_N[sgn«)kz—)\]. Dividing Qn(N) by
the convergence ensuring facter —Hﬁ‘zl—(k)“, we get

AN A
T—xkl:[l (1—E ) (54)

N
e
In the limit N—oo, this expression is

QNIEM = izsin(wﬁ)sinh(wﬁ)
r

=_—;sin(wﬁ)sin(iwﬁ)
T

= 2_—i2{00$wﬁ(1—i)]—cos{wmlﬂ)]}

(59

cooperative effect acting over the whole energy scale of the
spectrum but is restricted to the energy range overlapped by
it. There is no phase transition.

The numberN§ of principal components in the wave
function of the stat&=0 is shown as a function af in Fig.
7(a) for N=50 and 150. It supports the conclusion drawn.
Also, this value is a smooth function. There is no hint of a
phase transition. The broad state carries only components of
those basis states which it overlaps. In contrast to the cases in
which a phase transition occurs, the slopeNgf decreases
with increasingN. The curveN§ in Fig. 7(a) remains smooth
unlike the curves foD=0.5 andM =101,301 states in Fig.
5. The collective state is created by the basis states of a local
energy region overlapped by it.

B. System with unequally distributed levels
and unequal coupling strength

We investigate now the question of whether a system with
a diluted level density at large| shows a phase transition if
the states at the border are coupled stronger to the decay
channel than those in the center of the spectrum.

For this purpose we rewrite E¢Q),

—i
a= . 58
ool 2 mq 9

|Uk|2
A k=1 Ek_)\ E—k_)\

As in the foregoing examples, the spectrum is supposed to be
symmetrical (or nearly symmetrical in relation to E,_

=0: —Ey=~E_, andv,=~v_y. Looking at the solution at
E=0, we writeA=—iu. Then we get
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-1
~ N
|vol? 2ulvy?

M k=1 EE-F,U,Z

(59

o

from Eq. (58). Since we are interested in the question o
whether the system shows a phase transition at a finite val
of @, we have to consider Eq59) in the limiting caseu
—o0 andN—oo;

. ! |U|<|2
lim ZME

. (60)
Now k=1 B2+ u?

= lim
Herit oo

We approximate Eq60) by an integral, replace the discrete
indexk by the continuous variabbe and assum&Z~x! and
vi=~x". Then

0 r

1
= lim 2,uf dx
Qgrit e J0 X+ u?

0 r

= lim 2M2<f+1>h*1f ds. (61)

t
p—co 0s+1

The integral converges whear-r+1+¢ V ¢>0.

Let us consider the following cases.

(i) 2(r+1)>t. In this case,ayy—0 with u—o. The
system is in an overcritical situation for ali>0. A phase
transition therefore doesot take place.

buted with mean value 1 and variance 0.1.

(i) 2(r+1)=t. In this casea= a;;>0 remains finite in
the limiting caseu— . For a< a;;, the widths of all states
increase. Ata=ag;, a phase transitiotakes place the
short-lived state appears suddenly and a clear separation of
time scales, with respect to the lifetimes of the resonance

fstates, arises, even if the spectrum is infinitely extended.
ue (i) 2(r +1)<t. In this casegqi— with u—oo. For all
finite values ofa, there exist states which are not overlapped
by the collective resonance, whose widths increase with in-
creasinga. Therefore, the state &=0 traps new states end-
lessly. As a consequence, the formation of the short-lived
state atf=0 takes place smoothly. A phase transition does
not take place.

This analytical study shows the following result. To fulfill
the conditions for a phase transition, the energy dependence
of the unperturbed spectra Bf° must be compensated by an
energy-dependent coupling of the individual states to the de-
cay channel. A phase transition exists in the cases consid-
ered, if the energy dependence of the distribution of the lev-
elsE, is opposite to that of the coupling matrix elemengs
According to Eq.(61), the critical value ofx is

r+1 t
Acrit= p :Z- (62)

Otherwise, the system is either in an overcritical reg{owe-
responding toa;—0) or in an undercritical onécorre-
sponding toai— ).

Further, the width of the broad pole at~a; in the
compensated case&£0) can be estimated with respect to
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FIG. 7. N} as a function ofa for (a) E,=sgnk)k?, v,=1V k, N=50 (full line), 150 (dashed ling (b) E,=sgnk)k?, vi=|k|+1,
N=50 (full line), 150 (dotted lind, 500 (dashed ling (c) E,=sgnk)k?, v,=|k|+1, N=50 (full line); (d) E, distributed according to an
unfolded GOEp, are Gaussian distributed with mean value 1 and varianceN3=E0 (full line), 150 (dotted ling, 250 (dashed ling 500
(dash-dotted ling

the length of the spectrum. The characteristic polynomial T 2N+
[Eq. (9)] at the energy of the collective staté<0) reads arctars T ) (65)
) which holds only if’<2N"*1. In other words, also in the
N |k|f( k|k|r—|—F) compensated case, the width of the fast decaying _collective
lv k|2 resonance state is much smaller than the extension of the
o kEN - _k:_N m (63 spectrum at a coupling strength close to the critical point.
Ex+ = 5 F The compensated case is illustrated in Fidgb) @nd 7b),

and the overcompensated one in Figk)@&nd 7c). In the
compensated cas@vith r=1), both the distance between
The principal value of that sum gives zero. Therefore, we cameighboring levels and the coupling strengif|? increase
write linearly with |E| [E,=sgnk)k? and |v,|?=|k|+1V K]. In

the overcompensated case, the energy dependence of the
coupling is chosen stronger than the dilution of the spectrum

E EN: K" NFJN |x|" « [Ex=sgnk)k? andv,=|k|+ 1V k]. Here the coupling in-
2 kN (K24 1214 20N Y24 T4 creases quadratically whereas the level density decreases lin-
early with E.
2S The compensation of the energy dependence of the level
T me ds 2 JZNr+1/F T density by a corresponding one in the coupling strength re-
= = THa T stores the phase transitipRigs. 6b) and 7b) as compared
r+lJo  $?+1%4 r+1)o (Z_S) +1 with Figs. 6a) and 7a)]. A collective mode is created by
r participation of(almos} all basis states. It occurs suddenly at
2 INEE a critical value ofa.
= er1arctar€ T ) (64) In Fig. 7(b), N§ for M=101, 301, and 1001 states is

drawn. With an increasing numbén of states, the curve
rises more and more sharply. The critical value ds;
Using the expressiof62) for the critical point of the infinite =2/ (indicated by a vertical solid linen accordance with
system, one gets Eq. (62).
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The maximum valueN§=1 is not reached in Fig.(B). as a second-order phase transition. The fluctuations within
NB is approximately 0.9 and even decreases with further inthe spectrum will be washed out if the conditions for a phase
creasinga. Drawing the contributions,; in the wave func-  transition derived from Eq(61) are fulfilled only on the
tion &, Eq. (21), one sees the following feature. The con- average.
tributions of the stategcoupled more weakly to the channel
decrease fora>a; in contrast to those of the statés D. System with complex coupling parametere

coupled more stronglyn;<v;—[boj|<[bqi|. Since the dif- Up to now, we considered the system to be described by
ferences between theg are quite large in the cases consid- the Hamiltonian, Eq. (5), where the coupling between the
ered,N§<1. This holds for both a decreasing and increasingsystem and the continuum is supposed to be real7drid

energy dependence of the level density. In both cases, ﬂ}%n-Hermitian. There may be an additional p@YNT in the

et | e SPIeac o g 0, Al 2 qy£ouRInG e by which  colece st of st
P al) type is created. This collective state is shifted by an

equal coupling strengths, in which all coefficients approach L
the value 1M for a= 2aqy. energyA¢ from the group of the remaining— 1 stateq6].

In the case of an overcompensatidigs. 6c) and T)], ~ The structure of both partgV' and V" is the same. The
the critical point is shifted to very small values in accordancelifférence is the non-Hermiticity of the external coupling
With ag— 0, Eq.(61). The number of principal components term in the first case and the Hermiticity in the second case.

crr ’ . . . . . .
of the broad mode jumps up to 75%. Then it decreases and W€ aré interested in the question of whether the addi-
saturates at around 57%. tional term has an influence on the phase transition. Investi-

In an additional calculation, we bounded the spectrurrgaf'fg this question, we restrict ourselves to the cdse
from below: we investigated the case wiy=k? |v,|?=k ~ =VV', i.e,, an angle zero between the vectdtsand V.
+1V k, k=0. Also in this system, a phase transition takesFurther, the characteristic polynomi&) does not contain, in
place ata,;=2/7 as in the case shown in Figs(bp and the one-channel case, the phases of the coupling matrix ele-
7(b). In all cases, the broad mode appears in the energeticaients, but onlyjv,/2. It is justified, therefore, to replace

center of the spectrum. by a+ip in the equations considered in the preceding sec-
tions in order to obtain conclusions on the influence of the
C. System with unfolded Gaussian distributed levels term with 8#0 on the phase transition.

. ) " Considering the picket-fence model with equal coupling
It is interesting to learn whether the conditions foraphasestrength(which we studied in Sec. Ill foB=0), Eq. (26)
transition must be fulfilled strictly or only on the average. In st pe replaced by '

order to answer this question in the affirmative, we perform
the following numerical analysis. We choose an unfolded

Gaussian-orthogonal ensemigi@OFE) for the distribution of P(N)=sin(m\)+im(a+iB)cogm\). (66)
the eigenvalues o ° and a Gaussian distributed coupling
vectorV with mean valugv)=1 and variancé\v =0.01. Using the representatian=£— (i/2)I", one gets

The decay widths as a function of the coupling parameter
a are drawn in Fig. @) for N=50. The broad mode sepa-

rates from the other ones at approximately,= 1/ with a (e™-1)-mwa(e™+1) —mp(1-e™)

slope of N+ 1. The features of the phase transition are not —mB(1+e™) (e™+1)— ma(e™—1)

as clearly pronounced in this figure as in the case of the ideal

picket fence distribution. Nevertheless, the difference from (cos(wE)) 3 6
the results shown in Fig.(8), where no phase transition sin(wE) |~ 67)

occurs, are obvious. Even for the comparably small number
of states M =101), the fluctuations in the distribution of the
levels and the coupling vector do not destroy the nature ofhis equation has a solution, when the determinant of the

the reorganization process. matrix vanishes. This condition gives
As shown in the foregoing sections, the nhumber of prin-
cipal componentd\f is a sensitive quantity to measure the 1 [(ma+1)%+(7p)?
global collectivity of the separation process. In Fi¢d)7 N§ I'= >-In > 5| (68
of the collective mode aE=0 is drawn as a function aof T \(ma=1)"+(7p)

for N=50,150,250,500. For increasinyl=2N+1, the
curves rise up more suddenly and the slope aeaf/m gets
steeper. All the curves approach the maximum valu&lpf
very fast for valuesy> aj; .

The features of the second-order phase transition are b

ter expressed if more resonance states are considered. (j)erscribed by a Hamiltonian of the tyfé—H+ ZHZ. The

largeN, the irregularities in the distribution of thg, andv, : X L
are almost unimportant. This proves that the conditions de€XCePtional points of such a system are those points in the

rived in the former sections have to be fullfilled only on the Parameter space at at which two (or more eigenvalues
average. Also in the ergodic case of a GOE distributed specoincide (for a more detailed discussion, see, for example,
trum, the reorganization of the spectrum can be understood 8]). The coupling constant can be a real, imaginary, or,

Equation(68) has no singularity wheg+# 0. This means that
the singularity in the widths of the resonances, obtained for
B=0 in Egs.(27), vanishes wheB+#0.
This result can be understood as follows[17] the dis-
ibution of exceptional points is investigated for systems
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more generally, a complex number. The distribution of the 1
exceptional points is determined by the matriefsandH?. 09
It is independent of the value af, which determines, for its 081
part, the positions of thén general complexeigenvalues of 0.7
H. In the one-channel cagi which H! has rank 1, there 06
existM —1 exceptional points corresponding to the crossing 0.5
of the collective state with each of the othdr—1 states. 041
For systems which show a phase transit@ahM —1 ex- 03
ceptional points converge to the finipurely real value of 02k
@=ag; in the limit M—oo. For finite systems, almost all 01}
exceptional points are near to this accumulation point. This 0
result holds not only for the ideal picket fence, but &dr (@) 0

systems, which suffer a phase transit[d].

For the systems investigated in the present paper, the fol-
lowing is true. The accumulation point, which is determined %=
by the matricesH® andV V', is independenof the coupling
parametew. When the system with a purely imaginary cou-
pling (i.e., B=0) shows a phase transitioall (M —1) ex-
ceptional points are met ik approaches the critical value.

The collective mode repels with all the other ones simulta-
neously, i.e., all states run through their exceptional point at
a=aqi- This means alM —1 exceptional points are accu-
mulated ate.g. In that case{®;|®;) diverges for alli si-
multaneously in the limitk— a ;. In fact, the dimension of

the eigenspace collapses frdwrio 1 (| ®;)=|®;) Vi,j) if «

hits the accumulation point. Therefore, alBodiverges at ()
aqi - If the coupling parameter is compleg 0), however,

the system passes the accumulation point in a certain dis- FIG. 8. Nf as a function ofx for a system with complex cou-
tance in the complexd, 8) plane. As a result, the singularity pling. Simultaneously8 changes according tg=a tan(e). (a)

at agy; will be avoided. Forla|~|aql, the quantityB does The valuesp=1°, 10°, 45°, 80°, 89° are shown as full, long-
not diverge ifM — but reaches a certain maximum value. dashed, short-dashed, dotted,. and dash-dotted Iin_es, respectively.
Refering to this result, we claim that, according to a rigoroug =>50- (b) ¢=45°, N=>50 (full line), N=150 (dotted line.
mathematical definition, the phase transition will be de-

stroyed by any given nonvanishing real pg@rtin the cou-

pling parameteta detailed discussion of this aspect is givencurves are not changed by changing the number of basis
in [17)). states. The transition remains smooth alsd\fer1001 states

Let us illustrate this result by means of a numerical studyover the whole range af. So, these systems cannot be char-
For that purpose, we replace by «€e'®. We chooseM acterized by a critical point. We see a critical regionagf
=2N+1=101, as usual, and perform the calculations forwhich will be larger the larger the nearest distance between
p=1°, 10°, 45°, 80°, 89° by varying. The eigenvalues of the accumulation point and the eigenvalues in the complex
HP (for B=0) and the coupling matrix elements are choserplane is.
to be E,=k andv,=1, respectively. In Fig. @ we have
drawn the number of principal components of the collective
resonance state as a functioncaaf

The numerical results show a clear difference between the The analytical and numerical investigations represented in
cases with small and large angle The largerg is, the  the foregoing sections point to similarities and differences in
smaller is the number of basis states contributing to the colthe behavior of the different systems under the influence of
lective state at a givemr> .. Further, the curves rise up the varying strength of the coupling to the continu(oecay
more smoothly whemp is larger. For large angles, the maxi- channe). In any case, a restructuring in the system takes
mum valueN§=1 is not reached at the maximum valte place(or starts to take plagavhen the coupling parameter
=2 shown in the figure. Thus, in the case of the finite specis large enough. A collective state which is aligned with the
trum studied numerically, the reorganization process is getdecay channel is formed in the center of the spectrum. Its
ting smoother the largep is. In other words, the reorgani- wave function is coherently mixed in the set of basis wave
zation process is washed out if the system cannot hit thé&unctions of the corresponding closed system. The trapped
accumulation point of the exceptional points, but has to passtates have incoherently mixed wave functions. Beyond a
it in a certain distance in the complex parameter space. certain value of the control parameter two different time

This conclusion is underlined by the results given in Fig.scales existhifurcation of the widths
8(b). Here we have fixed the angle to 45° and varied the In some cases, the restructuring in the system can be iden-
number of states included in the spectrud £101 and tified as a second-order phase transition. The separation of
1001 states As one can see, the characteristic features of théifferent time scales occurs suddenly at a critical valyg

V. DISCUSSION OF THE RESULTS
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and is a collective effect of thevhole spectrum. The value of the coupling vector. In such a case, the local resonance
I'o/M which is directly related to the order parametertrapping between neighboring states is not hindered but oc-
|7011%/M increases linearly as a function of the control pa-curs successively starting in the region with the largest level
rametera with a universal slope 1, as soon as the controldensity or coupling strength. If the level density is larger in

parameter is larger than its critical value. In other cases, ththe center of the spectrum than at other energies and the
separation of time scales occurs successively by individuatoupling strength to the channel is the same for all levels, the
trapping of neighboring resonance states. In that case, thsvllective mode is created only locally for any finite value of

collectivity is restricted by the extension of the energy re-,. This local collective state traps successively more and
gion, overlapped by the fast decaying resonance state. Thore resonance states in the direction of the border of the
process of reorganization continues upate-. spectrum. This process of local resonance trapping with in-

The differences betweeen the behavior of systems whicReasing width of one state in the center continues endlessly
show a phase transition and those which do not can be S to a— oo (in the limit M— o). Although the short-lived

nlcily in the gxr?mple I?f the |'deal pllcketl fence ?'Smbur:'oa'state has collective properties, it is not created by all basis
In the case V}’}'t equally dlstrlbuthed evle s”coup ed with t Cstates of the spectrum but only by those which are over-
same strength to one common channel, all states are equ'vlaa'pped by it. There is no phase transition at all
lent. Consequently, the direction of the energy shift accom- The resonance structure of the svstem is. in the cases
panying the local resonance trapping is undefined and the " L . Y
local resonance trapping is hindered. The redistribution Of:on5|dered, symmetrical in relation to the critical Vam@'t.
the system under the influence of the decay channel can tal the control parameter although the number of long-lived
place only collectively. The quantity,/M rises linearly in ~ fésonance states far<ac; and fora> a differs by 1. As
a> aqi With slope 1. an example, the plgket-fence distribution w!th level d|st§nce
More realistic systems show a phase transition when thé and equal coupling strength to the continuum remains a
energy dependence of the level density is compensated by &fcket-fence distribution also at> a.; but is shifted in en-
energy dependence of the coupling strength. For example, &9y by 3 of the level distance.
dilution of the level density can be compensated by a corre- For finite M, collective states may be caused also by an
sponding enhancement of the coupling strength. The criticadditional real part to the Hamiltonian, e.gi’'=H°
value a.y is well determined. Further, when the system is+B8VV', leavingH’ Hermitian. It is called internal collec-
bounded from below, a phase transition occurs under théVvity in contrast to the external collectivity discussed above.
same conditions as for nonbounded systems. It occurs at tHg such a case, the process of reorganization in the system
same critical valuer(+1)/7. The broad mode appears, in occurs smoothly. A phase transition does not take place. The
any case, in the energetical center of the spectrum. eigenfunctions ofH’ are orthogonal in the usual manner:
Moreover, we could show that the conditions for a phasg®;|®/)=1 for all i and a.
transition do not have to be fulfilled strictly, but only on the ~ The non-Hermiticity of the Hamiltoniar is, however,
average. Small irregularities in the energy dependence of thalso not sufficient for the appearance of a phase transition, as
levels or in the distribution of the coupling vectors arethe results presented in the foregoing sections show. In any
washed out if the number of states in the spectrum is sufficase, the valuB characterizing the biorthogonality of the set
ciently high. Also, the case of GOE-distributed states show®f eigenfunctions ofH plays a decisive role. Only when it
the features of a phase transition even for a comparably smatlecomes essential, i.e., whBe> 1 [see Eq(23)] at a certain
number of states. The fast decaying state is createdllby well-defined value ofx, does a phase transition take place.
states of the spectrum, independently of whether they ar&/hen, however, the reordering of the system takes place
overlapped by it or not. successively in a limited region of the spectrum wit M
Another characteristic feature of the phase transition is thetates, theB(W=(1/n)=!"_,(®;|®;)>1 butB is close to 1.
mixing of the wave functions. In the case of the ideal picketin this case, the reorganization in the system does not occur
fence distribution, it changes suddenlyag;; from its mini-  collectively but smoothly as a function of.
mum valueN§=1/M to the maximum valudN§=1 for the As a result, in the case of a phase transition the biorthogo-
statei=0. The width of the collective resonance statexat nality of all the eigenfunctions of is maximal at(almos}
= a IS of the order of Ini1), whereas the extension of the the same value o& and, according to Eq(23), B>1 at
spectrum is equal td1. Also, in the more general case in «a;. For illustration we show in Fig. 9 the value Bfas a
which the energy dependence of the level density is comperfunction of « for four different cases. The theoretical value
sated by the coupling strength of the resonance states, w¥ «,; is marked by a vertical solid line. Only in the case
could prove that the width of the collective state is muchwithout phase transition is this sum always very close to 1,
smaller than the extension of the spectrum for couplingswhile it has a clearly expressed maximum at the critical point
close to the critical point. Nevertheless, the collective stater; whenever a phase transition occurs. Further, the eigen-
carries contributions ofalmos} all basis states even if they functions of H are orthogonal in the usual manner far
are, in the case of a finite spectrum, close to the bordersza,; as well as fora> a.;. Here,B~1.
When a# a.;, the value ofN§ is independent ofr. This This result can be illustrated nicely by means of the ex-
holds also if the system is disturbed by random pertubations;eptional points defined as the crossing points of resonance
where the compensation conditions are fulfilled only on thestates. They are determined by the structure of the different
average. parts of the effective Hamiltoniafsee Sec. IV D but are
The situation is different if the energy dependence of thandependent of the coupling parameter. In the one-channel
level density is not compensated by the energy dependen@ase considered by us, they accumulate at one point in the
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FIG. 9. The value oB, Eqg.(23), as a function ofx. The thick FIG. 10. |1—S,4|? for =1/ (full line), 1/7+0.05 (dashed

full line shows the casg,=sgnk)k?,v,=1 V k,N=50, thin solid  line), 1/7+ 0.1 (dash-dotted line For comparisonl'y/2=0.84 for
line the ideal picket fence distribution fod=50, dashed line the «a=1/m, I'j/2=1.09 for a=1/7+0.05, andl';/2=19.9 for «
ideal picket-fence distribution fak= 150, dash-dotted line the un- =1/7+0.1.

folded GOE as in Fig. (@) for N=150.

of the spectrum according to E(65). This shows that the
limit M— . In the case in which the system shows a phasgransition is caused by the cooperative behavior of all states.
transition, the eigenvalues meet this accumulation poinf; is not caused by the overlap of the complete spectrum by
when considered as a function of the coupling parameter angne of the states. In the cross section, we see a structure of
B— in its neighborhood. . the extension of the length of the spectrum siatlestates
Therefore, we may differentiate between four situations:, coupled to the decay channel. The width of the broadest
Ltate is much smaller than this structure.

The numerical results show further that the numiileof

(i) the exceptional points accumulate at a finite real value i
the complex &,8) planeand the system goes through the

accumulation poinii) the exceptional points accumulate at states need not necessarily be infinite in deciding the ques-

a finite real vqlue n the complesxx(5) plalje but the phasc—? tion of whether the transition is of second order or not. The
¢ of the coupling hinders the system to hit the accumulation e
point, (iii) the exceptional points accumulateaB=0, and second-order phase transition is well expressed already for a

(iv) the exceptional points do not accumulate at all but the);elatlv_ely small ”““?ber_ of StateM.ZZNJ.F 1=101 up FO
are spread over the whole complex,8) plane with a di- 1001 in our calculationsin all cases in which the analytical

verging absolute value of the coupling parameter. Example§tudy shows a phase transition in the lift— .

are (i) the compensated case, afiid the system with com- In our analytical and numerical studies the limiting case
plex coupling(iii ) the overcompensated casge) the under- M — o is achieved by an extension of the length of the spec-
compensated cagéor details, se¢17]). trum. It is worthwhile to note that the results are the same fif,

The stochastic processes described by(tenpley par-  instead, the length of the spectrum is kept fixed at some finite
tial widths are much larger fo~ a; than at other values value and the level density approachesvith M — .
of . This is expressed by the relatidh=|y;c |%(P;|®;), In many-particle systems, the level density depends on
where v;. is the partial width of the statein relation to the  energy. In nuclei, it increases exponentially with energy. The
(only) decay channet [1]. Since(®;|®;)>1 neara.;, it  coupling strength of the states to the continuum decreases,
follows I';<<|yic|? for a~ag;. The structure observed in however, with energy due to the increasing contribution of
the cross section is determined by tBematrix, Eq.(4). It  many-particle many-hole configurations to the wave func-
depends essentially, according to E4), on the length of the  tions of the stateg“compound nucleus states” It is an
spectrum(i.e., on the valuey;c|* of all the statel but not interesting question whether in such a system the increasing
on the widthI';_, of the collective state. For illustration, level density is “compensated” in a certain energy range of
|1—S,4/? is shown in Fig. 10 for three different values of the spectrum by the decreasing mean coupling strength so

a=agy. The width of the collective state i,/2=0.84,  that the condition for a second-order phase transition is ful-
1.09, and 19.9, respectively, for the three valuesraton-  fijled.

sidered. The widtH"y has almost nothing in common with
the structure observed in the cross section as one easily sees
from the figure.

The same result follows also from our analytical consid-
erations. At the critical point, the sum of the widths of all ~We gratefully acknowledge valuable discussions with F.
states is smaller than the total lendth=2N+1 of the spec- Leyvraz. One of ug§M.M.) thanks the Max Planck Institute
trum by a factorm according to Eq(33). Furthermore, the for Physics of Complex Systems, Dresden, where a part of
width of the broadest stat@n the center of the spectryns  the work was performed, for their kind hospitality. C.J. and
on the order of IN in the ideal picket-fence model. In the M.M. thank CONACYT for a grant. The work was sup-
limit of large N, it is in general tiny compared to the length ported by SMWK and DFG.
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