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We consider the behavior of open quantum systems through the dependence of the coupling to one decay
channel by introducing the coupling parametera, which is proportional to the average degree of overlapping.
Under critical conditions, a reorganization of the spectrum takes place that creates a bifurcation of the time
scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which
the reorganization process can be understood as a second-order phase transition and illustrate our results by
numerical investigations. The conditions are fulfilled, e.g., for a uniform picket-fence level distribution with
equal coupling of the states to the continuum. Energy dependencies within the system are included. We
consider also the case of an unfolded Gaussian orthogonal ensemble and of a spectrum bounded from below.
In all these cases, the reorganization of the spectrum occurs at the critical valueacrit of the control parameter
globally over the whole energy range of the spectrum. All states act cooperatively.@S1063-651X~99!02707-5#

PACS number~s!: 05.70.Fh, 11.80.2m, 64.60.2i, 03.65.2w
a
o

g
ica
e
rg

a

ng

d
e

te

ch

qu
es
he
t

r-

he
te
as
in

fo

id

th

rol
-

d
are
the
as

on-
he
ap-
is-

so-
if

glo-
di-
er,
lec-

s.
-

the
ly-

its
he
els
are

for
for
I. INTRODUCTION

Recently, the properties of open quantum systems h
been studied with a renewed interest in the framework
different approaches. Mostly discussed is the restructurin
the systems taking place at high level density under crit
conditions and the resulting formation of different tim
scales in terms of lifetimes of resonance states. The reo

nization occurs if the degreeḠ/D̄ of overlapping reaches

critical value (Ḡ is the average width obtained by averagi

overall M resonance states in a certain energy region anD̄
is the mean level distance!. It is investigated for resonanc
phenomena in nuclei@1–6#, atoms@7,8#, and molecules@9#.
In the meantime it has been considered also in other sys
such as, e.g., quantum dots@10# and microwave billiards
@11#. The numberM of resonance states is usually mu
larger than the numberK of open decay channels.

In most of these studies, the projection operator techni
is used, which was introduced about 40 years ago by F
bach@12#. It allows us to investigate, in a direct manner, t
corrections to the many-particle states in a subspace of
full Hilbert space which arise from the coupling to the o
thogonal subspace. The properties of anopenquantum sys-
tem are described well by using the following division of t
whole function space: theQ subspace contains the discre
states of the system while theP subspace consists of open
well as closed decay channels. In studying the restructur
we are interested in the properties of the states of theQ
subspace modified by their coupling to theP subspace play-
ing the role of an environment. This method can be used
a wide class of open quantum systems@13,14#.

The question of whether this restructuring may be cons
ered as a phase transition of second order is posed in@3# but
not considered in detail up to now. A possible analogy to
formation of laser light is investigated numerically in@4#. As
PRE 601063-651X/99/60~1!/114~18!/$15.00
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in the case of the laser, a control parametera can be defined

which is proportional toḠ/D̄. The information entropy
changes rapidly in a relatively small region of the cont
parameter in both the laser@15# and the open quantum sys
tem @4#.

In other investigations@5# it was realized that the avoide
crossing of two neighboring resonance states which
coupled to one common channel is the basic process of
restructuring observed globally in the system. As soon
two resonances start to overlap, their interaction via the c
tinuum can no longer be neglected. As a function of t
coupling to a certain decay channel, the two resonances
proach each other in energy up to a certain minimum d
tance in the complex energy plane ata5acrit . The avoided
crossing is reflected in the wave functions of the two re
nance states. The biorthogonality reaches its maximuma
→acrit , and vanishes ifa→0 anda→` @5#. As a function
of further increasinga.acrit , the width of one of the two
resonance states decreases~resonance trapping! while the
width of the other one increases further.

The local resonance trapping can explain, indeed, the
bal restructuring of the quantum system under critical con
tions. It determines also, as will be shown in this pap
whether the restructuring of the system takes place col
tively with the simultaneous participation ofall basis states
or successively by individual trapping of resonance state

In the following, we will investigate this question in de
tail. In Sec. II, we write down the basic equations used in
paper. The model is formulated and the characteristic po
nomial is given. The Hamiltonian is non-Hermitian and
eigenfunctions are, generally, biorthogonal. In Sec. III, t
properties of a system with picket-fence distributed lev
coupled with the same strength to one decay channel
investigated in detail. The study is performed analytically
the limiting case of an infinite number of states as well as
114 ©1999 The American Physical Society
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PRE 60 115PHASE TRANSITIONS IN OPEN QUANTUM SYSTEMS
a finite number. The results are illustrated by numerical c
culations. Finally, the results obtained are discussed
identified with characteristic features of a second-order ph
transition. The process of formation of a collective sta
aligned with the decay channel is discussed in detail.
wave function is coherently mixed in the wave functions
all basis states including those states which arenot over-
lapped by it.

The results obtained in Sec. III are underpinned in Sec
by considering some other level and coupling-strength dis
butions being more realistic than those in Sec. III. The stu
is performed both analytically and numerically. General co
ditions for the appearance of a second-order phase trans
are formulated analytically and illustrated by the results
numerical calculations. As a special case, the sharpness
phase transition is shown to be distorted by an imagin
part in the coupling term. The results are summarized
discussed in the final section.

II. BASIC EQUATIONS

A. The Hamiltonian of an open quantum system

Let us consider the Hamilton operator

H5H01V̂ ~1!

of a many-particle system whereH0 describes the mea
field, i.e., the motion of the particles in a finite depth pote
tial, andV̂ is the operator of the two-particle residual inte
action. A convenient method to solve the Schro¨dinger equa-
tion (H2E)C50 in the full Hilbert space of discrete an
continuous states is to use the projection operator techn
introduced by Feshbach@12#. Here the whole function spac
is divided into two subspacesP and Q. The Q subspace
consists of the wave functionsuFk

SM& which are constructed
from a ~finite! basis set of Slater determinants. The Sla
determinants are antisymmetrized products ofA bound
single-particle states and are mixed via the two-body resid
interactionV̂. TheP subspace consists of the coupled cha
nel wave functionsujc(E)& which are constructed from th
wave functions of the channels. These wave functions c
sist of the antisymmetric products of a many-particle wa
function uF (A21)

SM & of (A21) bounded particles and the wav
function of an unbound particle. The coupled channel wa
functions ujc(E)& of the P subspace are mixed in the bas
channel wave functions by the same two-body residual in
actionV̂ as the statesuFk

SM& of the Q subspace in the Slate
determinants. The total Hilbert space is given by the num
M of discrete statesuFk

SM& and the numberK of channel
wave functionsujc(E)&. The projection operators are define
by

Q̂5 (
k51

M

uFk
SM&^Fk

SMu,

~2!

P̂5 (
c51

K E
Ec

`

dE8ujc~E8!&^jc~E8!u.
l-
d

se
e
ts
f

V
i-
y
-
on
f
f a
y
d

-

ue

r

al
-

n-
e

e

r-

er

They fulfill P̂Q̂505Q̂P̂ and P̂1Q̂51. The total Hamil-
tonian acting on the full Hilbert space is split into four term
H5Q̂HQ̂1Q̂HP̂1 P̂HQ̂1 P̂HP̂. It is P̂H0Q̂5Q̂H0P̂50,
but P̂HQ̂Þ0 andQ̂HP̂Þ0.

We are interested in the properties of the Hamiltonian
the open quantum system, which acts on theQ subspaceand
carries the influence of theP space. The derivation of this
Hamilton operator is given in the formal scattering theo
and can be found, e.g., in@13#,

HQQ
eff ~E!5Q̂HQ̂1Q̂HP̂ GP

(1)~E! P̂HQ̂. ~3!

It depends on the energyE of the system~given by the en-
ergy of the incident particle in the scattering process! and
consists of two terms. The first one (Q̂HQ̂) describes the
behavior of the closed system of discrete states which
cludes the configurational mixing due to the two-body
sidual interaction, but does not take into account the c
pling to the decay channels. The second term gives
correction due to the coupling of the two subspaces and c
tains the propagator in theP subspaceGP

(1)(E)5 P̂@E1 ih

2 P̂HP̂#21P̂.
Due to this propagator, the effective Hamiltonian is no

Hermitian. Its complex eigenvalueslk(E)5Ek(E)
2 i /2Gk(E) give the poles of the resonance part of the sc
tering matrix

Scc8
res

5 i (
k51

M
gkc~E!gkc8~E!

E2lk~E!
, ~4!

wheregkc(E)51/A2p^jc(E)uV̂uFk& is the transition matrix
element between a discrete and a scattering state. The
the complex eigenvalueslk get a concrete physical interpre
tation as the energy positionsE k

res5Ek(E k
res) and total decay

widths Gk
res5Gk(E k

res) of a resonance state@1#. TheEk differ

usually from the corresponding eigenvaluesEk of Q̂HQ̂, i.e.,
from the energies of the states of the unperturbed system
the external coupling to the decay channels causes not
the finite lifetime of the states but generally also an ene
shift.

In the following, we will restrict ourselves to an energ
region in which the energy dependence of the Hamiltonia
small in spite of a large numberM of states lying in it.
Further, we consider a small numberK of decay channels
which are all open and not coupled among themselves. T
the second term of the operator~3! in matrix representation
can be split in a principal-value integral and the sum of
residua. Assuming time-reversal invariance, the matrix e
ments of both the real and the imaginary part can be cho
as real numbers. Then, the effective Hamiltonian~3! in theQ
subspace is, to a good approximation@13#,

H5H 02 iaVV†, ~5!

whereVV† is a Hermitian operator andH 0 containsQ̂HQ̂
as well as the the principal-value integral. As in Eq.~3!, the
first termH 0 describes the internal structure of the unp
turbed system in theQ subspace. The second termiaVV†
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follows from Q̂HP̂•GP
(1)(E)• P̂HQ̂ and describes the cou

pling between the two subspaces. The parametera, assumed
mostly to be real, characterizes the mean coupling stren
between discrete and continuous states.

The Hamiltonian~5! is used successfully for the descri
tion of resonance states in nuclei@13# and molecules@9#.
Nowadays, it is applied also to the description of resona
phenomena in other systems such as, e.g., quantum dots@10#.

The rank ofH 0 is equal to the numberM of states con-
sidered. Its nondiagonal matrix elements describe the c
figurational mixing of the discrete states. The coupling m
trix V is a K3M matrix if the number of open deca
channels is equal toK. The elementVi

c of V describes the
coupling of the discrete statei to the channel c; i
51, . . . ,M ; c51, . . . ,K. Thus, the rank ofVV† is K.

As long asa is small, the second term of the Hamiltonia
H can be considered as a small perturbation ofH 0. This
condition is always fulfilled if the average widthḠ is much
smaller than the average distanceD̄ between neighboring
resonance states. In this case, the nondiagonal matrix
ments ofH are small and the individual resonances are i
lated. Their positions and widths obtained from the eigenv
uesl i of H differ only slightly from the real and imaginar
parts, respectively, of the diagonal matrix elements ofH.

In the opposite case of largea, the matrix VV† deter-
mines the behavior of the system. Then, the rank ofH is
th

e

n-
-

le-
-
l-

given byK. That meansM2K states are almost decouple
from the continuum of decay channels and become lo
lived ~trapped! while K states take almost the whole couplin
strength:( i 51

K G i /2'Im$Tr(H)% and ( i 5K11
N G i'0. There-

fore, two different time scales arise at largea; see, e.g.,
@1,2,4,5,9#.

Thus, a reorganization in the open quantum system ta
place in the transition from small coupling parametersa to
large ones whenM@K. In the following, we will investigate
the question of whether and under which conditions the
organization of the open quantum system can be unders
as a phase transition in the limitM→`. We restrict our-
selves to the case with one open decay channel (K51).

B. The characteristic polynomial

We consider a system withM52N11 states coupled to
one common decay channel (K51). The unperturbed eigen
values ofH 0 are denoted byEk , kP$2N, . . . ,N%, so that
Ej,Ek if j ,k ~without degeneration!. The center of the
spectrum is assumed to be atE050 without loss of general-
ity. The coupling vector will be denoted byV
5(v2N , . . . ,v21 ,v0 ,v1 , . . . ,vN).

Due toK51, all column and row vectors, respectively,
VV† are linearly dependent. Subtractingvk times the row 0
from the row k, one gets the following expression for th
characteristic polynomial:
PN~l!5U E2N2l 0 0 ••• lv2N 0 ••• 0

0 E2N112l 0 ••• lv2N11 0 ••• 0

A � A A A

0 ••• 0 E212l lv21 0 ••• 0

2 iav2N 2 iav2N11 ••• 2 iav21 2 iav02l 2 iav1 ••• 2 iavN

0 ••• lv1 E12l ••• 0

A ••• A � A

0 ••• lvN 0 ••• EN2l

U50,
r,

which can be written as

PN~l!5 )
k52N

N

~Ek2l!2 ia (
k52N

N

uvku2

3 )
j 52N, j Þk

N

~Ej2l!50. ~6!

Equation~6! can be proven by induction.
According to Eq.~6!, PN(l) is the sum of two polynomi-

als,

PN~l!5QN~l!2 iaRN~l!, ~7!
whereQN is of the order 2N11 andRN of the order 2N. If
uvku251; k, theQN andRN are related in a simple manne

RN52
d

dl
QN . ~8!

In the limit a50, we findlk5Ek5Ek ; k, i.e., the eigen-
values ofH are equal to those ofH 0 ~according to the defi-
nition of the parametera).

The limit of large coupling strength (a→`) can be ob-
tained when we rewrite the characteristic polynomial~6! as

PN~l!5 ia )
k52N

N

~Ek2l!F 1

ia
2 (

j 52N

N

uv j u2
1

Ej2lG . ~9!
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The first factor of the product term is zero only at the unp
turbed eigenvaluesEk of H 0. Therefore, foraÞ0 the solu-
tions of Eq. ~9! must be given by the zeros of the seco
factor, i.e., by the solutions of 1/(ia)5(uvku2/(Ej2l). In the
limit a→`, there are 2N solutions lying at real energies
lkP(Ek ,Ek21) if k.0 andlkP(Ek ,Ek11) if k,0, where
Ek is the eigenvalue of the unperturbed HamiltonianH 0. In
the case of a picket fence distribution withEk5k and equal
coupling, lk approachesk61/2. Furthermore, we have ex
actly one complex solution atE050 andG0→` for a→`.

Let us now discuss the behavior of the system as a fu
tion of increasing coupling strengtha. From Eq.~7!, we get

dl

da
QN8 ~l!2 iRN~l!2 ia

dl

da
RN8 ~l!50 ~10!

for the solutions ofPN(l)50 and further the differentia
equation

dl

da
5

iRN~l!

QN8 ~l!2 iaRN8 ~l!
~11!

with the initial conditionlk(a50)5Ek .
For smalla, Eq. ~11! reads

dlk

da
'

iRN~lk!

QN8 ~lk!
52 i uvku2. ~12!

That means the imaginary part of eigenvaluelk of H in-
creases, with increasinga, proportional touvku2 while the
real part of it remains unchanged, as long asa is small.

For largea, we have 2N solutions whose imaginary pa
is small while the real partEk is determined byEk,Ek
,Ek21 if k.0 and Ek,Ek,Ek11 if k,0, since lk(a
→`)5Ek . The relevant part ofRN(l) for the solutions of
PN(l)50 is thereforeTN(l)5)k51

2N (Ek2l).
Inserting

lk~a!5Ek2 i
gk

a
1O~a22! ~13!

into

05QN~l!2 iaTN~l! ~14!

leads in the two lowest orders in 1/a to

05 )
j 52N

N S Ej1 i
gk

a
2EkD2 ia)

k51

2N

~Ej2Ek1 igk /a!.

~15!

The solution is

gk52

)
j 52N

N

~Ej2Ek!

)
j 51,j Þk

2N

~Ej2Ek!

.0. ~16!
-

c-

Equation ~15! shows that for large coupling strengths, th
decay widths of 2N states decrease as 1/a with increasinga.
This decrease is called resonance trapping.

Besides these 2N solutions for largea, we have a solu-
tion at E050 andG0→` in the limit N→`.

In Secs. III and IV, we will study in detail the propertie
of the characteristic polynomial~6! by means of specia
cases.

C. The eigenfunctions of a non-hermitian Hamilton operator

Another value characterizing the reorganization wh
takes place in the open quantum system under critical c
ditions is the mixing of the wave functions of the resonan
states@1,4#. The mixing caused by the coupling of all th
states to the common decay channels is related, in a na
manner, to the basic set of wave functions of the clos
system,

uF i
r&5(

j 51

M

ai j uF j
0&, ~17!

whereuF i
r& are~right! eigenfunction ofH anduF j

0& are those
of H 0. The eigenfunctionsuF i& of the non-Hermitian Hamil-
tonianH are biorthogonal. The right and left eigenfunctio
are defined by

~H2l i !uF i
r&50,

^F i
l u~H2l i !50, ~18!

with the normalization

^F i
l uF j

r&5d i , j , ^F i
r uF j

r&Þd i , j . ~19!

In our caseuF i
l&5(uF i

r&)T @5#. In the following we will drop
the indicesr and l considering only the right eigenfunctions
Then the second relation of Eq.~19! reads

^F i uF i&5bi>1 ~20!

and^F i uF j&,iÞ j , is a complex number, generally. The va
ues bi are fixed by Eq.~19! due to the relationuF i

l&
5(uF i

r&)T between the right and left eigenfunctions. The b
havior of thebi as a function of the coupling parametera is
illustrated in@5,16#.

A good numerical measure for the strength of mixing
the numberNi

p of principal components in the eigenfunctio
F i . For its definition we are using the quantity

ubi j u25
uai j u2

(
l 51

M

uail u2

. ~21!

Then, the number of principal components can be calcula
as
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Ni
p5

1

M (
j 51

M

ubi j u4

. ~22!

The value ofNi
p can be understood as a measure of~external!

collectivity of the resonance stateF i . In the limiting case of
equal mixing of the statei with all statesj, bi j 51/AM; j ,
we getNi

p51 ~maximum external collectivity!. In the oppo-
site case~no external collectivity! we havebi j 5d i , j andNi

p

51/M . Generally, 1/M<Ni
p<1.

Further, we introduce the value

B5
1

M (
i 51

M

^F i uF i&[
1

M (
i 51

M

bi>1, ~23!

which characterizes the degree of non-Hermiticity ofH ac-
cording to Eq.~20!. It is a function ofa and B51 if H is
Hermitian.

III. THE IDEAL PICKET-FENCE DISTRIBUTION

Let us consider first the simple case of a picket-fen
distribution ofM52N11 levels which are all coupled with
the same strength~‘‘ideal picket-fence distribution’’! to the
continuum consisting of one decay channel (K51). The ad-
vantage of this simple model is that analytical studies can
performed.

A. Analytical study for the limiting case N˜`

SupposeEk5k und uvku51 ; k. Then Eq.~6! reads

PN~l![QN~l!2 iaRN~l!

5 )
k52N

N

~k2l!2 ia (
k52N

N

)
j 52N, j Þk

N

~ j 2l! ~24!

and the relation~8! holds. In order to consider the limitN
→`, we divideQN by a convergence ensuring factor,

lim
N→`

QN~l!

2)
k51

N

2~k!2

5 lim
N→`

l)
k51

N S 12
l

k D S 11
l

k D

5l)
k51

N F12S l

k D 2G5
sin~pl!

p
. ~25!

Then the characteristic polynomial reads

P~l!5sin~pl!1 ipa cos~pl!50. ~26!

Denoting the complex eigenvalue ofH by l5E2 i (G/2) and
splitting Eq.~26! into its real and imaginary part, we get~for
real a)

cos~pE!@epG~12pa!2~11ap!#50,
~27!

sin~pE!@epG~12pa!1~11ap!#50.
e

e

Since the two functions cos(x) and sin(x) never vanish for the
same argumentx, we have to consider two different cases

~i! sin(pE)50⇒E5nPZ and

epG5
11pa

12pa
~28!

has a real solutionG for a,1/p only. For smalla, we have
therefore

G5
1

p
lnS 11pa

12pa D ~29!

andG→2(1/p) ln « for a5(1/p)(12«) and«→0.
~ii ! cos(pE)50⇒E5n1 1

2 for nPZ and

epG5
pa11

pa21
. ~30!

The last equation can be fulfilled only fora.1/p. For large
a it is therefore

G5
1

p
lnS pa11

pa21D ~31!

andG→2(1/p) ln « for a5(1/p)(11«) and«→0.
As a result, the widths of all the states increase up

infinity as a function of increasinga. The singularity at the
critical point acrit is determined by ln(«). It is logarithmic.

Further, the energetical positions of the states remain
changed at the unperturbed energiesEk5k of the system
~eigenvalues ofH0) up to a→1/p. At acrit51/p, the real
part Ek of 2N eigenvalues~all kÞ0) of H jumps fromk to
k2 1

2 if k.0 and fromk to k1 1
2 if k,0, respectively. As a

function of further increasinga, the imaginary part of the
eigenvalues of the 2N resonance states~all k but k50) de-
creases first as ln(a) while it approaches zero as 1/a for a
→` according to Eq.~9!.

In order to study the behavior of the state in the center
the spectrum at the energyE050, we consider only the
highest-order terms ofl in Eq. ~6!:

l2N111 ia~2N11!l2N50. ~32!

For largea (a@1/p), the state corresponding to the solutio
l52 ia(2N11) lies at E50 and its width increases lin
early with a.

Summarizing the results, we state the following. In sp
of the fact that the coupling parametera enters Eqs.~5! and
~7! linearly, the imaginary parts of the complex eigenvalu
show a singularity at the finite valuea51/p. For larger cou-
plings, a clear separation of the time scales with respec
the decay widths of the resonance states occurs. This
pens also in the case of an infinitely extended spectrum. T
is not a local effect of alocally broad resonance in a re
stricted energy region, but it is produced by the whole s
tem in acollectivemanner.All basic states, independent o
their energy position, act cooperatively.
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B. Widths at the critical point for finite N: Analytical study

The sum of the widths of all states is, in our simple e
ample with equal coupling strengths, given by

Im$Tr~H!%5(
j

G j

2
5a~2N11!. ~33!

It is Tr(H)5const(a). Thus, Im$Tr(H)% should be a smooth
function of a not only far from the critical point but also
near to it in spite of the divergence of the widths forN
→` at a51/p ~see Sec. III A!. In the following, we will
prove this statement.

First, let us consider the eigenvalues ofH for finite N. In
this case, we have

PN~l!5 )
k52N

N

~k2l!F12 ia (
j 52N

N
1

j 2lG50 ~34!

instead of the simple Eq.~26! holding for N→`. As dis-
cussed in relation with Eq.~9!, the solutions ofPN(l)50
follow from 12 ia( j 52N

N 1/( j 2l)50. Here, we are inter-
ested in the difference between the solutions obtained
finite N and those forN→`.

It holds that

0512 ia (
k52N

N
1

k2l
511 iap cot~pl!

12ial (
k5N11

`
1

k22l2
, ~35!

where the correction term is given by

2l (
k5N11

`
1

k22l2
'2lE

N11/2

` dx

x22l2
52E

N/l

` dy

y221

5F ln
y21

y11G
N/l

`

5F ln
121/y

111/yG
N/l

`

5F lnS 12
2

y
1O~y2! D G

N/l

`

'F2
2

yG
N/l

`

5
2l

N
~36!

under the assumption 1/y5l/N!1. This condition is ful-
filled, to a good approximation, in the center of the spectru
Splitting Eq. ~35! into its real and imaginary parts@with l
5E2( i /2)G#, one arrives at

0512ap
sinh~pG!

cosh~pG!2cos~2pE! 1a
G

N
~37!

for the real part. Here the identity

cot~x1 iy !5
sinh~2x!2 i sin~2y!

cosh~2y!2cos~2x!
~38!
-

or

.

is used. The equation for the imaginary part (EÞ0) reads

05ap
sin~2pE!

cosh~pG!2cos~2pE! 1
2aE
N

, ~39!

from which we get

05sin~2pE!1
2E
pN

cosh~pG!2
2E
pN

cos~2pE!. ~40!

An estimation for the upper limit of the widthsG of the
states ata51/p leads to

pG5arcoshFcos~2pE!2
Np

2E sin~2pE!G' ln
Np

uEu . ~41!

Here, we have usedN/uEu@1, which is fulfilled only in the
center of the spectrum. Thus,

G

2
~a5acrit!<

1

2p
ln

Np

uEu , ~42!

which holds for every one of the 2N states~for all k but k
50) at the critical point. It means thatG< ln N for a
→1/p for all N.

Using Eq.~42!, one gets the following estimation for th
trace of the imaginary part ofHQQ

eff at a51/p:

(
j 52N

N
G j

2
'2E

0

N

dE
1

2p
ln

Np

E
52NE

0

1/p

ln~x!dx

52N@x ln~x!2x#0
1/p5

N

p S 12 ln
1

p D
5

N

p
@11 ln~p!#'

2N

p
'

2N11

p
. ~43!

The comparison of Eqs.~33! and~43! shows that Eq.~33!
holds also at the critical point. This means that the singu
ity of the decay widthsG at the critical point occurs such tha
the sum rule( iG i5const(a) is fullfilled also for a→acrit
andN→`.

At the critical point, the widthG0 of the state in the cente
of the spectrum can be estimated in leading order inN by
integrating Eqs.~41! over the interval (21/2,1/2):

G0

2
~a5acrit!5

1

2pE21/2

1/2

lnS Np

uEu DdE5
1

2p
@11 ln~2pN!#.

~44!

Thus, the width of the broadest state at the critical poin
small in comparison to the total length 2N of the spectrum.

C. Numerical illustration

In the following, we illustrate the behavior of the deca
widths by the results of numerical studies for differenta and
for some finite values ofN between 50 and 5000.

Splitting the sum for finiteN in Eq. ~35! into its real and
imaginary part, one gets
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05 (
k52N

N
k2E

~k2E!21~G/2!2
~45!

and

15a (
k52N

N
G/2

~k2E!21~G/2!2
. ~46!

The first equation describes the trajectories of the eigen
uesl5E2( i /2)G of H in the complex plane while the sec
ond one contains their parametrization witha. We calculated
the sum in Eq.~45! for differentN and fixed values ofG and
traced their solutions as a function ofE.

In Fig. 1~a!, the results of the calculations for differentN
(N5500,1000,5000) and fixedG51 are shown as a functio
of E. Due to the denominator of the sum, every resona
statek with Gk>1 has two solutions while there are no s
lutions whenGk,1. The number of solutions and thus th
number of resonance states withGk.1 depend on the aver
age slope by which the sum approaches the value 0
function of E.

The result is as follows. For a fixed value ofG51, there
are more solutions of Eq.~45! the largerN is. In the limit
N→`, Eq. ~45! can be fulfilled for all resonances, i.e., a
resonance states have widths larger than an arbitrarily ch
finite value. This confirms the analytical result for an infin
number of states, where we have shown that the widths oall
states diverge ata5acrit .

FIG. 1. Numerical illustration of Eq.~45! for different values of
N andG in the positive energy range.~a! G51, N5500 ~full line!,
1000 ~dashed line!, 5000 ~dash-dotted line!; ~b! N51000,G50.5
~full line!, 0.75~dashed line!, 1.0 ~dash-dotted line!. For details, see
text.
l-

e

a

en

In Fig. 1~b!, the results of calculations are shown with
fixed number N51000 and different values ofG (G
50.5,0.75,1.0). In this case, the average slope of the dif
ent curves is the same but the amplitude of the oscillati
varies. The largerG, the smaller the amplitude is. Tha
means, in the case of finiteN, that the number of resonanc
states havingGk>G is smaller the largerG is.

As a result, we state the following. WhenN is a finite
number, only a limited number of resonance states
widths Gk>G, whereG is an arbitrarily chosen finite value
Further, the largerN is, the larger is the number of resonan
states withGk>G. On the other hand, the largerG is, the
smaller is the number of resonance states withGk>G. Thus
we havetwo processes compensating each other, which en-
sures that Eq.~33! holds also in the limita→1/p and N
→`.

In Fig. 2~a!, we illustrate the motion of the eigenvalues
the complex plane for 0.01,a,2 in steps of 0.01 for posi-
tive energyE ~the part for negative energy is symmetric
that for positive energy!. For each resonance state its eige
value follows a certain trajectory with increasinga. For the
lowest values ofa, all eigenvalues are near toEk5k and
Gk /25a. The full line gives the estimation for the uppe
limit of G/2 ata5acrit according to Eq.~42!. The estimation
is good in the center of the spectrum. The deviations at la
energies are pure boundary effects. The differences betw
the different eigenvalue trajectories arise from the fin
value ofN. In the limit of N→`, all eigenvalues acquire th
same behavior because of the discrete translational symm
on the real energy axis.

We show in Fig. 2~b! the behavior of allGk /2 as a func-
tion of a for N550. At the critical valueacrit51/p ~indi-
cated by a vertical solid line!, the width of the collective
resonance statek50 separates from the widths of the oth
ones and increases linearly. The slope ofG0(a)/2 is equal to
2N11 over almost the whole range ofa.acrit according to
Eq. ~32!. The larger slope ofG0(a) close toacrit is a bound-
ary effect and disappears in the limit ofN→`.

Figure 2~c! showsN0
p as a function ofa for two different

values ofN. The curves show a sudden rise atacrit and satu-
rate rapidly to 1. The inlet gives a magnification of the cur
around the critical point, which is marked by a vertical so
line. The largerN is, the sharper are the changes in the slo
of N0

p(a). This is a clear numerical indication of the coo
erative effect acting over thetotal length of the spectrum. In
spite of the fact that the widthG0 of the fast decaying state a
a'acrit is of the order ln(M), Eq. ~44!, its wave function
carries contributions from basis states which are lying
away from the center of the spectrum and arenot overlapped
by it. These contributions over large energy scales
achieved via the ‘‘chain’’ of overlapping neighboring res
nances. As a result, we observe a ‘‘macroscopic’’ order o
the whole energy scale of the system being much larger t
G0.

The curve ofN0
p , of course, does not jump immediately

100% at the critical point. The main reason is the finite nu
ber of states taken into account in the calculations. T
widths of the resonances at the border of the spectrum a
general smaller than those of the resonances inside the s
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trum. Therefore, the chain of neighboring overlapping sta
is interrupted at energies close to the edges.

For all the trapped states, the corresponding quantityNk
p

always remains in the order of 1/M . The wave functions of
these states are mixed only with those of their next neighb
and with that of the statek50.

All the numerical results show that although the pha
transition appears mathematically forN→` only, the char-
acteristic features of it can be already seen atcomparably
small values ofM.

FIG. 2. ~a! The motion of the eigenvalueslk in the complex
plane with increasinga for the ideal picket fence distribution (N
550). The ordinate represents the values ofGk /2 while the abcis-
sas those ofEk . The full line shows the behavior of Eq.~41!. Only
a part of the spectrum is shown.~b! Gk /2 as a function ofa for
N550. ~c! N0

p as a function ofa for N550 ~full line!, 150 ~dotted
line!.
s

rs

e

D. Picket-fence level distribution
with disturbed translation invariance

Let us break the translation invariance of the picket-fen
model by giving another coupling strength to the state in
center of the system. Suppose thatEk5k and uvku51 ; k
2$0% andv0511D. In this case, the characteristic polyn
mial ~6! reads

PN~l!5 )
k52N

N

~k2l!2 ia (
k52N

N

3)
j Þk

~ j 2l!2 iaD)
k51

N

~k2l!~k1l!. ~47!

Dividing by a convergence ensuring factor and identifyi
the resulting terms with the product representation of sinx)
and cos(x), respectively, we get

P~l!5
sin~pl!

p
1 ia cos~pl!1 iaD

sin~pl!

pl
50 ~48!

in the limiting caseN→`. In order to study the behavior o
the state in the center (E50), we writel52 im and get

a5
1

p F 1

D

pm
1coth~pm!G . ~49!

According to this equation,a→1/p for m→`. The redistri-
bution of the system takes place at the same finite value
acrit51/p as in the case of constant coupling.

We investigate now the behavior of the system at
critical point, i.e., the type of the singularity. Suppose«51
2pa and pm5c«2s with sPR. Using the relation
coth(pm)→1 for largem, we get from Eq.~49!

15~12«!S 11
D

c
«1sD . ~50!

In leading order of the singular part ofpm(«), this equation
is solved bys51 andc5D(12«)'D. That means that we
have analgebraicsingularity: (pm5D/«). The system ap-
proaches the singularity quicker than in the case of a pic
fence distribution with translation invariance.

In the following we discuss formula~49! in detail with the
help of a numerical illustration~Figs. 3 and 4!. It turned out
that the case with a discriminated state atE50 is more com-
plicated. Therefore, we have drawn the movement of
complex eigenvaluesl in the center of the spectrum forD
520.5 @Fig. 3~a!#. We useM52N115101 and 301, re-
spectively.

At a5acrit51/p, two broad modes arise at the flanks
the spectrum atuEu'4.5 and 7.5 forN550 and 150, respec
tively. The larger the number of resonance states is,
larger is their distance from the center. With increasinga,
the poles of the two resonance states at positive and neg
energy approach each other in their real part and collide
E50 at a certain valuea5ac1. At a.ac1, the resonance
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122 PRE 60C. JUNG, M. MÜLLER, AND I. ROTTER
states remain atE50, one with further increasing, the othe
one with decreasingG. The more resonance states the sp
trum contains, the smaller isac1, as one can see in Fig. 3~b!.
Here the imaginary partsGk /2 of the eigenvalueslk shown
in Fig. 3~a! are drawn as a function of the coupling streng
a. The collision point shifts to the critical point of the spe
trum (ac1→acrit) if the numberM of resonance states i
enlarged, in spite of the fact that their distance from o
another atac1 is larger whenM is larger. The two values o
ac1 corresponding toM5101 andM5301 are indicated by
vertical dashed lines. The values ofacrit andac2 are marked
by vertical solid lines. In the limitM→`, the two broad
poles appear atE→`. In this limit, ac1→acrit . At this point
of a, the poles jump toE50.

Betweena5ac1 and the finite valuea5ac2, there exist
three resonance states atE50: the two broader poles appea
ing atac1 and the original one, which is discriminated by th
external coupling byD. The collective mode is one of th
two resonance states arising from the phase transitiona
5ac1. Its imaginary part increases with further increasinga.
The other broad pole decreases inG with increasinga. Its
collision with the discriminated resonance state ata5ac2
shifts both states away fromE50 and the imaginary part o
both eigenvalues decreases. Contrary to the value ofac1,
which approachesacrit with M→`, the value ofac2 remains
almost constant as a function ofM. For M→`, the value of
ac2 remains larger thanacrit . As we will see below, it
mainly depends onD. The poles of the trapped states a

FIG. 3. ~a! Eigenvalueslk5Ek2 i /2Gk in the complex plane for
a small energy range around the center.Ek5k ; k andvk51 ; k
but v050.5. N550 ~rhombi!, 150~crosses!. ~b! Gk as a function of
(a). Ek5k ; k andvk51 ; k but v050.5. N550,150.
-

e

-

proach the valuesn11/2 ~with nPZ) if a→`.
Figures 4~a! and 4~b! show the graphs ofpm coth(pm)

1D for different D (D520.5,0,0.5) andm/a for several
values ofa as a function ofm. The points of intersection are
the solutions of Eq.~49! derived under the assumption of a
infinite number of states.

In Fig. 4~a! the coupling parameter is set toa50.1
,acrit , and a51/p5acrit , respectively. For the valuea
,acrit there exists only one point of intersection with each
the curves of coth, lying at small values ofm. Also the state
at E50 has a comparably small width in the undercritic
regime ofa and the value ofm increases with increasingD.
In the parameter rangea,acrit, no broad mode is separate
from the other ones.

At the critical pointa5acrit , where the phase transitio
takes place, the linear curvem/a is tangential to the
pm coth(pm)1D for D50 and is parallel to this function fo
D520.5,0.5~lower and upper thick full line, respectively!.
So each of these curves has a point of intersection withm/a
at m5`. For the caseD520.5, the intersection atm5`
contains two solutions for the two broad modes, arising
the borders~at E56`) of the spectrum and colliding atE
50. Additionally, there is another intersection withm/a at a
small value ofm which arises from the discriminated state
E050.

In Fig. 4~b!, we see the same curvespm coth(pm)1D as
in Fig. 4~a! together withm/a for different values ofa
.acrit : a,ac2 , a'ac2, and a.ac2. In all cases, the
curves have intersections atm5`. This means that for all

FIG. 4. Numerical illustration of Eq.~49!. pm coth(pm)1D
~left ordinate scale! for D520.5,0,0.5~full lines! and m/a ~right
ordinate scale! for different a. ~a! for a50.1 ~dashed line!, 1/p
~solid thin line!. ~b! for acrit,a,ac2 ~solid thin line!, a'ac2

~dashed line!, a.ac2 ~dash-dotted line!. For details, see text.
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PRE 60 123PHASE TRANSITIONS IN OPEN QUANTUM SYSTEMS
values ofD, a mode exists atE50 with an infinitely large
width if a>acrit . The curvepm coth(pm)20.5 shows three
intersections withm/a in the rangeacrit,a,ac2. The two
intersections at smallerm approach each other ifa→ac2.
The value ofac2 depends obviously on the value ofD. In
dependence on the negative shift of coth(pm), the slope of
the tangent changes and therefore so does the value ofac2.
At larger values of the coupling (a.ac2) only one solution
remains atE50 with m5`.

Finally, we have investigated the behavior of the num
N0

p of principal components of the broad resonance as a fu
tion of a for D560.5 andM5101 states. The results ar
drawn in Fig. 5 together with the former one forD50. For
all cases, the sudden rise ofN0

p at a'acrit can be seen. At
the critical point the collective state is created, in all cas
by almost all basis states distributed over the whole sp
trum. This collective behavior of a phase transition is w
pronounced also forDÞ0. The curve forD50.5 is, how-
ever, much smoother than the other ones. It rises up no
quickly as the other ones and does not approach the m
mum value 100% in the range ofa shown in the figure.
Nevertheless, the characteristics of a phase transition ca
seen also in this numerical study: Comparing the results
M5301 states in the case ofD50.5 with those forM
5101 states, we see the following tendency. By increas
the number of states,N0

p for D50.5 comes closer to the
curvesN0

p for D51 and20.5. This behavior is a hint to a
phase transition@in the next section, Fig. 7~a!, we show an
example in which a phase transition does not occur and
results as a function of an increasing numberM of states do
not show such a tendency#.

E. Phase transition

Summarizing the results of our study with the ideal pick
fence distribution, we state the following.

~i! For an infinite number of states, the imaginary parts
the complex eigenvalues of the effective Hamiltonian~5!
show a singularity at the finite valuea5acrit51/p. A bifur-
cation in the widths appears: the widthG i 50 of the state in
the center of the spectrum increases with further increasina
while the widths of all the other states start to decrease.
states but the state atE50 are shifted by1

2 at a5acrit . For

FIG. 5. NumberN0
p of principal components as a function ofa

for the three different picket-fence distributions withv050.5,N
550 ~dashed line!; v051,N550 ~full line!; and v052,N550
~dash-dotted line!, 150 ~double-dotted-dashed line!.
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finite M the widthG i 50 increases linearly witha.acrit with
a slope given by the numberM of states included in the
spectrum.

~ii ! The state in the center of the spectrum is a collect
one in a global sense. The numerical studies for finite s
tems show that it contains components of almostall basic
states of the system, also of those which arenot overlapped
by it. This is expressed by the numberNi 50

p of principal
components of the state in the center of the spectrum wh
grows, at a5acrit , suddenly from its minimum value to
100% ~maximum mixing!.

~iii ! At a5acrit , the widthG i 50 of the state in the cente
of the spectrum is much smaller than the extension of
spectrum. Therefore, the system doesnot create locally a
collective state which traps, with increasinga, further reso-
nance states overlapped by it.

~iv! At a5acrit , the system suffers a change in its stru
ture: one of the resonance states aligns with the decay c
nel. Its wave function collects all the corresponding comp
nents from the wave functions of all the other states~which
appear with the same weight in all basic wave functions
cause of the symmetry of the problem!. Therefore, its width
G i 50 increases with further increasinga while the widths of
all the other states decrease.

Generally, the behavior of the order parameter of a sys
as a function of a control parameter characterizes the typ
the phase transition. In the case of a first-order phase tra
tion, the order parameter shows a jump at a certain fin
value of the control parametera5acrit . If a higher-order
phase transition is present, the corresponding derivative
the order parameter jumps atacrit . More precicely, its (n
21)th derivative jumps in the case of annth-order phase
transition.

In our system, the valueG0 /M is related to the order
parameter. It is the width of the collective state normaliz
according to the number of resonance states contributin
its formation. This value increases linearly as a function oa
with the slope 1/M for a,acrit and with the slope 1 ifa
.acrit . So, the first derivative ofG0 /M jumps ata5acrit .
As to the order parameter fluctuations, we point to the re
tion between theGk and the coupling matrix elementsgkc

51/A2p^jcuV̂uFk& between discrete and scattering sta
@see Eq.~4!#. It holds @1,4,5,16# that

G05(
c

ug0cu2/b05ug01u2/b0 ~51!

in the one-channel case withb0 defined in Eq.~20!. The
ug01u2 diverge at the critical valueacrit while beyond the
critical regionG0'ug01u2 @4,5,16#. Thus, theug01u2/M show
the typical behavior of an order parameter@15#. This allows
us to identify them with the order parameter in the case st
ied by us.

The jump in the first derivative at the critical point can b
seen more clearly in the nonfluctuating valueG0 /M than in
the fluctuating valueug01u2/M . Both values show, as a func
tion of the control parametera, the jump at the critical point
which is characteristic of a second-order phase transit
Therefore, we conclude that the formation of a globally c
lective resonance is asecond-orderphase transition. We will
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124 PRE 60C. JUNG, M. MÜLLER, AND I. ROTTER
prove in the next sections that this behavior is universal
all systems showing a collective reorganization.

In Secs. IV E and V, we will see that the phase transit
is accompanied by an essential deviation of the valueB @Eq.
~23!# from 1 in the neighborhood ofacrit . This means the
biorthogonality of the function system plays an importa
role in the reordering process.

IV. MORE REALISTIC SYSTEMS

In the preceding section, we investigated the propertie
the translation invariant picket-fence model as a function
the coupling parametera analytically as well as numerically
The system suffers a second-order phase transition aa
51/p which we studied in detail. We consider now the b
havior of some more realistic systems as a function of
parametera in order to answer the question of whether t
results obtained have a general meaning. In detail, en
dependencies and fluctuations within the spectrum will
considered in the following.

A. System with unequally distributed levels
and equal coupling strength

We investigate now the behavior of systems when
level density is not constant but changes as a function
energy. Suppose thatEk5sgn(k)k2 und vk51 ; k. This
means that the level density is assumed to decrease lin
with k and to approach the value zero fork→`.

In this case, the characteristic polynomial reads

PN~l!5 )
k52N

N

@sgn~k!k22l#2 ia (
k52N

N

3 )
j 52N; j Þk

N

@sgn~ j ! j 22l#, ~52!

which can be rewritten as

PN~l!5QN~l!1 ia
d

dl
QN~l!, ~53!

where QN(l)5)k52N
N @sgn(k)k22l#. Dividing QN(l) by

the convergence ensuring factorF52)k51
N 2(k)4, we get

QN~l!

F
5l)

k51

N S 12
l

k2D S 11
l

k2D . ~54!

In the limit N→`, this expression is

QN~l!

F
5

1

p2
sin~pAl!sinh~pAl!

5
2 i

p2
sin~pAl!sin~ ipAl!

5
2 i

2p2
$cos@pAl~12 i !#2cos@pAl~11 i !#%

~55!
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according to the Weierstrass product representation. In o
to find the solution atE50, we writel5 im and get

QN~l!

F
5

2 i

p2
@cos~pA2m!2cosh~pA2m!# ~56!

and finally, with (d/dl)QN5(1/i )(dQN /dm),

a5
A2m

p

cosh~pA2m!2cos~pA2m!

sinh~pA2m!1sin~pA2m!
. ~57!

The right-hand side of this equation is a monotonically
creasing function:a→` with m→`. The dilution of the
spectrum at largeuEu therefore prevents a phase transition

Figure 6~a! showsGk /2 as a function ofa for N550
states. A short-lived state is formed, but in contrast to
ideal picket fence distribution@Fig. 2~b!#, no critical value of
a can be defined. The width of the state in the center of
spectrum~at E50) increases smoothly as a function ofa
trapping step by step its neighbors. The formation of
short-lived state does not occur by a collective interaction
all basis states but by individual trapping of neighbored le
els. In other words, the short-lived state isnot formed by a
cooperative effect acting over the whole energy scale of
spectrum but is restricted to the energy range overlapped
it. There is no phase transition.

The numberN0
p of principal components in the wav

function of the statek50 is shown as a function ofa in Fig.
7~a! for N550 and 150. It supports the conclusion draw
Also, this value is a smooth function. There is no hint of
phase transition. The broad state carries only componen
those basis states which it overlaps. In contrast to the cas
which a phase transition occurs, the slope ofN0

p decreases
with increasingN. The curveN0

p in Fig. 7~a! remains smooth
unlike the curves forD50.5 andM5101,301 states in Fig
5. The collective state is created by the basis states of a l
energy region overlapped by it.

B. System with unequally distributed levels
and unequal coupling strength

We investigate now the question of whether a system w
a diluted level density at largeuEu shows a phase transition
the states at the border are coupled stronger to the d
channel than those in the center of the spectrum.

For this purpose we rewrite Eq.~9!,

a5
2 i

2
uv0u2

l
1 (

k51

N F uvku2

Ek2l
1

uv2ku2

E2k2l G . ~58!

As in the foregoing examples, the spectrum is supposed t
symmetrical ~or nearly symmetrical! in relation to Ek50
50: 2Ek'E2k and vk'v2k . Looking at the solution at
E50, we writel52 im. Then we get
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FIG. 6. Gk /2 as a function ofa for N550. ~a! Ek5sgn(k)k2,vk51; k; ~b! Ek5sgn(k)k2,vk
25uku11; ~c! Ek5sgn(k)k2,vk5uku11; ~d!

Ek distributed according to an unfolded GOE;vk are Gaussian distributed with mean value 1 and variance 0.1.
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21m2

~59!

from Eq. ~58!. Since we are interested in the question
whether the system shows a phase transition at a finite v
of a, we have to consider Eq.~59! in the limiting casem
→` andN→`:

1

acrit
5 lim

m→`
F lim

N→`

2m(
k51

N uvku2

Ek
21m2G . ~60!

We approximate Eq.~60! by an integral, replace the discre
indexk by the continuous variablex, and assumeEk

2'xt and
vk

2'xr . Then

1

acrit
5 lim

m→`

2mE
0

` xr

xt1m2
dx

5 lim
m→`

2m2(r 11)/t21E
0

` sr

st11
ds. ~61!

The integral converges whent5r 111« ; «.0.
Let us consider the following cases.
~i! 2(r 11).t. In this case,acrit→0 with m→`. The

system is in an overcritical situation for alla.0. A phase
transition therefore doesnot take place.
f
ue

~ii ! 2(r 11)5t. In this case,a5acrit.0 remains finite in
the limiting casem→`. Fora,acrit , the widths of all states
increase. Ata5acrit , a phase transitiontakes place: the
short-lived state appears suddenly and a clear separatio
time scales, with respect to the lifetimes of the resona
states, arises, even if the spectrum is infinitely extended

~iii ! 2(r 11),t. In this case,acrit→` with m→`. For all
finite values ofa, there exist states which are not overlapp
by the collective resonance, whose widths increase with
creasinga. Therefore, the state atE50 traps new states end
lessly. As a consequence, the formation of the short-liv
state atE50 takes place smoothly. A phase transition do
not take place.

This analytical study shows the following result. To fulfi
the conditions for a phase transition, the energy depende
of the unperturbed spectra ofH 0 must be compensated by a
energy-dependent coupling of the individual states to the
cay channel. A phase transition exists in the cases con
ered, if the energy dependence of the distribution of the l
elsEk is opposite to that of the coupling matrix elementsvk .
According to Eq.~61!, the critical value ofa is

acrit5
r 11

p
5

t

2p
. ~62!

Otherwise, the system is either in an overcritical regime~cor-
responding toacrit→0) or in an undercritical one~corre-
sponding toacrit→`).

Further, the width of the broad pole ata'acrit in the
compensated case (rÞ0) can be estimated with respect
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FIG. 7. N0
p as a function ofa for ~a! Ek5sgn(k)k2, vk51; k, N550 ~full line!, 150 ~dashed line!; ~b! Ek5sgn(k)k2, vk

25uku11,
N550 ~full line!, 150 ~dotted line!, 500 ~dashed line!; ~c! Ek5sgn(k)k2, vk5uku11, N550 ~full line!; ~d! Ek distributed according to an
unfolded GOE;vk are Gaussian distributed with mean value 1 and variance 0.1.N550 ~full line!, 150 ~dotted line!, 250 ~dashed line!, 500
~dash-dotted line!.
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the length of the spectrum. The characteristic polynom
@Eq. ~9!# at the energy of the collective state (E50) reads

2 i

a
5 (

k52N

N uvku2

Ek1
i

2
G

5 (
k52N

N ukur S kukur2
i

2
G D

~kr 11!21G2/4
. ~63!

The principal value of that sum gives zero. Therefore, we
write

1

a
5

G

2 (
k52N

N ukur

~kr 11!21G2/4
'

G

2E2N

N uxur

~xr 11!21G2/4
dx

5
G

r 11E0

Nr 11 ds

s21G2/4
5

2

r 11E0

2Nr 11/G
dS 2S

G D
S 2S

G D 2

11

5
2

r 11
arctanS 2Nr 11

G D . ~64!

Using the expression~62! for the critical point of the infinite
system, one gets
l

n

p

2
'arctanS 2Nr 11

G D , ~65!

which holds only ifG!2Nr 11. In other words, also in the
compensated case, the width of the fast decaying collec
resonance state is much smaller than the extension of
spectrum at a coupling strength close to the critical point

The compensated case is illustrated in Figs. 6~b! and 7~b!,
and the overcompensated one in Figs. 6~c! and 7~c!. In the
compensated case~with r 51), both the distance betwee
neighboring levels and the coupling strengthuvku2 increase
linearly with uEu @Ek5sgn(k)k2 and uvku25uku11; k]. In
the overcompensated case, the energy dependence o
coupling is chosen stronger than the dilution of the spectr
@Ek5sgn(k)k2 and vk5uku11; k]. Here the coupling in-
creases quadratically whereas the level density decrease
early with E.

The compensation of the energy dependence of the l
density by a corresponding one in the coupling strength
stores the phase transition@Figs. 6~b! and 7~b! as compared
with Figs. 6~a! and 7~a!#. A collective mode is created by
participation of~almost! all basis states. It occurs suddenly
a critical value ofa.

In Fig. 7~b!, N0
p for M5101, 301, and 1001 states

drawn. With an increasing numberM of states, the curve
rises more and more sharply. The critical value isacrit
52/p ~indicated by a vertical solid line! in accordance with
Eq. ~62!.
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The maximum valueN0
p51 is not reached in Fig. 7~b!.

N0
p is approximately 0.9 and even decreases with further

creasinga. Drawing the contributionsb0i in the wave func-
tion F0, Eq. ~21!, one sees the following feature. The co
tributions of the statesj coupled more weakly to the chann
decrease fora.acrit in contrast to those of the statesi
coupled more strongly:v j,v i→ub0 j u,ub0i u. Since the dif-
ferences between thev i are quite large in the cases consi
ered,N0

p,1. This holds for both a decreasing and increas
energy dependence of the level density. In both cases,
coefficientsub0 j u are spread at largea, e.g., ata'4acrit .
This is in contrast to the case of the ideal picket fence w
equal coupling strengths, in which all coefficients approa
the value 1/M for a>2acrit .

In the case of an overcompensation@Figs. 6~c! and 7~c!#,
the critical point is shifted to very small values in accordan
with acrit→0, Eq.~61!. The number of principal componen
of the broad mode jumps up to 75%. Then it decreases
saturates at around 57%.

In an additional calculation, we bounded the spectr
from below: we investigated the case withEk5k2,uvku25k
11; k, k>0. Also in this system, a phase transition tak
place atacrit52/p as in the case shown in Figs. 6~b! and
7~b!. In all cases, the broad mode appears in the energe
center of the spectrum.

C. System with unfolded Gaussian distributed levels

It is interesting to learn whether the conditions for a pha
transition must be fulfilled strictly or only on the average.
order to answer this question in the affirmative, we perfo
the following numerical analysis. We choose an unfold
Gaussian-orthogonal ensemble~GOE! for the distribution of
the eigenvalues ofH 0 and a Gaussian distributed couplin
vectorV with mean valuê v&51 and varianceDv50.01.

The decay widths as a function of the coupling parame
a are drawn in Fig. 6~d! for N550. The broad mode sepa
rates from the other ones at approximatelyacrit51/p with a
slope of 2N11. The features of the phase transition are
as clearly pronounced in this figure as in the case of the id
picket fence distribution. Nevertheless, the difference fr
the results shown in Fig. 6~a!, where no phase transitio
occurs, are obvious. Even for the comparably small num
of states (M5101), the fluctuations in the distribution of th
levels and the coupling vector do not destroy the nature
the reorganization process.

As shown in the foregoing sections, the number of pr
cipal componentsNk

p is a sensitive quantity to measure th
global collectivity of the separation process. In Fig. 7~d!, N0

p

of the collective mode atE50 is drawn as a function ofa
for N550,150,250,500. For increasingM52N11, the
curves rise up more suddenly and the slope neara51/p gets
steeper. All the curves approach the maximum value ofN0

p

very fast for valuesa.acrit .
The features of the second-order phase transition are

ter expressed if more resonance states are considered
largeN, the irregularities in the distribution of theEk andvk
are almost unimportant. This proves that the conditions
rived in the former sections have to be fullfilled only on t
average. Also in the ergodic case of a GOE distributed sp
trum, the reorganization of the spectrum can be underst
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as a second-order phase transition. The fluctuations wi
the spectrum will be washed out if the conditions for a pha
transition derived from Eq.~61! are fulfilled only on the
average.

D. System with complex coupling parametera

Up to now, we considered the system to be described
the HamiltonianH, Eq. ~5!, where the coupling between th
system and the continuum is supposed to be real andH is
non-Hermitian. There may be an additional partbṼṼ† in the
coupling term by which a collective state of another~inter-
nal! type is created. This collective state is shifted by
energyDE from the group of the remainingN21 states@6#.
The structure of both partsVV† and ṼṼ† is the same. The
difference is the non-Hermiticity of the external couplin
term in the first case and the Hermiticity in the second ca

We are interested in the question of whether the ad
tional term has an influence on the phase transition. Inve
gating this question, we restrict ourselves to the caseVV†

5ṼṼ†, i.e., an angle zero between the vectorsV and Ṽ.
Further, the characteristic polynomial~6! does not contain, in
the one-channel case, the phases of the coupling matrix
ments, but onlyuvku2. It is justified, therefore, to replacea
by a1 ib in the equations considered in the preceding s
tions in order to obtain conclusions on the influence of
term with bÞ0 on the phase transition.

Considering the picket-fence model with equal coupli
strength~which we studied in Sec. III forb50), Eq. ~26!
must be replaced by

P~l!5sin~pl!1 ip~a1 ib!cos~pl!. ~66!

Using the representationl5E2( i /2)G, one gets

S ~epG21!2pa~epG11! 2pb~12epG!

2pb~11epG! ~epG11!2pa~epG21!
D

3S cos~pE!

sin~pE! D50. ~67!

This equation has a solution, when the determinant of
matrix vanishes. This condition gives

G5
1

2p
lnS ~pa11!21~pb!2

~pa21!21~pb!2D . ~68!

Equation~68! has no singularity whenbÞ0. This means that
the singularity in the widths of the resonances, obtained
b50 in Eqs.~27!, vanishes whenbÞ0.

This result can be understood as follows. In@17# the dis-
tribution of exceptional points is investigated for system
described by a Hamiltonian of the typeH̃5H01ãH1. The
exceptional points of such a system are those points in
parameter space ofã at which two ~or more! eigenvalues
coincide ~for a more detailed discussion, see, for examp
@18#!. The coupling constantã can be a real, imaginary, or
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more generally, a complex number. The distribution of
exceptional points is determined by the matricesH0 andH1.

It is independent of the value ofã, which determines, for its
part, the positions of the~in general complex! eigenvalues of

H̃. In the one-channel case~in which H1 has rank 1!, there
exist M21 exceptional points corresponding to the cross
of the collective state with each of the otherM21 states.

For systems which show a phase transition,all M 21 ex-
ceptional points converge to the finitepurely real value of
ã5ãcrit in the limit M→`. For finite systems, almost a
exceptional points are near to this accumulation point. T
result holds not only for the ideal picket fence, but forall
systems, which suffer a phase transition@17#.

For the systems investigated in the present paper, the
lowing is true. The accumulation point, which is determin
by the matricesH0 andVV†, is independentof the coupling
parametera. When the system with a purely imaginary co
pling ~i.e., b50) shows a phase transition,all (M21) ex-
ceptional points are met ifa approaches the critical value
The collective mode repels with all the other ones simu
neously, i.e., all states run through their exceptional poin
a5acrit . This means allM21 exceptional points are accu
mulated atacrit . In that case,̂ F i uF i& diverges for alli si-
multaneously in the limita→acrit . In fact, the dimension of
the eigenspace collapses fromN to 1 (uF i&5uF j& ; i , j ) if a
hits the accumulation point. Therefore, alsoB diverges at
acrit . If the coupling parameter is complex (bÞ0), however,
the system passes the accumulation point in a certain
tance in the complex (a,b) plane. As a result, the singularit
at acrit will be avoided. Foruau'uacritu, the quantityB does
not diverge ifM→` but reaches a certain maximum valu
Refering to this result, we claim that, according to a rigoro
mathematical definition, the phase transition will be d
stroyed by any given nonvanishing real partb in the cou-
pling parameter~a detailed discussion of this aspect is giv
in @17#!.

Let us illustrate this result by means of a numerical stu
For that purpose, we replacea by aeiw. We chooseM
52N115101, as usual, and perform the calculations
w51°, 10°, 45°, 80°, 89° by varyinga. The eigenvalues o
H 0 ~for b50) and the coupling matrix elements are chos
to be Ek5k and vk51, respectively. In Fig. 8~a! we have
drawn the number of principal components of the collect
resonance state as a function ofa.

The numerical results show a clear difference between
cases with small and large anglew. The largerw is, the
smaller is the number of basis states contributing to the
lective state at a givena.acrit . Further, the curves rise u
more smoothly whenw is larger. For large angles, the max
mum valueN0

p51 is not reached at the maximum valuea
52 shown in the figure. Thus, in the case of the finite sp
trum studied numerically, the reorganization process is g
ting smoother the largerw is. In other words, the reorgan
zation process is washed out if the system cannot hit
accumulation point of the exceptional points, but has to p
it in a certain distance in the complex parameter space.

This conclusion is underlined by the results given in F
8~b!. Here we have fixed the anglew to 45° and varied the
number of states included in the spectrum (M5101 and
1001 states!. As one can see, the characteristic features of
e
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curves are not changed by changing the number of b
states. The transition remains smooth also forN51001 states
over the whole range ofa. So, these systems cannot be ch
acterized by a critical point. We see a critical region ofa,
which will be larger the larger the nearest distance betw
the accumulation point and the eigenvalues in the comp
plane is.

V. DISCUSSION OF THE RESULTS

The analytical and numerical investigations represente
the foregoing sections point to similarities and differences
the behavior of the different systems under the influence
the varying strength of the coupling to the continuum~decay
channel!. In any case, a restructuring in the system tak
place~or starts to take place! when the coupling parametera
is large enough. A collective state which is aligned with t
decay channel is formed in the center of the spectrum.
wave function is coherently mixed in the set of basis wa
functions of the corresponding closed system. The trap
states have incoherently mixed wave functions. Beyon
certain value of the control parametera, two different time
scales exist~bifurcation of the widths!.

In some cases, the restructuring in the system can be i
tified as a second-order phase transition. The separatio
different time scales occurs suddenly at a critical valueacrit

FIG. 8. N0
p as a function ofa for a system with complex cou

pling. Simultaneously,b changes according tob5a tan(w). ~a!
The valuesw51°, 10°, 45°, 80°, 89° are shown as full, long
dashed, short-dashed, dotted, and dash-dotted lines, respect
N550. ~b! w545°, N550 ~full line!, N5150 ~dotted line!.
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and is a collective effect of thewhole spectrum. The value
G0 /M which is directly related to the order paramet
ug01u2/M increases linearly as a function of the control p
rametera with a universal slope 1, as soon as the cont
parameter is larger than its critical value. In other cases,
separation of time scales occurs successively by individ
trapping of neighboring resonance states. In that case,
collectivity is restricted by the extension of the energy
gion, overlapped by the fast decaying resonance state.
process of reorganization continues up toa→`.

The differences betweeen the behavior of systems wh
show a phase transition and those which do not can be
nicely in the example of the ideal picket fence distributio
In the case with equally distributed levels coupled with t
same strength to one common channel, all states are eq
lent. Consequently, the direction of the energy shift acco
panying the local resonance trapping is undefined and
local resonance trapping is hindered. The redistribution
the system under the influence of the decay channel can
place only collectively. The quantityG0 /M rises linearly in
a.acrit with slope 1.

More realistic systems show a phase transition when
energy dependence of the level density is compensated b
energy dependence of the coupling strength. For examp
dilution of the level density can be compensated by a co
sponding enhancement of the coupling strength. The crit
value acrit is well determined. Further, when the system
bounded from below, a phase transition occurs under
same conditions as for nonbounded systems. It occurs a
same critical value (r 11)/p. The broad mode appears,
any case, in the energetical center of the spectrum.

Moreover, we could show that the conditions for a pha
transition do not have to be fulfilled strictly, but only on th
average. Small irregularities in the energy dependence o
levels or in the distribution of the coupling vectors a
washed out if the number of states in the spectrum is su
ciently high. Also, the case of GOE-distributed states sho
the features of a phase transition even for a comparably s
number of states. The fast decaying state is created byall
states of the spectrum, independently of whether they
overlapped by it or not.

Another characteristic feature of the phase transition is
mixing of the wave functions. In the case of the ideal pick
fence distribution, it changes suddenly atacrit from its mini-
mum valueN0

p51/M to the maximum valueN0
p51 for the

statei 50. The width of the collective resonance state ata
5acrit is of the order of ln(M), whereas the extension of th
spectrum is equal toM. Also, in the more general case
which the energy dependence of the level density is comp
sated by the coupling strength of the resonance states
could prove that the width of the collective state is mu
smaller than the extension of the spectrum for couplin
close to the critical point. Nevertheless, the collective st
carries contributions of~almost! all basis states even if the
are, in the case of a finite spectrum, close to the bord
When aÞacrit , the value ofN0

p is independent ofa. This
holds also if the system is disturbed by random pertubatio
where the compensation conditions are fulfilled only on
average.

The situation is different if the energy dependence of
level density is not compensated by the energy depend
-
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of the coupling vector. In such a case, the local resona
trapping between neighboring states is not hindered but
curs successively starting in the region with the largest le
density or coupling strength. If the level density is larger
the center of the spectrum than at other energies and
coupling strength to the channel is the same for all levels,
collective mode is created only locally for any finite value
a. This local collective state traps successively more a
more resonance states in the direction of the border of
spectrum. This process of local resonance trapping with
creasing width of one state in the center continues endle
up to a→` ~in the limit M→`). Although the short-lived
state has collective properties, it is not created by all ba
states of the spectrum but only by those which are ov
lapped by it. There is no phase transition at all.

The resonance structure of the system is, in the ca
considered, symmetrical in relation to the critical valueacrit

of the control parameter although the number of long-liv
resonance states fora,acrit and fora.acrit differs by 1. As
an example, the picket-fence distribution with level distan
1 and equal coupling strength to the continuum remain
picket-fence distribution also ata.acrit but is shifted in en-
ergy by 1

2 of the level distance.
For finite M, collective states may be caused also by

additional real part to the Hamiltonian, e.g.,H85H 0

1bVV†, leavingH8 Hermitian. It is called internal collec-
tivity in contrast to the external collectivity discussed abov
In such a case, the process of reorganization in the sys
occurs smoothly. A phase transition does not take place.
eigenfunctions ofH8 are orthogonal in the usual manne
^F i8uF i8&51 for all i anda.

The non-Hermiticity of the HamiltonianH is, however,
also not sufficient for the appearance of a phase transition
the results presented in the foregoing sections show. In
case, the valueB characterizing the biorthogonality of the s
of eigenfunctions ofH plays a decisive role. Only when i
becomes essential, i.e., whenB@1 @see Eq.~23!# at a certain
well-defined value ofa, does a phase transition take plac
When, however, the reordering of the system takes pl
successively in a limited region of the spectrum withn!M
states, thenB(n)[(1/n)( i 51

n ^F i uF i&.1 but B is close to 1.
In this case, the reorganization in the system does not o
collectively but smoothly as a function ofa.

As a result, in the case of a phase transition the biortho
nality of all the eigenfunctions ofH is maximal at~almost!
the same value ofa and, according to Eq.~23!, B@1 at
acrit . For illustration we show in Fig. 9 the value ofB as a
function of a for four different cases. The theoretical valu
of acrit is marked by a vertical solid line. Only in the cas
without phase transition is this sum always very close to
while it has a clearly expressed maximum at the critical po
acrit whenever a phase transition occurs. Further, the eig
functions ofH are orthogonal in the usual manner fora
!acrit as well as fora@acrit . Here,B'1.

This result can be illustrated nicely by means of the e
ceptional points defined as the crossing points of resona
states. They are determined by the structure of the diffe
parts of the effective Hamiltonian~see Sec. IV D! but are
independent of the coupling parameter. In the one-chan
case considered by us, they accumulate at one point in
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limit M→`. In the case in which the system shows a ph
transition, the eigenvalues meet this accumulation po
when considered as a function of the coupling parameter
B→` in its neighborhood.

Therefore, we may differentiate between four situatio
~i! the exceptional points accumulate at a finite real value
the complex (a,b) planeand the system goes through th
accumulation point,~ii ! the exceptional points accumulate
a finite real value in the complex (a,b) plane but the phase
w of the coupling hinders the system to hit the accumulat
point, ~iii ! the exceptional points accumulate ata,b50, and
~iv! the exceptional points do not accumulate at all but th
are spread over the whole complex (a,b) plane with a di-
verging absolute value of the coupling parameter. Examp
are ~i! the compensated case, and~ii ! the system with com-
plex coupling,~iii ! the overcompensated case,~iv! the under-
compensated case~for details, see@17#!.

The stochastic processes described by the~complex! par-
tial widths are much larger fora'acrit than at other values
of a. This is expressed by the relationG i5ug ic u2^F i uF i&,
whereg ic is the partial width of the statei in relation to the
~only! decay channelc @1#. Since^F i uF i&@1 nearacrit , it
follows G i!ug icu2 for a'acrit . The structure observed i
the cross section is determined by theS matrix, Eq. ~4!. It
depends essentially, according to Eq.~4!, on the length of the
spectrum~i.e., on the valuesug icu2 of all the states!, but not
on the widthG i 50 of the collective state. For illustration
u12S11u2 is shown in Fig. 10 for three different values o
a>acrit . The width of the collective state isG0 /250.84,
1.09, and 19.9, respectively, for the three values ofa con-
sidered. The widthG0 has almost nothing in common wit
the structure observed in the cross section as one easily
from the figure.

The same result follows also from our analytical cons
erations. At the critical point, the sum of the widths of a
states is smaller than the total lengthM52N11 of the spec-
trum by a factorp according to Eq.~33!. Furthermore, the
width of the broadest state~in the center of the spectrum! is
on the order of lnN in the ideal picket-fence model. In th
limit of large N, it is in general tiny compared to the leng

FIG. 9. The value ofB, Eq. ~23!, as a function ofa. The thick
full line shows the caseEk5sgn(k)k2,vk51 ; k,N550, thin solid
line the ideal picket fence distribution forN550, dashed line the
ideal picket-fence distribution forN5150, dash-dotted line the un
folded GOE as in Fig. 7~d! for N5150.
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of the spectrum according to Eq.~65!. This shows that the
transition is caused by the cooperative behavior of all sta
It is not caused by the overlap of the complete spectrum
one of the states. In the cross section, we see a structu
the extension of the length of the spectrum sinceall states
are coupled to the decay channel. The width of the broad
state is much smaller than this structure.

The numerical results show further that the numberM of
states need not necessarily be infinite in deciding the qu
tion of whether the transition is of second order or not. T
second-order phase transition is well expressed already f
relatively small number of states (M52N115101 up to
1001 in our calculations! in all cases in which the analytica
study shows a phase transition in the limitM→`.

In our analytical and numerical studies the limiting ca
M→` is achieved by an extension of the length of the sp
trum. It is worthwhile to note that the results are the same
instead, the length of the spectrum is kept fixed at some fi
value and the level density approaches` with M→`.

In many-particle systems, the level density depends
energy. In nuclei, it increases exponentially with energy. T
coupling strength of the states to the continuum decrea
however, with energy due to the increasing contribution
many-particle many-hole configurations to the wave fun
tions of the states~‘‘compound nucleus states’’!. It is an
interesting question whether in such a system the increa
level density is ‘‘compensated’’ in a certain energy range
the spectrum by the decreasing mean coupling strength
that the condition for a second-order phase transition is
filled.
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FIG. 10. u12S11u2 for a51/p ~full line!, 1/p10.05 ~dashed
line!, 1/p10.1 ~dash-dotted line!. For comparison:G0 /250.84 for
a51/p, G0 /251.09 for a51/p10.05, andG0 /2519.9 for a
51/p10.1.
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