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Structure of supercooled and glassy water under pressure
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We use molecular-dynamics simulations to study the effect of temperature and pressure on the local struc-
ture of liquid water in parallel with neutron-scattering experiments. We find, in agreement with experimental
results, that the simulated liquid structure at high pressure is nearly independent of temperature, and remark-
ably similar to the known structure of the high-density amorphous ice. Further, at low pressure, the liquid
structure appears to approach the experimentally measured structure of low-density amorphous ice as tempera-
ture decreases. These results are consistent with the postulated continuity between the liquid and glassy phases
of H,0.[S1063-651%99)10007-2

PACS numbgs): 64.70.Pf, 61.12.Ex, 61.20.Ja, 61.43.Fs

The structure of liquid water has been well-studied at ampothesized to explain the anomalous properties of waier:
bient pressure by a variety of experimental and simulatiorthe existence of a spinodal bounding the stability of the lig-
techniques. It has been recognized that each water moleculéd in the superheated, stretched, and supercooled states
is typically hydrogen bonded to four neighboring molecules[14]; (ii) the existence of a liquid-liquid transition line be-
in a tetrahedral arrangement, leading to an open bond netween two liquid phases differing in densif$,10,15-1T;
work that can account for a variety of the known anomalied(iii) a singularity-free scenario in which the anomalies are
of water[1,2]. More recently, the effect of pressure on both related to the presence of low-density and low-entropy struc-
the structure and the hydrogen bond network of liquid watetural heterogeneitiegl8].
has been studied experimentd]B;4] and by simulations us- Here, we present molecular-dynami@dD) simulations
ing a variety of potentials, including the ST2 potenfia)6], (Table ) of a comparatively large system of 8000 molecules
the MCY potential 7], the TIP4P potentidl6,8—10, and the [23,24 interacting via the extended simple point charge
SPCI/E potentigl11]. Furthermore, understanding the effects (SPC/B pair potential[25]. We find remarkable agreement
of pressure may be useful in elucidating the puzzling behavwith neutron-scattering studies of the effect of pressure on
ior of liquid water[12,13. the structure of liquid DO [4], indicating that the SPC/E

In particular, three competing “scenarios” have been hy-potential reproduces many structural changes in the liquid
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FIG. 1. Pair correlation functioh(r) for two of five temperatures studi€@iable ). The curves can be identified as follogwsading from
top to bottom at the location of the arrgwP =600 MPa,465 MPa,260 MPa,100 MPa,0.1 MPa, a0 MPa. Pressures are the same for
the experiments and simulations, with the exception that no experiment was possliblie-&200 MPa. Note the pronounced increase in the
3.3 A peak(arrow) when pressure is increased. To facilitate comparison with experiments, the simulation temperature is reported relative to
the Typ of the SPC/E potential at atmospheric pressure. Similarly, the experimental data are reported relativé,jg tfieD,O at
atmospheric pressure. The behavior of the simul&t@d strongly resembles the experimental resulbs. The pair correlation function
doo(r) for three of five temperatures studi€Bable ). Note the pronounced increase in the 3.3 A peakow) when pressure is increased.
The curves may be identified as(@. (c) The molecular structure fact&,(q), calculated from the Fourier transformtuofr) [(a)]. Looking
at the first peak iy (q), the curves are identified as describedan Note the shift in the first peak when pressure is increased.
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TABLE I. Summary of results from the 24 liquid and 2 glassy

state points simulated. The liquid state points simulated at positive
600 MPa pressure correspond roughly to temperatures and pressures studied
465 MPa in the experiments of Refl4]. We equilibrate systems of 8000
molecules to a constant temperature and pressure by monitoring the
evolution of the density and internal energy. We adjust the tempera-
ture and pressure via the methods of Berendd& and we ac-
count for the long-range Coulomb interactions using the reaction
field technique with a cutoff of 0.79 nr20]. The equations of
motion evolve by thesHAKE algorithm[21] with a time step of 1 fs.
1.8 ¢ a7 To facilitate comparison between simulations and experiments, we
defineAT=T-T,,p, the temperature relative to that of the 1 atm

2.2 k— HDA

q, (A™

-200 MPa

= LDA temperature of maximum densiffyp [22]. Thus we report the
simulation temperature relative TqC'5 245 K. Similarly, experi-
18 40 =0 o 20 20 60 mental temperatures reported relative to the 1 &gy of D,0, 284
AT (°C) K. All state points are liquid, excepAT=—145°C, which is

glassy.

FIG. 2. The valugy, of the first peak of the structure factor from
Fig. 1(c). At low T, both the simulatedfilled symbolg and experi-
mental(open symbolsvalues ofq, tend toward the values for the

Equilibration
P (MPa AT(°C) p(glcnt) U(kd/mol)  time (ps)

two amorphous forms of water, HDA and LDA. 600 35 1.193@:0.0003 —47.65 1100

10  1.204}0.0004 —49.02 1300

-10 1.213%0.0005 —50.22 2000

05 S , —30 1.2236:0.0003 —51.43 3000

0l @ —-145  1.256-0.008 —55.3 4000

— 465 35 1.1616:0.0004 —47.61 1100

< 017 10  1.17230.0005 —49.05 1300

g 01y —— Simulation —10 1.1803-0.0005 —50.24 1800

03 — Experiment 1 —30 1.1899%-0.0004 —51.49 2500

05 . 260 35 1.1068:0.0004 —47.59 550

10 1.1145-0.0006 —49.09 750

%% —~10 1.120%0.0005 —50.33 1500

T, o0t —30 1.1224-0.0005 —51.62 2100

T 01} 100 35 1.05140.0004 —47.51 600

< o ) 10  1.057@:-0.0005 —49.11 800

o5 -10 1.0555-0.0003 —50.48 1500

0s [ —-30 1.0513-0.0006 —51.85 2100

o3 0.1 35 1.01320.0003 —47.42 600

T ool 10 1.01580.0004 —49.12 800

= -10 1.0132-0.0003 —50.56 1500

g 01 —30 1.0046:0.0006 —52.15 3000

0371 —~145  1.022-0.009 —56.1 4000

oal —200 35 0.90640.0003 —46.73 600

ool 10 0.9212-0.0005 —48.83 800

~ —10 0.9245-0.0003 —50.59 1500

< 00y ~30 0.9283-0.0004 —52.12 3000
~_="-'— ~0.2

-0.4
over a wide range of temperatures and pressures. By com-

-0.6 i _ i ) .
paring the simulated pair correlation functions and structure

rd) factor with our experimental data, we find that the structure
q0f the supercooled liquid at low pressure resembles the struc-

at AT=—-30°C andP=600 MPa with the experimentally mea- ture _Of low-density amorphOL(ﬂ;_DA) i(_:e. At high Pressure’
sured structure of HDA solid water from Ré82]. (b) Comparison  We find that the structure of the liquid appears independent
of the supercooled liquid structure aT=—30°C and P= of temperature and is nearly indistinguishable from that of
—200 MPa with LDA solid water{32]. (c) Comparison of the high-density amorphougiDA) ice. The combined results at
structure of the glassy simulation akT=-145°C and P high and low pressure appear consistent with continuity be-
=600 MPa with the experimentally measured structure of HDAtween the liquid and glassy states of water at all pressures.
solid water from Ref[32]. (d) Comparison of the glassy simulation =~ We analyze the structures found in our simulations by
at AT=—145°C and atmospheric pressuif5] with LDA solid  calculating the atomic radial distribution functioggo(r),
water[32]. Jon(r), andgyu(r). To compare the distribution functions

FIG. 3. (a) Comparison of the structure of the supercooled liqui
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with neutron-scattering measurements, we form the weightethg agreement between simulated and experimental values of
sum Su(q) [Fig. D(c)]. In particular, the valugy=qy(P,T) of

the first peak of5,,(q) shifts to largeig values a$ increases
[Fig. 2]. We note the feature that as temperature is lowered
(i) for P=600 MPag, approaches the experimentg}

. o .. value of HDA ice (2.20 A'1), (i) for P=0.1 MPa and
where the weighting factons; are selected to coincide with —200 MPa, g, approaches the experimentay value of

experimental measurements ob,® [26]. Experimentally, | pa ice (1.69 A-1). Indeed we find that the high-pressure
h(r) is obtained by Fourier transformation of the molecular"quid structure resembles that of HDA i¢€ig. 3a)], and

h(r)=4mpr{w;900(r)+Wsgon(r) +wsguu(r)—1],

)

structure factor. The dominant contributionsh¢r) are the
H-H and O-H (or D-D and O-D for BO) spatial correla-
tions, soh(r) includes relatively little contribution from
oxygen-oxygen correlations. Figuréal showsh(r) at two

the low-pressure liquid structure that of LDA i€Eig. 3(b)]
[31].
We also study the structure of the glassy phgz&34
and find that the structure of the simulated glasses strongly

of the five temperatures simulated and also compares wittesembles the experimentally measured structure of HDA

experimental data. The peaks centered &t&, 2.3 A, and

and LDA solid water[Figs. 3c) and 3d)], suggesting that

2.8 A correspond to the O-H, H-H, and O-O intermolecularthe simulated glassy state points are the analogs of HDA and
distances in the hydrogen-bonded configuration, resped-DA solid water for SPC/E. Furthermore, by compression of

tively. While the magnitudes of these peaks change slightlythe simulated LDA-like system, we are able to reversibly

their ubiquity demonstrates the stability of the first neighbortransform the structure to the HDA-like system, reminiscent

ordering, namely, that each molecule is typically surrounde®f the experimentally observed reversible first-order transi-

by four molecules in a tetrahedral configuration. tion of LDA to HDA under pressurg36l.

We find that the peak at 3.3 A df(r) becomes more The gbsence of a dramatic s_tructure@l dlffere_nce between
pronounced af increases. Examination of the individual the liquid and the glassy states is consistent with the postu-
radial distribution functions shows that the increase at 3.3 Aatéd continuity between atmospheric pressure water and
can be attributed to changes gay(r). In addition,goo(r) LDA ice [37]3 based on measurements of the free energy
shows a pronounced increase at 3.3 A under predsiige [16,38 and dielectric relaxation t|mE39_] at 1 atm. Our re-
1(b)], but cannot account for the changestifr), as the sults are .alsfo consistent with continuity between high-
Joo(r) Weighting factor in Eq(1) is small[3]. The growth ~ Pressure Ilq_l_Jld water and HDA icgt,6], but th'us far the
at 3.3 A ingoo(r) indicates that the liquid locally has the 912ss transition of HDA has not been experimentally ob-
structure of an interpenetrating tetrahedral network similar to€7Ve€d, due to the difficulties of studying supercooled water

ice VI and VI, the ice polymorphs close to the high-pressureiNder pressure.

liquid [27,28, and can also be associated with the formation We thank J. K. Nielsen, C. J. Roberts, S. Sastry, F. Sci-
of clusters with structure similar to HDJ29]. ' i '

To directly compare with experimental measurements, wi

calculate the molecular structure fact&, () = Sn"(q)
+ S0 €(q), whereS\"™(q) andSy\y(q) are the intramolecu-
lar and intermolecular contributions ®,(q), respectively.
We calculateS[i™(q) explicitly, as described in Ref30],
and Fourier transforrh(r) to obtainSi3®(q). We find strik-

ortino, and J. Teixeira for helpful discussions, and especially

%. Harrington for his significant contributions to the early

stages of this work. We are grateful to the Center for Com-
putational Science at Boston University for extensive use of
the 192-processor SGIl/Cray Origin 2000 supercomputer.
F.W.S. was supported by the NSF. The Center for Polymer
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