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Reconstructing bifurcation diagrams from noisy time series
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We introduce a formalism for the reconstruction of bifurcation diagrams from noisy time series. The method
consists in finding a parametrized predictor function whose bifurcation structure is similar to that of the given
system. The reconstruction algorithm is composed of two stagedel selectiorand bifurcation parameter
identification In the first stage, an appropriate model that best represents all the given time series is selected.
A nonlinear autoregressive model with polynomial terms is employed in this study. The identification of the
bifurcation parameters from among the many model parameters is done in the second stage. The algorithm
works well even for a limited number of time seri¢$1063-651X99)12607-3
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An analysis of experimentally measured time series has b&eplementation through an example.
used to gain insights into the underlying physical processes, Model selectionAt this stage, nonlinear autoregressive
to do prediction, as well as to determine invariants associateNAR) models with polynomial terms are employed as pre-
to the dynamics, such as Lyapunov exponents and correlatictor functions for each time series. This is motivated by the
tion dimension, among others. For reviews, EE&]. following: NAR models are particularly effective for model-

When time series measured at different values of the sydng noisy time series; their dependence on the parameters,
tem parameters are given, additional information about thée., coefficients of the polynomial are linear, which makes
system’s behavior becomes available. This extra informatiothe structure of the model simple; and most importantly, an
can be exploited to reveal the different bifurcations the sysefficient scheme to compute the model parameters exists.
tem undergoes as the parameters are changed, as well asTiois scheme makes possible the construction of parsimoni-
uncover behaviors of the system which may be present buius models necessary in the BD reconstruction problem.
not readily observed. More precisely, we assume thaf time series S

The goal of bifurcation diagratBD) reconstruction is to ={y‘0,yi1,...,yi,\‘}, i=1,...K are measured at different pa-
address this problem by obtaining a BD qualitatively similarrameter values of a given dynamical system. We are inter-

to that of the given system using time series measured at @sted in finding predictor functiorgyX;a) of the form
finite number of parameter values. In this reconstruction

problem, the equations governing the dynamics of the system yPrel=g(Y,_1:a) + e,

are unknown. Instead, time series at different parameter val- )

ues are used in the reconstruction. The values, or even the =agtayn-1F T agYn-dtAd+1Yn-1
number of parameters, may be unknown. These assumptions k

make the BD reconstruction problem formidable. This is be- T8d+2Yn-1Yn-2F T AuYn-gT €n @
cause available methods to analyze bifurcation structures of- M

ten requirea priori knowledge of the dynamical equations 2 2 (Yo 1) +e @)
[3] which can prove difficult to construct even for simple i Bm?m{ Yn- U €n,

systems.

But recently, the BD reconstruction problem has receivedvhere Y,_1=(Yn_1,....Yya—q) represents a vector in the
considerable attentidd—7]. This was brought about by the  d-dimensional reconstructed state space, the functional basis
development of new algorithms for estimating predictor{zy,(X)} is composed of all the distinct combinations of the
functions at fixed parameter values and the increasing neezbordinates up to degrde a=(ao,...,ay) represents the
to characterize the different behaviors of systems with unparameter sete, accounts for the random forcing of the
known dynamics using observations. system, andM + 1= (k+d)!/(d!'k!) determines the number

In this Brief Report, we describe an algorithm for recon- of coefficients to be computed. _
structing BDs from time series even when these are cor- In particular, we want to fina?,...,a such thag(X;a')
rupted by observation and dynamical noise. This algorithm iss a predictor function for théth time series. Moreover, we
divided into two stagesmodel selectiomndbifurcation pa-  want the predictors of all time series to have the same struc-
rameter identificationIn the first stage, we select an appro- ture, i.e., the same terms to be present in all of them. To do
priate model that best represents all the given time series. lthis, Korenberg's algorithni8] is used to get the optimal
the second stage, we identify which among the many modetlumber of terms in Eq1) and to compute the values of their
parameters correspond to the bifurcation parameters of thessociated coefficients, that is, the &&t.
system. In the following, we detail consecutively the two  Bifurcation parameter identificationn general the model
stages of the BD reconstruction algorithm and describe theigiven by Eq.(1) has more parameters than the original sys-
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FIG. 1. Sample time series from the sine njafp]. Abscissae and ordinates are dimensionless.

tem. To determine the bifurcation parameters, the computed In the PCA-based approach, the covariance matrijalgf
coefficients of each predictor function are collected to formis computed using

the set of parameter vectofs = (ao,.. aM)} K.

Eacha represents a point in the parameter space of the 18 -

model. We call the region where these points are located the C= RZ 08, 6g; , ()
“projection region.” In other words, the projection region is
the region in the parameter space of the model defined by t
set of points{a'} for all possible time series that can be

generated by varying the bifurcation parameters of the sys; rojection region and hence corresponds to the number of
tem. For parameter values within this region, the dynamic ifurcation parameters of the system. Moreover, the eigen-

of the model is therefore the same as that of the given SYjectors associated to the significant eigenvalues span the re-

tem. Thus, one can take the BD of the model in this region aﬁuired projection region. Thus any point in this region can be
the reconstructed BD. The problem is to determine the pro expressed as

jection region using the finite set of poinfs'} computed
from the available time series. P
_ This_problem ie related to t_he pr_oblem_ of finding Iower- aPR(Iu):mJFE e, (%)

dimensional manifolds in a high-dimensional space which =
can be solved using several well-established approaches.
Thus when the projection region is a nonlinear curve in thevhere theg’s are the eigenvectors associated with e
parameter space of the model, principal curf@scan be significant eigenvalues angt=(uy,...,up) represent the
employed to approximate this region. This approach is conexpansion coefficients. The BD of the modeK;f)
sidered in[5] for one-dimensional BD reconstruction. For —g(X;apgr(x)) on the projection region can then be taken as
higher-dimensional cases, this approach is generalized die reconstructed BD witlx as the effective bifurcation pa-
principal surfaces, nonlinear principal component analysisiameter.
and bottleneck neural networksINs), among other$9,10]. ImplementationWe now illustrate the implementation of
Alternatively, the method presented [i6] can also be used the algorithm through an example. Twenty time series, each
when the system is a map which is linear in paraméti#?).  of length N=20000, are giver{11]. Some of these are

In many situations, the projection region is well approxi- shown in Fig. 1. A mere visual examination of the given time
mated by a linear subspace of the parameter space of tlseries does not reveal any significant difference in the behav-
model. This is the case when dealing with a small parametdor of the system. Our purpose is to distinguish the different
region, reconstructing specific bifurcations, or the given sysbehaviors by unraveling the putative bifurcations that sepa-
tem is a LIP map. Under these conditions, principal compo+fate them, as well as to uncover possible behaviors of the
nent analysis(PCA) provides a computationally efficient system not readily observed in the available time series. We
method to determine a satisfactory approximate of the prorecall that the system equations and the number of param-
jection region. eters(and therefore their valuggare unknown.

r\ﬁhere da,=a —m andm represents the mean. The number
of significant eigenvalues of gives the dimension of the
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FIG. 2. Eigenvaluegin decreasing ordg¢rexpressed in relative
units Rk:(}\k/ZLl)\i)xloo where\, represents an eigenvalue
andk represents the order. Abscissas and ordinates are dimension-
less.

At the first stage, we determine a model that accounts for
the observed behaviors. To do this, we apply Korenberg's
algorithm to obtain predictor functions for each time series.
Comparison of the predictors shows that a NAR of the form
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FIG. 4. (A) Parameter values used in generating the 20 time

series.(B) Projections of the computefd} onto the projection
region spanned by the eigenvectors associated with the two signifi-

A)

cant eigenvalues. Theaxis is spanned by the first eigenvector and
they axis is spanned by the second eigenvector. Units: dimension-
less.

Xn: a0+ alxn_1+ azxﬁ_l"f‘ agxﬁ_l"f‘ a4xﬁ_1+ a5xﬁ_1

+agxs_,+ e, (5)

provides a suitable model for all the time series. This model
has seven coefficients. Therefore, we dispose of 20 param-
eter vectors of order 7 from which to estimate the projection
region. The PCA of this set of vectors yields two significant
eigenvalues as shown in Fig. 2. This suggests that two sys-
tem parameters were varied when the given time series were
generated. This corresponds exactly 1d].

The projection region is now given by E¢) with P
=2, ande, ande, are the eigenvectors associated to the two
significant eigenvalues. The effective bifurcation parameters
are given byu; and u,. One-dimensional BD reconstruc-
tions with respect to each parameter andu, are shown in
Figs. 3B) and 3D), respectively. From the figure, it is evi-
dent that the BD of Eq5) is qualitatively the same as that of
the original system shown in Figs(/A) and 3C). The re-
constructed two-dimensional Bot shown on the projec-
tion region also captures the different dynamics of the origi-
nal system.

To show the correspondence between the two parameter
sets,{a,8} and {u1,u5}, the projections ofa'} onto the
projection region are plotted in Fig(B). These projections
are computed by taking the inner product betwé¢ah and
the two eigenvectorg; ande,. The figure shows that the
distribution of these points follows that of the original pa-
rameters«a,5}.

Figure 4 also illustrates the effects of noise in the recon-
struction process. From a computational point of view, noise

FIG. 3. (A) Original BD of the given system witlx as the  generally corrupts the estimation of the model parameters.
bifurcation parameter an¢B) the reconstructed BD(C) Original ~ This would affect the location of the projected points in the
BD with B as the bifurcation parameter afd) the reconstructed parameter space, which, in turn, would affect the determina-
BD. Units: dimensionless. tion of the projection region. The proposed algorithm is ro-
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bust to such effects as illustrated in Fig. 4, which showsnvariants, among others. Furthermore, NAR models with
similar distribution of the two parameter sets in spite of theappropriate number of terms can also capture bifurcation
presence of strong dynamical noise. structures as shown if13]. Aside from polynomials, NAR
The performance of the algorithm as described in the premodels can also have other basis functions.
ceding paragraphs was also demonstrated in several dynami- The algorithm is also computationally efficient in a num-
cal systems. The algorithm worked equally well with the ber of ways. In obtaining predictor functions using Koren-
Henon map, the cubic map, the logistic map, and theberg’s scheme, the problem of multiparameter optimization
FitzHugh-Nagumo equations. For systems described bis eliminated by employing auxiliary polynomials which are
polynomial equations, the algorithm determined the correcbrthogonal with respect to the natural invariant measure of
terms in the polynomial. For the continuous system, the althe time serie$1,14]. With this, the parameters are readily
gorithm preserved the different bifurcations of the given sys-obtained from the time series. This scheme also leads to
tem in the reconstructed BD. We plan to present the detailedbbust-to-noise estimation of the parameters since no dis-
reconstruction of the BDs of other examples in the future. tances in the reconstructed state space need to be computed.
The proposed algorithm is also applicable using otheMoreover, the construction of parsimonious models becomes
models as predictor functions. The requirement is that th@ossible since the contribution of each orthogonal term in
model should be a universal approximator to ensure the exeducing the error function can be computed from the time
istence of projection regions for any dynamical systemseries.
Thus, the algorithm also works well with neural networks In summary, we present an algorithm in reconstructing
[4—6]. However, the NN-based approach has several shorBDs from noisy time series. The algorithm consists in find-
comings such as the difficulty in handling time series cor-ing a parametrized predictor function whose bifurcation
rupted with dynamical noise, among others. structure is qualitatively similar to that of the given system.
The use of NAR models in this reconstruction algorithm To account for the effects of noise, nonlinear autoregressive
is more advantageous than the NN-based approach. The efodels are used as predictor functions. The use of Koren-
ficacy of the NAR model has been demonstrated in a varietperg’s algorithm makes possible the construction of parsimo-
of problems, particularly in the analysis of noisy time seriesnious models, which is advantageous in the reconstruction
[8,12,13. The NAR model has been applied effectively in problem. The algorithm is robust to noise, making it more
obtaining predictor functions for a number of systeimaps  suitable when dealing with noisy time series. Moreover, the
and flows, detecting nonlinearities in noisy time seri@b-  algorithm also works well even for a limited number of time
servation and dynamical noise&nd estimation of dynamical series(20 for the example considered
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