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Reconstructing bifurcation diagrams from noisy time series
using nonlinear autoregressive models

Epifanio Bagarinao, K. Pakdaman, Taishin Nomura, and Shunsuke Sato
Division of Biophysical Engineering, Department of Systems and Human Science, Graduate School of Engineering Scienc

Osaka University, Toyonaka City, Osaka 560-8531, Japan
~Received 17 February 1999!

We introduce a formalism for the reconstruction of bifurcation diagrams from noisy time series. The method
consists in finding a parametrized predictor function whose bifurcation structure is similar to that of the given
system. The reconstruction algorithm is composed of two stages:model selectionandbifurcation parameter
identification. In the first stage, an appropriate model that best represents all the given time series is selected.
A nonlinear autoregressive model with polynomial terms is employed in this study. The identification of the
bifurcation parameters from among the many model parameters is done in the second stage. The algorithm
works well even for a limited number of time series.@S1063-651X~99!12607-2#

PACS number~s!: 05.45.Tp
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An analysis of experimentally measured time series has
used to gain insights into the underlying physical proces
to do prediction, as well as to determine invariants associa
to the dynamics, such as Lyapunov exponents and corr
tion dimension, among others. For reviews, see@1,2#.

When time series measured at different values of the
tem parameters are given, additional information about
system’s behavior becomes available. This extra informa
can be exploited to reveal the different bifurcations the s
tem undergoes as the parameters are changed, as well
uncover behaviors of the system which may be present
not readily observed.

The goal of bifurcation diagram~BD! reconstruction is to
address this problem by obtaining a BD qualitatively simi
to that of the given system using time series measured
finite number of parameter values. In this reconstruct
problem, the equations governing the dynamics of the sys
are unknown. Instead, time series at different parameter
ues are used in the reconstruction. The values, or even
number of parameters, may be unknown. These assump
make the BD reconstruction problem formidable. This is b
cause available methods to analyze bifurcation structures
ten requirea priori knowledge of the dynamical equation
@3# which can prove difficult to construct even for simp
systems.

But recently, the BD reconstruction problem has receiv
considerable attention@4–7#. This was brought about by the
development of new algorithms for estimating predic
functions at fixed parameter values and the increasing n
to characterize the different behaviors of systems with
known dynamics using observations.

In this Brief Report, we describe an algorithm for reco
structing BDs from time series even when these are c
rupted by observation and dynamical noise. This algorithm
divided into two stages:model selectionandbifurcation pa-
rameter identification. In the first stage, we select an appr
priate model that best represents all the given time serie
the second stage, we identify which among the many mo
parameters correspond to the bifurcation parameters of
system. In the following, we detail consecutively the tw
stages of the BD reconstruction algorithm and describe t
PRE 601063-651X/99/60~1!/1073~4!/$15.00
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implementation through an example.
Model selection.At this stage, nonlinear autoregressiv

~NAR! models with polynomial terms are employed as p
dictor functions for each time series. This is motivated by
following: NAR models are particularly effective for mode
ing noisy time series; their dependence on the parame
i.e., coefficients of the polynomial are linear, which mak
the structure of the model simple; and most importantly,
efficient scheme to compute the model parameters ex
This scheme makes possible the construction of parsim
ous models necessary in the BD reconstruction problem

More precisely, we assume thatK time series Si

5$y0
i ,y1

i ,...,yN
i %, i 51,...,K are measured at different pa

rameter values of a given dynamical system. We are in
ested in finding predictor functionsg(X;a) of the form

yn
pred5g~Yn21 ;a!1en

5a01a1yn211¯1adyn2d1ad11yn21
2

1ad12yn21yn221¯1aMyn2d
k 1en ~1!

5 (
m50

M

amzm~Yn21!1en , ~2!

where Yn215(yn21 ,...,yn2d) represents a vector in th
d-dimensional reconstructed state space, the functional b
$zm(X)% is composed of all the distinct combinations of th
coordinates up to degreek, a5(a0 ,...,aM) represents the
parameter set,en accounts for the random forcing of th
system, andM115(k1d)!/(d!k!) determines the numbe
of coefficients to be computed.

In particular, we want to finda1,...,aK such thatg(X;ai)
is a predictor function for thei th time series. Moreover, we
want the predictors of all time series to have the same st
ture, i.e., the same terms to be present in all of them. To
this, Korenberg’s algorithm@8# is used to get the optima
number of terms in Eq.~1! and to compute the values of the
associated coefficients, that is, the set$ai%.

Bifurcation parameter identification.In general the mode
given by Eq.~1! has more parameters than the original s
1073 ©1999 The American Physical Society



1074 PRE 60BRIEF REPORTS
FIG. 1. Sample time series from the sine map@11#. Abscissae and ordinates are dimensionless.
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tem. To determine the bifurcation parameters, the compu
coefficients of each predictor function are collected to fo
the set of parameter vectors$ai5(a0

i ,...,aM
i )%, i 51,...,K.

Each ai represents a point in the parameter space of
model. We call the region where these points are located
‘‘projection region.’’ In other words, the projection region
the region in the parameter space of the model defined by
set of points$ai% for all possible time series that can b
generated by varying the bifurcation parameters of the s
tem. For parameter values within this region, the dynam
of the model is therefore the same as that of the given
tem. Thus, one can take the BD of the model in this region
the reconstructed BD. The problem is to determine the p
jection region using the finite set of points$ai% computed
from the available time series.

This problem is related to the problem of finding lowe
dimensional manifolds in a high-dimensional space wh
can be solved using several well-established approac
Thus when the projection region is a nonlinear curve in
parameter space of the model, principal curves@9# can be
employed to approximate this region. This approach is c
sidered in@5# for one-dimensional BD reconstruction. Fo
higher-dimensional cases, this approach is generalize
principal surfaces, nonlinear principal component analy
and bottleneck neural networks~NNs!, among others@9,10#.
Alternatively, the method presented in@6# can also be used
when the system is a map which is linear in parameter~LIP!.

In many situations, the projection region is well appro
mated by a linear subspace of the parameter space o
model. This is the case when dealing with a small param
region, reconstructing specific bifurcations, or the given s
tem is a LIP map. Under these conditions, principal com
nent analysis~PCA! provides a computationally efficien
method to determine a satisfactory approximate of the p
jection region.
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In the PCA-based approach, the covariance matrix of$ai%
is computed using

C5
1

K (
i 51

K

daidai
T , ~3!

wheredai5ai2m andm represents the mean. The numb
of significant eigenvalues ofC gives the dimension of the
projection region and hence corresponds to the numbe
bifurcation parameters of the system. Moreover, the eig
vectors associated to the significant eigenvalues span th
quired projection region. Thus any point in this region can
expressed as

aPR~m!5m1(
i 51

P

m iei , ~4!

where theei ’s are the eigenvectors associated with theP
significant eigenvalues andm5(m1 ,...,mP) represent the
expansion coefficients. The BD of the model (X;m)
→g„X;aPR(m)… on the projection region can then be taken
the reconstructed BD withm as the effective bifurcation pa
rameter.

Implementation.We now illustrate the implementation o
the algorithm through an example. Twenty time series, e
of length N520 000, are given@11#. Some of these are
shown in Fig. 1. A mere visual examination of the given tim
series does not reveal any significant difference in the beh
ior of the system. Our purpose is to distinguish the differe
behaviors by unraveling the putative bifurcations that se
rate them, as well as to uncover possible behaviors of
system not readily observed in the available time series.
recall that the system equations and the number of par
eters~and therefore their values! are unknown.
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At the first stage, we determine a model that accounts
the observed behaviors. To do this, we apply Korenbe
algorithm to obtain predictor functions for each time seri
Comparison of the predictors shows that a NAR of the fo

FIG. 2. Eigenvalues~in decreasing order! expressed in relative
units Rk5(lk /( i 51

7 l i)3100 wherelk represents an eigenvalu
andk represents the order. Abscissas and ordinates are dimen
less.

FIG. 3. ~A! Original BD of the given system witha as the
bifurcation parameter and~B! the reconstructed BD.~C! Original
BD with b as the bifurcation parameter and~D! the reconstructed
BD. Units: dimensionless.
r
’s
.

xn5a01a1xn211a2xn21
2 1a3xn21

3 1a4xn21
4 1a5xn21

5

1a6xn21
6 1en ~5!

provides a suitable model for all the time series. This mo
has seven coefficients. Therefore, we dispose of 20 par
eter vectors of order 7 from which to estimate the project
region. The PCA of this set of vectors yields two significa
eigenvalues as shown in Fig. 2. This suggests that two
tem parameters were varied when the given time series w
generated. This corresponds exactly to@11#.

The projection region is now given by Eq.~4! with P
52, ande1 ande2 are the eigenvectors associated to the t
significant eigenvalues. The effective bifurcation paramet
are given bym1 and m2 . One-dimensional BD reconstruc
tions with respect to each parameterm1 andm2 are shown in
Figs. 3~B! and 3~D!, respectively. From the figure, it is evi
dent that the BD of Eq.~5! is qualitatively the same as that o
the original system shown in Figs. 3~A! and 3~C!. The re-
constructed two-dimensional BD~not shown! on the projec-
tion region also captures the different dynamics of the or
nal system.

To show the correspondence between the two param
sets, $a,b% and $m1 ,m2%, the projections of$ai% onto the
projection region are plotted in Fig. 4~B!. These projections
are computed by taking the inner product between$ai% and
the two eigenvectorse1 and e2 . The figure shows that the
distribution of these points follows that of the original p
rameters$a,b%.

Figure 4 also illustrates the effects of noise in the rec
struction process. From a computational point of view, no
generally corrupts the estimation of the model paramet
This would affect the location of the projected points in t
parameter space, which, in turn, would affect the determi
tion of the projection region. The proposed algorithm is r

on-

FIG. 4. ~A! Parameter values used in generating the 20 ti
series.~B! Projections of the computed$ai% onto the projection
region spanned by the eigenvectors associated with the two sig
cant eigenvalues. Thex axis is spanned by the first eigenvector a
the y axis is spanned by the second eigenvector. Units: dimens
less.
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bust to such effects as illustrated in Fig. 4, which sho
similar distribution of the two parameter sets in spite of t
presence of strong dynamical noise.

The performance of the algorithm as described in the p
ceding paragraphs was also demonstrated in several dyn
cal systems. The algorithm worked equally well with t
Hénon map, the cubic map, the logistic map, and
FitzHugh-Nagumo equations. For systems described
polynomial equations, the algorithm determined the corr
terms in the polynomial. For the continuous system, the
gorithm preserved the different bifurcations of the given s
tem in the reconstructed BD. We plan to present the deta
reconstruction of the BDs of other examples in the future

The proposed algorithm is also applicable using ot
models as predictor functions. The requirement is that
model should be a universal approximator to ensure the
istence of projection regions for any dynamical syste
Thus, the algorithm also works well with neural networ
@4–6#. However, the NN-based approach has several sh
comings such as the difficulty in handling time series c
rupted with dynamical noise, among others.

The use of NAR models in this reconstruction algorith
is more advantageous than the NN-based approach. Th
ficacy of the NAR model has been demonstrated in a var
of problems, particularly in the analysis of noisy time ser
@8,12,13#. The NAR model has been applied effectively
obtaining predictor functions for a number of systems~maps
and flows!, detecting nonlinearities in noisy time series~ob-
servation and dynamical noise!, and estimation of dynamica
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invariants, among others. Furthermore, NAR models w
appropriate number of terms can also capture bifurca
structures as shown in@13#. Aside from polynomials, NAR
models can also have other basis functions.

The algorithm is also computationally efficient in a num
ber of ways. In obtaining predictor functions using Kore
berg’s scheme, the problem of multiparameter optimizat
is eliminated by employing auxiliary polynomials which a
orthogonal with respect to the natural invariant measure
the time series@1,14#. With this, the parameters are readi
obtained from the time series. This scheme also leads
robust-to-noise estimation of the parameters since no
tances in the reconstructed state space need to be comp
Moreover, the construction of parsimonious models becom
possible since the contribution of each orthogonal term
reducing the error function can be computed from the ti
series.

In summary, we present an algorithm in reconstruct
BDs from noisy time series. The algorithm consists in fin
ing a parametrized predictor function whose bifurcati
structure is qualitatively similar to that of the given syste
To account for the effects of noise, nonlinear autoregress
models are used as predictor functions. The use of Kor
berg’s algorithm makes possible the construction of parsim
nious models, which is advantageous in the reconstruc
problem. The algorithm is robust to noise, making it mo
suitable when dealing with noisy time series. Moreover,
algorithm also works well even for a limited number of tim
series~20 for the example considered!.
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