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Wigner rotations and Iwasawa decompaositions in polarization optics
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Wigner rotations and lwasawa decompositions are manifestations of the internal space-time symmetries of
massive and massless particles, respectively. It is shown to be possible to produce combinations of optical
filters which exhibit transformations corresponding to Wigner rotations and lwasawa decompositions. This is
possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation
matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized
light waves. The symmetry transformations in special relativity lead to a set of experiments which can be
performed in optics laboratoriefS1063-651X99)08907-2

PACS numbsgs): 42.79.Ci, 11.30.Cp, 02.20.Qs

I. INTRODUCTION In Ref. [1], we approached this problem in terms of the
generators of the Lorentz group. It is very difficult, if not
In our earlier paper§l,2], we formulated Jones vectors impossible, to manufacture optical devices performing the
and Stokes parameters in terms of the2and 4<4 matrix  function of group generators. In the case of optical filters,
representations of the six-parameter Lorentz grf8p It  this means an infinite number of layers of zero thickness. In
was seen there that, for every2 transformation matrix for the present paper, we deal with the same problem from an
the Jones vector, there is a correspondingddmatrix for the  experimental point of view. We will present a specific design
Stokes parameters. It was also found that Stokes parametets optical filters performing this function. We will of course
are like the components of Minkowskian four-vectors, andpresent our case in terms of a combination of three filters of
two-component Jones vectors are like two-componenfinite thickness.
spinors in the relativistic world. This enhances our capacity |n order to achieve this goal, we use the fact that polar-
to approach polarization optics in terms of the kinematics ofzation optics and special relativity share the same math-
special relativity. ematics. This aspect was already noted in the literature for
Indeed, we can now design specific experiments whichhe case of the Wigner rotatiof6]. The concept of the
will test some of the consequences derivable from the prinyigner rotation comes from the kinematics of special rela-
ciples of special relativity. The most widely known exampletivity, in which two successive noncollinear Lorentz boosts
is the Wigner rotation. This has been extensively discusseglo not end up with a boost. The result is a boost followed or
in the literature in connection with the Thomas eff@dl,  preceded by a rotation. Thus we can achieve a rotation from

Berry’s phasd5,6], and squeezed states of lidi. three noncollinear boosts starting from a particle at rest.
In our earlier papers, we discussed an optical filter whichsince each boost corresponds to an attenuation filter, it re-
exhibits the matrix form of quires three attenuation filters to achieve a Wigner rotation in
polarization optics.
1 u While the Wigner rotation is based on Lorentz transfor-
(0 1) (1.1 mations of massive particles, there are similar transforma-

tions for massless particles. Here two noncollinear Lorentz
boosts do not result in one boost. They become one boost
applicable to two transverse components of the light wavepreceded or followed by a transformation which corresponds
whereu is a controllable parameter. When applied to a two-to a gauge transformation. Inx22 formalism, the transfor-
component system, this matrix performs a superposition imation takes the form of Eq1.1). We shall show in this
the upper channel while leaving the low channel invariantpaper that the filter possessing the property of @dql) can
The question is whether it is possible to produce optical fil-be constructed from one rotation filter and one attenuation
ters with this property. filter. In mathematics, this type of decomposition is called
the lwasawa decompositid,9].

While the primary purpose of this paper is to discuss fil-
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Lorentz group whose transformations leave the four- We showed in our earlier papers that the Jones vectors
momentum of a given particle invariant, and has a long hisand the Stokes parameters can be formulated in terms of the
tory [11]. The Wigner rotation and the Iwasawa decomposi-2x 2 spinor and & 4 vector representations of the Lorentz
tion are transformations of the little groups for massive andgroup. This group theoretical formalism allows us to discuss
massless particles, respectively. It is interesting to note thahree different sets of physical quantities using one math-
these transformations can also be achieved in optics laboramatical device. In our earlier publications, we used the con-
tories. cept of Lie groups extensively, and used their generators
In Sec. Il, we review the formalism for optical filters based on infinitesimal generators.
based on the Lorentz group, and explain why filters are like In this paper, we avoid the Lie groups and work only with
Lorentz transformations. It is shown in Sec. Ill that a rotationexplicit transformation matrices. For this purpose, we start
can be achieved by three noncollinear Lorentz boosts. In Sewith the following two matrices:
IV, we spell out in detail how the Iwasawa decomposition

can be achieved from the combination of two optical filters. coshy sinhy 0 O
sinhy coshy 0 O
Il. FORMULATION OF THE PROBLEM B= 0 0 1 ol
In studying polarized light propagating along théirec- 0 0 0 1
tion, the traditional approach is to consider thandy com- 2.5
ponents of the electric fields. Their amplitude ratio and the 1 0 0 0
phase difference determine the degree of polarization. Thus 0 cos¢ —sing O
we can change the polarization either by adjusting the am- R= .
plitudes, by changing the relative phases, or both. For con- 0 sing <cos¢p O
venience, we call the optical device which changes ampli- 0 0 0 1
tudes an “attenuator” and the device which changes the
relative phase a “phase shifter.” If the above matrices are applied to the Minkowskian space
Let us write these electric fields as of (ct,z,x,y), the matrixB performs a Lorentz boost:
(EX Aexpli(kz— wt+ ¢1)} 2.2 t’ =(coshy)t+ (sinhy)z,
ByJ \Bexgi(kz-ot+ 4y} 2/ = (sinhy)t+ (coshy)z, (29
where A and B are amplitudes which are real and positive hile R leads t tation:
numbers, andp,; and ¢, are the phases of theandy com- while R leads 1o a rotation:
ponents, respectively. This column matrix is called the Jones 7' =(cos¢)z— (sind)x,
vector. In dealing with light waves, we have to realize that 2.7
the intensity is the quantity we measure. Then there arises X' = (sing)z+ (cosg)x. '
the question of coherence and time average. We are thus led
to consider the following parameters: In our previous paper, we discussed in detail what these ma-
trices do when they are applied to the Stokes four-vectors.
Su=(EXEx, Sx=(EjE,), In the two-component spinor space, the above transforma-
(2.2 tion matrices take the forms
Spo= <E: Ey), S= < E; Ex>' 2 .
ex 0 cog ¢p/2) — sin(¢pl2)
Then, we are naturally invited to write down th& 2 matrix: ( 0 e‘Xlz)’ (sin(¢/2) cos 612 | (2.8

We discussed the effect of these matrices on the Jones
spinors in our earlier publications.

In this paper, we discuss some of nontrivial consequences
where(E E;) is the time average & E;. The above form derivable from the algebra generated by these two sets of

C:(<Ex E <EyEx>>’ 23

(EXEy) (EJEy)

is called the coherency matrjd2]. matrices. We shall study Wigner rotations and Iwasawa de-
It is sometimes more convenient to use the followingcompositions. The Wigner rotation has been discussed in op-

combinations of parameters: tical science in connection with Berry’s phase, but the

Iwasawa decomposition is a relatively new word in optics.

So=S11+ S0, We would like to emphasize here that both the Wigner rota-

tion and lwasawa decomposition come from the concept of
S$1=S11— Sz, subgroup of the Lorentz groups, whose transformations leave

(2.4  the momentum of a given particle invariant.
$= St Sy,
) Ill. WIGNER ROTATIONS
S3= —i(S12— S0)-

There are many different versions of the Wigner rotation
These four parameters are called the Stokes parameters in timethe literature. Basically, this rotation is a product of two
literature[12]. noncollinear Lorentz boosts. The result of these two boosts is
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) C Pa:(mroyoio)! (3.1)
B, where we use the metric conventiocit(z,x,y). Let us next
S\ B, boost this four-momentum along ttedirection using the
0 matrix
i
a B, Ty 0z coshp sinhp 0 O
sinhyp coshy O
FIG. 1. Closed Lorentz boosts. Initially, a massive particle is at B,= 0 0 1 , (3.2
rest with its four momentuni,. The first boostB; brings P, to
P, . The second boo®, transformsP, to P.. The third boosB; 0 0 01
bringsP back toP,. The particle is again at rest. The net effect is o
a rotation around the axis perpendicular to the plane containing€sulting in the four-momentum
these three transformations. We may assume for convenience that P,=m(coshy,sinh7,0,0). 3.3

Py, is along thez axis, andP, in the zx plane. The rotation is then

made around thg axis. Let us rotate this vector around teaxis by an angle.
Then the resulting four-momentum is
not a boost, but a boost preceded or followed by a rotation.
This rotation is called the Wigner rotation.
In this paper, we approach the problem by using thrednstead of this rotation, we propose to obtain this four-vector
boosts described in Fig. 1. Let us start with a particle at restpy boosting the four-momentum of E§.3). The boost ma-

P.=m(coshy,(sinhn)cosé,(sinhz)sing,0). (3.4

with its four-momentum trix in this case is
1 0 0 0\ /coshn sinhAx O 0\ /1 0 0 0
0O cosyy —sing O)| sinhn coshh O O|| O cosy sing O
B,= . . , .
2710 sing cosy O 0 0 1 0[|0 —sing cosy O 3.9
0 0 0 1 0 0 0 1/1\0 0 0 1
with
) 6 m
A=2tanh Y[sin(6/2)Jtanhy}, o= >t5 (3.6
If we carry out the matrix multiplication,
coshh — sin( 6/2)sinh\ cog 6/2)sinh\ 0
— sin(#/2)sinh 1+ sirf( 6/2)(coshh — 1) — sin@sint?(\/2) 0
Ba= cog #/2)sinh\ — sin@sintf(\/2) 1+ cog(6/2)(coshh—1) 0 3.9
0 0 0 1

Next we boost the four-momentum of E@.4) to that of Eq.(3.1). The particle is again at rest. The boost matrix is

1 0 0 0 coshy —sinhyp 0 0\ /1 0 0 0
0 cos# —sing O|| —sinhyp coshp O O)|[0O <cosh sing O
Bs=1 0 sing coss 0 0 0 1 0[|0 —sine cossd O 38
0 O 0 1 0 0 0 1/ \0 0 0 1
After the matrix multiplication,
coshy —cosé sinhy — sinésinhy 0
—cos#sinhy 1+cog §(coshy—1) sindcos#(coshp—1) 0 30
Bs= . . . . . .
3 —sin@sinhy sindcosé(coshp—1) 1+ sirfd(coshp—1) O 3.9
0 0 0 1
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The net result of these transformationsBigB,B,. This This relativistic effect manifests itself in atomic spectra as
leaves the initial four-momentum of E¢B.1) invariant. Isit the Thomas precession. Otherwise, the experiments on
going to be an identity matrix? The answer is “No.” The Wigner rotation in special relativity is largely academic. On
result of the matrix multiplications is the other hand, as noted in the literature, this effect could be

tested in optics laboratories. As for the Stokes parameters,

1 0 0 0 the above &« 4 matrices are directly applicable. Indeed, each
0 cos} —sinQ O 4X4 matrix corresponds to one optical filter applicable to
W=l sino coso ol (310 polarized light.
0 0 0 1 In order _to see this effect more clearly, let us use the
Jones matrix formalism. The X2 squeeze matrix corre-
with sponding to the boost matr&; of Eq. (3.2) is
I (sin@)sintt( 7/2)
f=2sin JcosRn— sintPy sir?(6/2) ] (313 Sl:(eglz 077/2)_ (3.12
e

This matrix performs a rotation around thexis, and leaves

the four-momentum of Eq3.1) invariant. This rotation is an

element of Wigner's little group, whose transformationsThe 2x2 squeeze matrix corresponding to the boost matrix
leave the four-momentum invariant. This is precisely theof Eq. (3.5) is now

Wigner rotation.

~ ( cog¢l2) — sin( ¢/2)) ( e 0 )( cogyl2)  sin( w/z))
“\sin(gl2)  cogwl2) |\ 0 e M)\ —sin(yf2) cogyl2))’ (3.13
where the parameteig and\ are given in Eq(3.6). After the matrix multiplication,S, becomes
B COSh\/2)— sin( 8/2)sinh(\/2) cog 6/2)sinh(\/2) )
cog 6/2)sinh(\/2) cosh{\/2) + sin(6/2)sinh(\/2)) " (3.19

This is a matrix which squeezes along the direction which makes an amgl®@)/2 with thez axis. The 2X2 squeeze matrix
corresponding td@; of Eq. (3.8 is

cosh %/2) — cosé sinh 7/2) — sin@ sinh 5/2) ) a1
B — sin@ sinh 7/2) cosh 5/2) +cosf sinh 5/2) | (3.19
|
Now the matrix multiplicationS;S,S; corresponds to the K= (k,—k sina,k cosa,0) 4.2
closure of the kinematical triangle given in Fig. 1. The result
'S by applying toK, the rotation matrix
cogQ/2) — sin(Q/2)
53551= sinfQ/2)  cogQ/2) |’ (3.19 1 0 0 0
. . 0 cosa, —sina, O
where() is given in Eq.(3.11). R, = ] , 4.3
0 sine, cosa, O
IV. IWASAWA DECOMPOSITIONS 0 0 0 1

In Sec. lll, the Lorentz kinematics was based on a mas-
sive particle at rest. If the particle is massless, there are n¢ith a,=a+ /2.
Lorentz frames in which the particle is at rest. Thus we start |f we rotateK,, around they axis by —2«, the resulting
with a massless particle whose momentum is inzfiirec- ~ four-momentum will be
tion,

K= (k.k,0,0), @.) K:=(k,ksina,k cosa,0). 4.9

wherek is the magnitude of the momentum. We can rotatelt is possible to transforniK,, to K. by applying toK, the
this four-vector to boost matrix
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A X R, This T matrix plays an important role in studying space-time
\ symmetries of massless particles. If this matrix is applied to
B the four-momentumK, given in Eg. (4.1, the four-
Ke
Ka

momentum remains invariant. If this matrix is applied to the
electromagnetic four-potential for the plane wave propagat-
ing along thez direction with the frequency, the result is a
Ry gauge transformation.
Again, the above X4 matrices are directly applicable to

Ky o

Y
J

z in designing optical filters, we needx2 representations
corresponding to the ¥4 matrices given so far. Thex22

_ ) squeeze matrix corresponding to the boost ma#riaf Eq.
FIG. 2. Two rotations and one Lorentz boost which preserve the(4 5 is

four-momentum of a massless particle invariant. The four-

momentumK, is rotated toKy, by R, . It is then boosted t& by N 0
the boost matrixB. The rotation matrixR_ brings back the four- Sz( _y,z),
momentum toK,. The initial momentum is along thedirection, 0 e

and the boosB is also made along the same direction. The rotationgNh”e the 2x2 matrices corresponding @, of Eq. (4.3
are performed around theaxis. andR_ of Eq. (4.7) are * .

4.9

_ cofa+/2) — sin(a./2) it
coshy sinhy 0 0 " sina.2)  coga.i2) |’ (4.10
coshy sinhy 0 O ) )
= , (4.5 wherea, anda_ are given in Eqs(4.3 and(4.7), respec-
0 0 10 tively. They satisfy the equations
0 0 0 1
a,ta_=2a, a,—a_=m.
with The relation betweery anda given in Eq.(4.6) can also be
2sina 1+ sirfa written as coshy/2)=1/cosy, which is more useful for car-
sinhy= , coshy= ——— (4.6)  rying out the 2<2 matrix algebra.
cos cos The matrix multiplicationR_SR, leads to
We can transfornK, to K, by rotating it around they 1 —2tana
axis by (@— /2) (see Fig. 2 The rotation matrix takes the T=R_SR,= 0 1 (4.11
form
1 0 0 o Conversely, we can write
i 1 —2tana
R _ 0 C(.)Saf_ sina_ 0 @7 o ) =R SR, . (4.12
0 sina_ cosa_ O]’
0 0 0 1 The T matrix can be decomposed into rotation and squeeze

matrices. This possibility is called the Iwasawa decomposi-
with a_=a— w/2. Thus the multiplication of the three ma- tion. In the present cas#,of Eg. (4.11) can also be written

trices,R_BR, , gives as
1+u?2 —-u?2 u 0 T=R_S{(R_) " 'R_}R, ={R_S(R_) "} (R_R,).
w22 1-u¥2 u 0 (4.13
T= “u 1 ol (4.8 The matrix chairR_S(R_) ! is one squeeze matrix whose
squeeze axis is rotated hy_/2, and the matrix product
0 01 R_;R. becomes one rotation matrix. The result is
with T=S(a_)R(2a), (4.14
u=—2tana. with
|
cosh{y/2)+ cosa_ sinh(y/2) sina _ sinh( y/2)
S(a-)= sina_ sinh(y/2) cosh y/2)— cosa_ sinh(y/2) )’

(4.15

cosa — sina)

R(Za)=(

sinae  coSa

the Stokes parameters. On the other hand, if we are interested
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It is indeed gratifying to note that th€ matrix can be de- and the Iwasawa decomposition can be realized in optics
composed into one rotation and one squeeze matrix. Thiaboratories.

squeeze is made along the direction which makes an angle of The matrix of Eq.(1.1) performs a shear transformation
a_[2 or —(w/2— a)/2 with the z axis. The anglea is  when applied to a two-dimensional object, and has a long
smaller tharm/2. history in physics and engineering. It also has a history in

In our earlier papergl,2] we discussed optical filters with mathematics. The fact that a shear can be decomposed into a
the property given in Eq(4.11). We said there that filters squeeze and rotations is known as the Iwasawa decomposi-
with this property can be produced from an infinite numbertion [8].
of infinitely thin filters. This argument was based on the Among the many interesting applications of shear trans-
theory of Lie groups where transformations are generated bfprmations, there is a special class of squeezed states of pho-
infinitesimal generators. This may be possible these days, btns or phonons having the symmetry of shigat, 15. The
the method presented in this paper is far more practical. Wevave-packet spread can be formulated in terms of shear
need only two filterd13]. transformation$16].

We are able to achieve this improvement because here we As we can see from this paper, a set of shear transforma-
used the analogy between polarization optics and Lorenttions can be formulated as a subset of Lorentz transforma-
transformations which share the same mathematical framdions. This set plays an important role in understanding in-
work. ternal space-time symmetry of massless particles, such as

gauge transformation and neutrino polarizatiph%,17,18.

V. CONCLUDING REMARKS

In this paper, we noted firs_t_ that both the Wig_ner rota’_[ion ACKNOWLEDGMENTS
and the lwasawa decomposition come from Wigner’'s little
group whose transformations leave the four-momentum of a We would like to thank A. E. Bak for bringing to our
given particle invariant. Since the Lorentz group is also ap-attention to his early works, with C. S. Brown, on applica-
plicable to the Jones vector and the Stokes parameters, it i®ns of the Lorentz group to polarization optics. We are also
possible to construct corresponding transformations in polargrateful to S. Baskal for telling us about the recent paper by
ization optics. We have shown that both the Wigner rotationSimon and Mukunda on the Iwasawa decomposit@jn
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