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Wigner rotations and Iwasawa decompositions in polarization optics
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Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of
massive and massless particles, respectively. It is shown to be possible to produce combinations of optical
filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is
possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation
matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized
light waves. The symmetry transformations in special relativity lead to a set of experiments which can be
performed in optics laboratories.@S1063-651X~99!08907-2#
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I. INTRODUCTION

In our earlier papers@1,2#, we formulated Jones vector
and Stokes parameters in terms of the 232 and 434 matrix
representations of the six-parameter Lorentz group@3#. It
was seen there that, for every 232 transformation matrix for
the Jones vector, there is a corresponding 434 matrix for the
Stokes parameters. It was also found that Stokes param
are like the components of Minkowskian four-vectors, a
two-component Jones vectors are like two-compon
spinors in the relativistic world. This enhances our capac
to approach polarization optics in terms of the kinematics
special relativity.

Indeed, we can now design specific experiments wh
will test some of the consequences derivable from the p
ciples of special relativity. The most widely known examp
is the Wigner rotation. This has been extensively discus
in the literature in connection with the Thomas effect@4#,
Berry’s phase@5,6#, and squeezed states of light@7#.

In our earlier papers, we discussed an optical filter wh
exhibits the matrix form of

S 1 u

0 1D ~1.1!

applicable to two transverse components of the light wa
whereu is a controllable parameter. When applied to a tw
component system, this matrix performs a superposition
the upper channel while leaving the low channel invaria
The question is whether it is possible to produce optical
ters with this property.
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In Ref. @1#, we approached this problem in terms of th
generators of the Lorentz group. It is very difficult, if no
impossible, to manufacture optical devices performing
function of group generators. In the case of optical filte
this means an infinite number of layers of zero thickness
the present paper, we deal with the same problem from
experimental point of view. We will present a specific desi
for optical filters performing this function. We will of cours
present our case in terms of a combination of three filters
finite thickness.

In order to achieve this goal, we use the fact that pol
ization optics and special relativity share the same ma
ematics. This aspect was already noted in the literature
the case of the Wigner rotation@6#. The concept of the
Wigner rotation comes from the kinematics of special re
tivity, in which two successive noncollinear Lorentz boos
do not end up with a boost. The result is a boost followed
preceded by a rotation. Thus we can achieve a rotation f
three noncollinear boosts starting from a particle at re
Since each boost corresponds to an attenuation filter, it
quires three attenuation filters to achieve a Wigner rotation
polarization optics.

While the Wigner rotation is based on Lorentz transfo
mations of massive particles, there are similar transform
tions for massless particles. Here two noncollinear Lore
boosts do not result in one boost. They become one b
preceded or followed by a transformation which correspo
to a gauge transformation. In 232 formalism, the transfor-
mation takes the form of Eq.~1.1!. We shall show in this
paper that the filter possessing the property of Eq.~1.1! can
be constructed from one rotation filter and one attenua
filter. In mathematics, this type of decomposition is call
the Iwasawa decomposition@8,9#.

While the primary purpose of this paper is to discuss
ters and their combinations in polarization optics, we a
provide concrete illustrative examples of Wigner’s ‘‘littl
group’’ @10#. The little group is the maximal subgroup of th
1036 ©1999 The American Physical Society
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Lorentz group whose transformations leave the fo
momentum of a given particle invariant, and has a long h
tory @11#. The Wigner rotation and the Iwasawa decompo
tion are transformations of the little groups for massive a
massless particles, respectively. It is interesting to note
these transformations can also be achieved in optics lab
tories.

In Sec. II, we review the formalism for optical filter
based on the Lorentz group, and explain why filters are
Lorentz transformations. It is shown in Sec. III that a rotati
can be achieved by three noncollinear Lorentz boosts. In
IV, we spell out in detail how the Iwasawa decompositi
can be achieved from the combination of two optical filte

II. FORMULATION OF THE PROBLEM

In studying polarized light propagating along thez direc-
tion, the traditional approach is to consider thex andy com-
ponents of the electric fields. Their amplitude ratio and
phase difference determine the degree of polarization. T
we can change the polarization either by adjusting the
plitudes, by changing the relative phases, or both. For c
venience, we call the optical device which changes am
tudes an ‘‘attenuator’’ and the device which changes
relative phase a ‘‘phase shifter.’’

Let us write these electric fields as

S Ex

Ey
D 5S A exp$ i ~kz2vt1f1!%

B exp$ i ~kz2vt1f2!%
D , ~2.1!

whereA and B are amplitudes which are real and positi
numbers, andf1 andf2 are the phases of thex andy com-
ponents, respectively. This column matrix is called the Jo
vector. In dealing with light waves, we have to realize th
the intensity is the quantity we measure. Then there ar
the question of coherence and time average. We are thu
to consider the following parameters:

S115^Ex* Ex&, S225^Ey* Ey&,
~2.2!

S125^Ex* Ey&, S215^Ey* Ex&.

Then, we are naturally invited to write down the 232 matrix:

C5S ^Ex* Ex& ^Ey* Ex&

^Ex* Ey& ^Ey* Ey&
D , ~2.3!

where^Ei* Ej& is the time average ofEi* Ej . The above form
is called the coherency matrix@12#.

It is sometimes more convenient to use the followi
combinations of parameters:

S05S111S22,

S15S112S22,
~2.4!

S25S121S21,

S352 i ~S122S21!.

These four parameters are called the Stokes parameters
literature@12#.
-
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We showed in our earlier papers that the Jones vec
and the Stokes parameters can be formulated in terms o
232 spinor and 434 vector representations of the Loren
group. This group theoretical formalism allows us to discu
three different sets of physical quantities using one ma
ematical device. In our earlier publications, we used the c
cept of Lie groups extensively, and used their genera
based on infinitesimal generators.

In this paper, we avoid the Lie groups and work only wi
explicit transformation matrices. For this purpose, we s
with the following two matrices:

B5S coshx sinhx 0 0

sinhx coshx 0 0

0 0 1 0

0 0 0 1

D ,

~2.5!

R5S 1 0 0 0

0 cosf 2 sinf 0

0 sinf cosf 0

0 0 0 1

D .

If the above matrices are applied to the Minkowskian sp
of (ct,z,x,y), the matrixB performs a Lorentz boost:

t85~coshx!t1~sinhx!z,
~26!

z85~sinhx!t1~coshx!z,

while R leads to a rotation:

z85~cosf!z2~sinf!x,
~2.7!

x85~sinf!z1~cosf!x.

In our previous paper, we discussed in detail what these
trices do when they are applied to the Stokes four-vecto

In the two-component spinor space, the above transfor
tion matrices take the forms

S ex/2 0

0 e2x/2D , S cos~f/2! 2 sin~f/2!

sin~f/2! cos~f/2!
D . ~2.8!

We discussed the effect of these matrices on the Jo
spinors in our earlier publications.

In this paper, we discuss some of nontrivial consequen
derivable from the algebra generated by these two set
matrices. We shall study Wigner rotations and Iwasawa
compositions. The Wigner rotation has been discussed in
tical science in connection with Berry’s phase, but t
Iwasawa decomposition is a relatively new word in optic
We would like to emphasize here that both the Wigner ro
tion and Iwasawa decomposition come from the concep
subgroup of the Lorentz groups, whose transformations le
the momentum of a given particle invariant.

III. WIGNER ROTATIONS

There are many different versions of the Wigner rotati
in the literature. Basically, this rotation is a product of tw
noncollinear Lorentz boosts. The result of these two boos
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not a boost, but a boost preceded or followed by a rotat
This rotation is called the Wigner rotation.

In this paper, we approach the problem by using th
boosts described in Fig. 1. Let us start with a particle at r
with its four-momentum

FIG. 1. Closed Lorentz boosts. Initially, a massive particle is
rest with its four momentumPa . The first boostB1 brings Pa to
Pb . The second boostB2 transformsPb to Pc . The third boostB3

bringsPc back toPa . The particle is again at rest. The net effect
a rotation around the axis perpendicular to the plane contain
these three transformations. We may assume for convenience
Pb is along thez axis, andPc in the zx plane. The rotation is then
made around they axis.
n.

e
t,

Pa5~m,0,0,0!, ~3.1!

where we use the metric convention (ct,z,x,y). Let us next
boost this four-momentum along thez direction using the
matrix

B15S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1

0 0 0 1

D , ~3.2!

resulting in the four-momentum

Pb5m~coshh,sinhh,0,0!. ~3.3!

Let us rotate this vector around they axis by an angleu.
Then the resulting four-momentum is

Pc5m~coshh,~sinhh!cosu,~sinhh!sinu,0!. ~3.4!

Instead of this rotation, we propose to obtain this four-vec
by boosting the four-momentum of Eq.~3.3!. The boost ma-
trix in this case is

t

g
hat
B25S 1 0 0 0

0 cosc 2 sinc 0

0 sinc cosc 0

0 0 0 1

D S coshl sinhl 0 0

sinhl coshl 0 0

0 0 1 0

0 0 0 1

D S 1 0 0 0

0 cosc sinc 0

0 2sinc cosc 0

0 0 0 1

D , ~3.5!

with

l52 tanh21$@sin~u/2!#tanhh%, c5
u

2
1

p

2
. ~3.6!

If we carry out the matrix multiplication,

B25S coshl 2 sin~u/2!sinhl cos~u/2!sinhl 0

2 sin~u/2!sinhl 11 sin2~u/2!~coshl21! 2 sinu sinh2~l/2! 0

cos~u/2!sinhl 2 sinu sinh2~l/2! 11 cos2~u/2!~coshl21! 0

0 0 0 1

D . ~3.7!

Next we boost the four-momentum of Eq.~3.4! to that of Eq.~3.1!. The particle is again at rest. The boost matrix is

B35S 1 0 0 0

0 cosu 2 sinu 0

0 sinu cosu 0

0 0 0 1

D S coshh 2 sinhh 0 0

2 sinhh coshh 0 0

0 0 1 0

0 0 0 1

D S 1 0 0 0

0 cosu sinu 0

0 2sinu cosu 0

0 0 0 1

D . ~3.8!

After the matrix multiplication,

B35S coshh 2cosu sinhh 2 sinu sinhh 0

2cosu sinhh 11cos2 u~coshh21! sinu cosu~coshh21! 0

2 sinu sinhh sinu cosu~coshh21! 11 sin2u~coshh21! 0

0 0 0 1

D . ~3.9!
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The net result of these transformations isB3B2B1. This
leaves the initial four-momentum of Eq.~3.1! invariant. Is it
going to be an identity matrix? The answer is ‘‘No.’’ Th
result of the matrix multiplications is

W5S 1 0 0 0

0 cosV 2 sinV 0

0 sinV cosV 0

0 0 0 1

D , ~3.10!

with

V52 sin21H ~sinu!sinh2~h/2!

Acosh2h2 sinh2h sin2~u/2!
J . ~3.11!

This matrix performs a rotation around they axis, and leaves
the four-momentum of Eq.~3.1! invariant. This rotation is an
element of Wigner’s little group, whose transformatio
leave the four-momentum invariant. This is precisely t
Wigner rotation.
ul

as
n

ta

at
e

This relativistic effect manifests itself in atomic spectra
the Thomas precession. Otherwise, the experiments
Wigner rotation in special relativity is largely academic. O
the other hand, as noted in the literature, this effect could
tested in optics laboratories. As for the Stokes paramet
the above 434 matrices are directly applicable. Indeed, ea
434 matrix corresponds to one optical filter applicable
polarized light.

In order to see this effect more clearly, let us use
Jones matrix formalism. The 232 squeeze matrix corre
sponding to the boost matrixB1 of Eq. ~3.2! is

S15S eh/2 0

0 e2h/2D . ~3.12!

The 232 squeeze matrix corresponding to the boost ma
of Eq. ~3.5! is now
S25S cos~c/2! 2 sin~c/2!

sin~c/2! cos~c/2!
D S el/2 0

0 e2l/2D S cos~c/2! sin~c/2!

2 sin~c/2! cos~c/2!
D , ~3.13!

where the parametersc andl are given in Eq.~3.6!. After the matrix multiplication,S2 becomes

S25S cosh~l/2!2 sin~u/2!sinh~l/2! cos~u/2!sinh~l/2!

cos~u/2!sinh~l/2! cosh~l/2!1 sin~u/2!sinh~l/2!
D . ~3.14!

This is a matrix which squeezes along the direction which makes an angle (p1u)/2 with thez axis. The 232 squeeze matrix
corresponding toB3 of Eq. ~3.8! is

S35S cosh~h/2!2cosu sinh~h/2! 2 sinu sinh~h/2!

2 sinu sinh~h/2! cosh~h/2!1cosu sinh~h/2!
D . ~3.15!
Now the matrix multiplicationS3S2S1 corresponds to the
closure of the kinematical triangle given in Fig. 1. The res
is

S3S2S15S cos~V/2! 2 sin~V/2!

sin~V/2! cos~V/2!
D , ~3.16!

whereV is given in Eq.~3.11!.

IV. IWASAWA DECOMPOSITIONS

In Sec. III, the Lorentz kinematics was based on a m
sive particle at rest. If the particle is massless, there are
Lorentz frames in which the particle is at rest. Thus we s
with a massless particle whose momentum is in thez direc-
tion,

Ka5~k,k,0,0!, ~4.1!

wherek is the magnitude of the momentum. We can rot
this four-vector to
t

-
o

rt

e

Kb5~k,2k sina,k cosa,0! ~4.2!

by applying toKa the rotation matrix

R15S 1 0 0 0

0 cosa1 2 sina1 0

0 sina1 cosa1 0

0 0 0 1

D , ~4.3!

with a15a1p/2.
If we rotateKb around they axis by 22a, the resulting

four-momentum will be

Kc5~k,k sina,k cosa,0!. ~4.4!

It is possible to transformKb to Kc by applying toKb the
boost matrix
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B5S coshg sinhg 0 0

coshg sinhg 0 0

0 0 1 0

0 0 0 1

D , ~4.5!

with

sinhg5
2sina

cos2 a
, coshg5

11 sin2a

cos2 a
. ~4.6!

We can transformKc to Ka by rotating it around they
axis by (a2p/2) ~see Fig. 2!. The rotation matrix takes the
form

R25S 1 0 0 0

0 cosa2 2 sina2 0

0 sina2 cosa2 0

0 0 0 1

D , ~4.7!

with a25a2p/2. Thus the multiplication of the three ma
trices,R2BR1 , gives

T5S 11u2/2 2u2/2 u 0

u2/2 12u2/2 u 0

u 2u 1 0

0 0 0 1

D , ~4.8!

with

u522 tana.

FIG. 2. Two rotations and one Lorentz boost which preserve
four-momentum of a massless particle invariant. The fo
momentumKa is rotated toKb by R1 . It is then boosted toKc by
the boost matrixB. The rotation matrixR2 brings back the four-
momentum toKa . The initial momentum is along thez direction,
and the boostB is also made along the same direction. The rotatio
are performed around they axis.
This T matrix plays an important role in studying space-tim
symmetries of massless particles. If this matrix is applied
the four-momentumKa given in Eq. ~4.1!, the four-
momentum remains invariant. If this matrix is applied to t
electromagnetic four-potential for the plane wave propag
ing along thez direction with the frequencyk, the result is a
gauge transformation.

Again, the above 434 matrices are directly applicable t
the Stokes parameters. On the other hand, if we are intere
in designing optical filters, we need 232 representations
corresponding to the 434 matrices given so far. The 232
squeeze matrix corresponding to the boost matrixB of Eq.
~4.5! is

S5S eg/2 0

0 e2g/2D , ~4.9!

while the 232 matrices corresponding toR1 of Eq. ~4.3!
andR2 of Eq. ~4.7! are

R65S cos~a6/2! 2 sin~a6/2!

sin~a6/2! cos~a6/2!
D , ~4.10!

wherea1 anda2 are given in Eqs.~4.3! and ~4.7!, respec-
tively. They satisfy the equations

a11a252a, a12a25p.

The relation betweeng anda given in Eq.~4.6! can also be
written as cosh(g/2)51/cosa, which is more useful for car-
rying out the 232 matrix algebra.

The matrix multiplicationR2SR1 leads to

T5R2SR15S 1 22 tana

0 1 D . ~4.11!

Conversely, we can write

S 1 22 tana

0 1 D 5R2SR1 . ~4.12!

The T matrix can be decomposed into rotation and sque
matrices. This possibility is called the Iwasawa decompo
tion. In the present case,T of Eq. ~4.11! can also be written
as

T5R2S$~R2!21R2%R15$R2S~R2!21%~R2R1!.
~4.13!

The matrix chainR2S(R2)21 is one squeeze matrix whos
squeeze axis is rotated bya2/2, and the matrix produc
R21R1 becomes one rotation matrix. The result is

T5S~a2!R~2a!, ~4.14!

with

e
-

s

S~a2!5S cosh~g/2!1 cosa2 sinh~g/2! sina2 sinh~g/2!

sina2 sinh~g/2! cosh~g/2!2 cosa2 sinh~g/2!
D ,

~4.15!

R~2a!5S cosa 2 sina

sina cosa D .
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It is indeed gratifying to note that theT matrix can be de-
composed into one rotation and one squeeze matrix.
squeeze is made along the direction which makes an ang
a2/2 or 2(p/22a)/2 with the z axis. The anglea is
smaller thanp/2.

In our earlier papers@1,2# we discussed optical filters with
the property given in Eq.~4.11!. We said there that filters
with this property can be produced from an infinite numb
of infinitely thin filters. This argument was based on t
theory of Lie groups where transformations are generated
infinitesimal generators. This may be possible these days
the method presented in this paper is far more practical.
need only two filters@13#.

We are able to achieve this improvement because here
used the analogy between polarization optics and Lore
transformations which share the same mathematical fra
work.

V. CONCLUDING REMARKS

In this paper, we noted first that both the Wigner rotati
and the Iwasawa decomposition come from Wigner’s lit
group whose transformations leave the four-momentum
given particle invariant. Since the Lorentz group is also
plicable to the Jones vector and the Stokes parameters,
possible to construct corresponding transformations in po
ization optics. We have shown that both the Wigner rotat
an
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and the Iwasawa decomposition can be realized in op
laboratories.

The matrix of Eq.~1.1! performs a shear transformatio
when applied to a two-dimensional object, and has a lo
history in physics and engineering. It also has a history
mathematics. The fact that a shear can be decomposed i
squeeze and rotations is known as the Iwasawa decomp
tion @8#.

Among the many interesting applications of shear tra
formations, there is a special class of squeezed states of
tons or phonons having the symmetry of shear@14, 15#. The
wave-packet spread can be formulated in terms of sh
transformations@16#.

As we can see from this paper, a set of shear transfor
tions can be formulated as a subset of Lorentz transfor
tions. This set plays an important role in understanding
ternal space-time symmetry of massless particles, suc
gauge transformation and neutrino polarizations@11,17,18#.
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