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Resistance of Feynman diagrams and the percolation backbone dimension

H. K. Janssen, O. Stenull, and K. Oerding
Institut fir Theoretische Physik I, Heinrich-Heine-Univerditdniversitasstrale 1, 40225 aseldorf, Germany
(Received 21 January 1999

We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in
which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory
considerably as we demonstrate by calculating the fractal dimefsioof the percolation backbone to three
loop order. Using renormalization group methods we obtBig=2+ /21— 172¢2/9261+ 2% — 74 639
+2268Q(3)]/4 084 101, where=6—d with d being the spatial dimension add3)=1.20205 ... .
[S1063-651%99)51206-3

PACS numbe(s): 64.60.Ak, 05.70.Jk, 64.60.Fr, 72.80.Ng

Percolation has gained a vast amount of interest over the The powelP dissipated on the backbone betweeamndx’
last decadesgfor a review, see, e.g[1,2]). Though it repre- of this nonlinear network reads
sents the simplest model of a disordered system it has many
applications, e.g., polymerization, porous and amorphous P=UI=R(x,x)[I]"*1, ()]
materials, thin films, spreading of epidemics, etc. Consider a
d-dimensional lattice where each bond is randomly occupied/nere U denotes the voltage between the two poftshe
with probability p or empty with probability & p. Occupied resulting current, andR,(x,x’) the resistance of the back-
and empty bonds may stand for different physical properties?®€: On the other hand we may write
Assume that occupied bonds are electrical conductors
whereas empty sites are insulators and that currents can flow P=>, IVi=Vill; ;= > pi il (4
only between nearest neighbors. Suppose a potential differ- L I

ence is applied between two sitesand x’ located on the h th tak Il bond the cluster. Th
same cluster. In general not all bonds do carry nonzero cupynere the sum is taken over all bonds on the cluster. The
limit r——1, taken from above, provides for a convenient

rent, since there may be dangling ends. This gives rise to thd"
notion of the backbone. It is defined as the set of bonds that® of summing up all conductors carrying nonzero current,
are connected to botkandx’ by mutually nonintersecting

paths. Except for Wheatstone bridge type configurations R_l(x,x’)=2 pij- (5)
these are the bonds that carry nonzero current. The fractal bl

dimensionDg of the backbone is defined near the critical
concentratiorp, by Mg~ |x—x'|Pe, whereMy denotes the
average number of bondthe masgof the backbone.

In this Rapid Communication we evaluabg; by renor-
malized field theory. Our approach is based on a field theolength exponent and)r is the resistance exponent defined by
retic formulation of the randomly diluted nonlinear resistor M, = x(X,x" )Ry (x,X"))c/{ x(X,x "))~ Ix—x |¢’/V (e
network by Harris[3], which itself was based on work by denotes the average over all configurations of the diluted
Stephen4] and Harris and Lubenskys]. The aim of this lattice andx(x,x") is an indicator function that takes the
Rapid Communication is to present our interpretation ofvalue one ifx andx’ are on the same cluster and zero oth-
Feynman diagrams as being resistor networks themsgjes erwise.
and to employ this interpretation to derii@; up to third The resistanc&R, (x,x’) can be obtained by solving the
order ine=6—d. circuit equations

Consider a nonlinear generalization of the random resistor

We restrict ourselves to the case that all conductors have
identical resistancp. Hence,R_, is proportional toM g and
Dg is identical to lim __, ¢ /v, wherev is the correlation

network as proposed by Kenkel and Stral@}. The bonds VR VALV AR VAL Ty
between sites andj obey a generalized Ohm'’s law 2 71, (Vi=VpIVi=Vjl i ©
Vi=Vi=p;i it (1)  where 1;=1(68 x— 6 x/). The circuit equations may be

viewed as a consequence of the variation principle
or equivalently

Ui,j(vj_vi)|vj_vi|571:li,j! (2) (9V S+1P({V} +E ! V (7)
wherea; ; (p; ;) is the nonlinear conductanceesistancgof ~ where{V} denotes the set of voltages belonging to the sites
the bond)l; ; is the current flowing through the bond, a¥d  of the backbone. Obviously the backbone may contain closed

is the potentlal at site The exponents ands are describing loops as subnetworks. Suppose there are curfghts cir-
the nonlinearity withr =s 1. culating independently around these closed loops. Then the
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power is not only a function of but also of the set of loop The replication procedure induces the effective Hamil-
currents. Conservation of charge holds for every ramificatiorionian
of the backbone, and this gives rise to another variation prin-

. 1
ciple, - S
p Hrep In< ex;{ —] P >C, (12
ip({|(|)},|):0_ (8)  Which may be expanded in terms ¢f

g1
Equation(8) may be used to eliminate the loop currents and Arep sz: ga KR -3 13
:gﬁzep(r;f)\;lﬁ: St);(?k\gcl)tr:] eavgeggf to determine the total resISI_\lext the kernel is Taylor expanded in the limit of large
A field theory for the nonlinear random resistor network K():)= T—WA,, (14)
was set up by Harrig3] in analogy to the linear modé4,5].
In order to overcome difficulties associated with-)c one ~ with 7 andw~ o ~* being expansion coefficients and higher
employs the replica techniqy8]. The network is replicated order terms are neglected sinkk,, is decaying exponen-

D fold: V—V,= (V& . .. V(®)). One considers the corre- tially. By defining the discrete derivativé/96®) through
lation function G(x,X";N) =(¥x(X)y_x(X"))rep OF #x(X) 92
— exp(i-V,), wherex -V, =3 A@V andX  0: - 2{, <I>;(X)W<Da(X)=§6 ND2y (X) 3 (%),
D (19
G(x,X";\)= < ZzP H CL[l dvy ex;{ - %P({\?}) one obtains upon Fourier transformation
K(Az)=71—w(Ay D2 (16)

+i (9) To set up a field theoretic Hamiltonig we proceed with

the usual coarse graining step and replace the Potts spins
R . ®;(x) by the order parameteﬁp(x,é) defined on a
Here P({V}) =3; ; 0 ;IV{¥=V{?[s"1 and Z is the usual d-dimensional spatial continuum. Constructing all possible

normalization. In contrast to the linear netwd?ks not qua- invariants of the symmetries of the model frm(P(xyé)P
dra.tiC, and hence the integration is not Gaussian. As a WOI’IY-p denotes some powas 1) and gradients thereof leads to
ing hypothesis we assume that a saddle point approximatiofhe following Hamiltonian in spirit of the Landau-Ginzburg-
is justified. For details and conditions to be imposed\gn  Wilson functional(for details sed6]):

see[3]. The saddle point equation is nothing more than the 1 W g
variation principle stated in Eq7). Thus, the maximum of H:f d [Z 24 T(Vo)— — (A D2, 2 3

the integrand is determined by the solution of the circuit Eg 2% 2( ¢) 2 o(89) 767
equationg6) and, up to an unimportant constant, (17)

>
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A where terms of higher order in the fields have been neglected
G(x,x’;X)=<exp(—rR,(x,x’))> since they turn out to be irrelevant in the renormalization
r+1 c group sense. Note th&f reduces to the usual Potts—model
Hamiltonian by settingv=0.
Now we set up a diagrammatic expansion. Contributing
elements are the vertexg and the propagator

Ay
:<X(X!X,)>C( 1+mMr(X1X,)+ e

(o ks 1 &s g
where A, =3P_ (=\(®2) ("2 Note that the limitD —0 p?+7—WA, p?+7—wWA, p?+7

has to be taken before——1 for Eq. (10) to be well de- . .

fined. Contact to the Potts model can be established bffduation(18) shows that the principal propagator decom-
switching to voltage variable= A 6k taking discrete values POSes into a propagator carryings (conducting and one

on a D-dimensional torus. i.eKk is chosen to be a MNOt carrying\’s (insulating. This allows for a schematic
D-dimensional integer Wiih “M<k®@<M and k@ decomposition of principal diagrams into sums of diagrams
=k(® mod(2V). In this discrete picture there are NBP consisting of conducting and insulating propagators. Here a

—1 independent state variables per lattice site, and one i 1ew interpretation of the Fe_ynman diagrams emeii§ds .
troduces the Potts spins hey may be viewed as resistor networks themselves with

conducting propagators corresponding to conductors and in-
sulating propagators to open bonds. Schwinger paramgters
d;(x)=(2M)P E expi X-6) Pr(x)= 3.5, (2M)~P of conducting propagators correspond to resistam-‘?ésand
A#0 (11) the replica variablesii to currents. The repllicaacu[rerjts are
conserved in each vertex and we may wite=\;(\,{«}),
subject to the conditioX ;® 5(x) =0. where X is an external current an{ﬂ} denotes the set of
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FIG. 1. The diagrams we computed to determiing. The lines -020¢ 1-0.20
stand for conducting propagators; the solid dots stand}fo:?r in- 0 1 2 3 "1 5
sertions.
e=6-d
independent loop currents. Thédependent part of a dia- FIG. 2. Dependence of the exponehton dimensionality. The
gram can be expressed in terms of its power rational approximatioritriangles is compared to numerical results
(circles by Grassbergerd=2) and Moukarzeld=3,4). They de-
. S - terminedDg=2— 5+ = y/v+ ¢ by simulations. Fod=2 we in-
ex;{ WZ SiAri ) =exgwP(X,{«})]. (19 sert the exact valud46,17] v=4/3 andy=43/18. Ford=3 we use

Monte Carlo results by Ziff and Ste[l18]: »=0.875-0.008, v
Our interpretation suggests an alternative way of comput=1.795+0.005. Ford=4 we takev™'=1.44+0.05 [15] and y
ing the Feynman diagrams. To evaluate sums over indeper=1.44[2].
dent loop currents
corresponding exponent in accordance with results by Blu-
S menfeld and Aharonj10] and de Arcangelist al. [11]. We
{E;} exdwP(X.{x})] (20 rate these two loop results as a strong indication for the va-
lidity of the saddle point approach.
we employ the saddle point method. Note that the saddle Now we turn to the calculation oDg. In the limit
point equation is nothing more than the variation principler — — 1 only the nonplanar diagrams listed in Fig. 1 contrib-
stated in Eq(8). Thus, solving the saddle point equations isute to the diagrammatic expansion. We use dimensional
equivalent to determining the total resistariR€{s;}) of a  regularization and renormaliag—Z~1z,w. By employing
diagram, and the saddle point evaluation of E2f) yields minimal subtraction to compensatepoles we obtain

quRr({Si})WAr)- (21) u2 u3 7 29 2 .
A completion of squares in the momenta renders the momen- Zw=1% 4e * ? 12 144° §§(3)6 +OW,
tum integrations straightforward. Thereafter all diagrams are (23
of the form
. whereuxg?u €, with u being an inverse length scale. Note
L(PZND) =1p(p?) + 1 W(PP)WA, + - - - that all nonprimitive divergencies are cancelled as renormal-
" izability of the perturbation expansion requires. The critical
:J H ds[1+R,({SHWA, +---] exponents are determined by the Wilson functions (u)
0 i =u(adlou)inZ  evaluated at the infrared stable fixed point
X D(p2{s)), 22) u*. In particular we are interested im=y(u*) and ¢

= y,(Uu*) governing the scaling relation
whereD(p?,{s;}) is a usual integrand of th¢* theory. The

¢° theory was investigated to three loop order by de Alcant- G(|x=x'[;w)=19"27G(I|x—x'[;w/1>=7*¥),  (24)
ara Bonfimet al. [12], and hence the remaining task is to o
calculate the contributions proportional wo wherel is a inverse length scale. was calculated to ordes®

3
+0(e*). (25

7

2075
16{(3)— 126

In order to check if our working hypothesis holds we in [12]. For ¢ we find
performed two loop calculations for the cases0 andr )
€
resistance between two points becomes essentially equal to y=-2 7) +
the length of the shortest paths between these points. We
ssen9]) and obtained exactly the same diagrammatic expanright-hand side of Eq(24) lead to
sion. Consequently, our result for the exponent governing the
+45/49(In 2-9/10 In 3)|(e/6)?+ O(€%), e=6—d, is the (26)
same as given if9]. The limit r—oo is related to the red

—oo and compared to known results. In the limit-0 the

mapped our diagrams onto those studied by one dlas-  The choicel=Ix—x'I ! and a Taylor expansion of the
so-called chemical distanced,,,=2— €/6—[937/588 G(|x—x’|;w)=|x—x’|2‘d"l(1+W|x—x’|2"/+¢+ ce).
(singly connectedbonds. Our calculation gives unity for the From Egs.(26) and(10) it follows that
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B=2- Mt Y=2t 51€ 9261¢

—74639+2268(3)

3 4
zosator € O

(27)

Note that our result agrees to second ordee with calcu-

lations by Harris and Lubenskj13] based on another ap-

proach. This is again in favor of our working hypothesis.
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which is compared to simulations in Fig. 2. Foe=4 the
results agree within the numerical errors. However, a higher
accuracy of the numerical estimate is desirable. &er3
andd=2 the analytic result looks less realistic and the nu-
merical values are larger. The shape of the dependenge of
on dimensionality is much the same.

We conclude with a few comments. Our interpretation of
the Feynman diagrams simplifies calculations considerably.
The technique used here can be applied to study other as-
pects of transport on percolating clustersdia 4 our result

We compare our result to numerical simglations by Grassfor Dg agrees with recent numerical simulations. For dimen-
berger{14] and Moukarze[15]. Due to the rich structure of sjons close to the upper critical dimension 6, our result is the

7 in the percolation problemy might be better suited for
such a comparison thddg. It is known exactly thai) van-

most accurate analytical estimate fog that we know of.

ishes in one dimension. This feature is incorporated by a We acknowledge support by the Sonderforschungsbereich

rational approximation yielding

(28)

€
1+ 1.262%),
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