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Effect of correlation between additive and multiplicative noises on the activation
from a double well
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We study the thermal activation problem of a bistable system driven by correlated additive and multiplica-
tive noises by means of numerical simulation. We find that in the colored noise case the suppression effect of
the positive correlation decreases and finally is released as the autocorrelation dintee colored noise
grows. Whenr is large enough, negative correlation becomes more suppressive than the positive correlation.
Such phenomena are ascribed to the collaboration between noises as well as the memory effect of the multi-
plicative colored noisg.S1063-651X%99)51106-9

PACS numbg(s): 05.40—a, 82.20.Mj, 02.50-r, 02.60—x

Recently the conventional problem of thermally activated Before presenting the model we consider, it is necessary
escape from a potential wellL] received a surge of fresh to clarify the possibility of introducing correlation between
interest in the context where the potential itself is no longeAN and MN. In some situations, the two noises may have the
static, but disturbed by a random fluctuati@+-6]. The cen- same physical origin. One example is addressed in detail in
ter of the problem is a stochastic system simultaneousijRef. [14]. Their basic point is that the parameters of the
driven by additive noise(AN) and multiplicative noise System can be affected by the identical environmental ele-
(MN), whose most attractive properties are relations betweefi€nts(e.g., temperatujeand in this context noises driving
the mean first passage tinf®IFPT) and the potential fluc- the System may be coherent. For another example, in mo-
tuation. One example is the studies on the MFPT versus thigcular biological systems or complex systems, barriers that a
autocorrelation timer of the potential fluctuation, which in- Brownian p?”'c'e encounters come from th? mo'tloniolf an-
volve the well known work of resonant activati¢B] and other Brownian particle or pa_rt|cle_{§]. In fact, in th.'s orgr-
other investigations triggered by this seminal papes6]. nal paper, the authors have implied that correlation between

However, to our knowledge, most of the related works Con_TF and PF can influence the activation process. In both of

rat th here the MN. which s f the cases, it is plausible and necessary to introduce correla-
centrate on the case where the » WhICh accounts 101 PG, phatween noises and to investigate effects of the correla-
tential fluctuation(PP), is independent of the AN that is re-

. . ~ tion. In general, the characteristic time scale of MN is dif-
sponsible for thermal fluctuatiofTF), and the authors did torent from that of AN and it is natural to consider MN as

not consider the possible effects imposed by the correlatiogg|ored noise. Then the key point is how to introduce corre-
between the two noises. In recent years, it has been discoygiion between colored noise and white noise.

ered that in systems driven by both MN and AN, the two  we study the Ginzburg-Landau bistable system simulta-
noises can be correlat¢d—9], and the correlation is able to neously driven by MN and AN,

change the steady properties of the systems greb@ly13. _

Nevertheless, how the correlation between PF and TF alters x=x—x3+xe(t) + &(1), 1)

the activation process is still an interesting and unexposed ) ) _ _ _ _
problem. In Ref[14], Madureira, Haggi, and Wio reported where £(t) is a Gaussian white noise with correlation
their investigation into this problem, where MN is also of (§(1)€(t"))=2D4s(t—t) and zero meanxe(t)accounts
Gaussian white noise but correlated with the AN. Theyfor potential disturbance by zero-mean Gaussian colored
found that the transition rate of a double well system can b&0is€ &() with  correlation  given by (e(De(t'))
suppressed by the positive correlation and show a minimure (Q/7)el'"t'')_ This colored noise is equivalent to the OU
as the function of the two noises’ strengths ratio, which theyprocess depicted by

named as “giant suppression of the activation rate.” In this

Rapid Communication, we extend the above research work . e(t) gt

to the case that MN is of Ornstein-Uhlenbe@U) noise by =T T )
means of numerical simulation. We focus on how the corre-

lation strength and the auto correlation time of MN affect thein which 7(t)i is a Gaussian white noise with zero mean and
relation between MFPT and MN strength. the correlation given by#(t) »(t'))=2D&(t—t’). The ini-
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FIG. 1. White multiplicative noise case: the mean first passage al
time T(Q) vs multiplicative noise strengt® for various values of 2 . . .
correlation strength\: (@) A=0.9, (b) A=0.4, (c) A=0.0, and(d) a1 1 10
A=-—0.9. The white noise strength is 0.2. Solid lines are the Q
results of numerical integration of E¢p). Solid squares stand for FIG. 2. Colored multiplicative noisef(Q) vs Q with different

numerical simulation results. Note that the curve Xer0.9 shows ;. (3) 7=0.05 and(b) 7=2.0. The white noise strengtd is 0.2.

an abrupt peak ani=0.4 a flat peak, while curves for=0.0 and  \/gyes of the parametex are listed in Figs. @) and 2b).
A=-0.9 fall off monotonically.

peak becomes. That means positive correlation becomes
more suppressive on the activationxagrows, which is ex-
actly the main conclusion of Refl14]. It should be noted
that the definition of MFPT here<{1—0) is different from

that of Ref.[14] (—1—1). However, our results show that
the definition difference does not affect the phenomenon of
“suppression of activation.”

(i) From Fig. Za), it can be seen that in the smail
regime, the peak of th&(Q) curve for positive correlation
d%i“ exists. However, it is apparent in this situation that the
peak becomes lower and flatter, which denotes albeit in the
small 7 regime the suppression effect of the positive correla-
gion does exist, yet this effect is weakened ramcreases.

tial value of ¢(t) is required to be a zero-mean Gaussian
random number with variand@/ 7.
We introduce the correlation between TF and PF

(£ n(t"))=2\/QDs(t—t") 3)

in which N denotes correlation strength between noises.
We numerically simulated the double well system de-
scribed by Egs(1) and (2). Several numerical simulation
schemes have been put forward, such as the second-or
stochastic Runger-KuttéSRK) algorithm presented in Ref.
[15], and the one-and-a-half order algorithm in Ra6]. We

choose the former algorithm and extend it to our model. Thi . . )
algorithm is an iteration algorithm and can simplify pro- Another feature one should note is that with this smahe

gramming. However, other algorithms are also employed tIfurve for posi_tive correlation descends by magnitud_e in con-
assure the correctness of results from SRK schemes. At tHE"Y t© the little change of those for non-correlation and
initial time, the sample particle starts fraxg0)= —1 for the
white noise case; for the colored noise case, the particle
starts fromx(0)=—1, £(0)=¢ ({ is a Gaussian random
number with proper distributionIn each run, whenever the
particle crosses the boundary=0), we take out this par-
ticle and record the time spent to build the MFPT. We repeat
the cycle until all of the samples are used. During simulation
the time stepAt is adjusted to keept<r and At<1.The
uncertainty of the values of MFPT is a few percent.

Our simulation aim to study how the mean first passage
time T(Q) depends on the MN strengi® and how this
dependence varies with different valuesoénd \. During
simulation we fix the AN strengtb =0.2 for convenience.
Some results are plotted in Figs. . R
1-4. The main phenomena ot L 0
are summarized as follows: '

(i) Figure 1 is the white noise case{0). One can see FIG. 3. Ag(7) describing the relative effect of positive correla-
that theT(Q) curve for positive correlation exhibits a peak tion of A=0.9 to negative correlation 0ot=—0.9 vs . The other
while curves for noncorrelation and negative correlation doparameters ar@=D=0.2.
not, and the larger the correlation strength is, the higher the
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white noise case. When—0, our model reverts to that of
Ref.[14]. The steady probability distributioR¢(x) of state
variablex is given as

25¢
20t
15¢
1.0f
05F
oot
a8f

(5

Pst(x)=N1h(x)eX[{ fxf(z)hz(z)dz ,

in which h(x)=[D+ 2\ /DQg(x) +Qg?(x)]*? and f(x)

aet =x—x%, g(x)=x. The integration ire exponent can be ob-

5 o tained by fraction integration. According to Karmer’'s escape
Al theory, MFPT is given as the following:

02f

aof £ ~ . 0

a7 ' ' : : : T(Q):f dxh(x)

agl ¢ -1

ost « «

a4 xexp{—f dzf(z)h?(2) f dx"h(x")
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ol . X ex dzf(z)h<(z)|. (6)
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An expression of MFPT can be obtained by steepest descent
FIG. 4. Steady probability distributions for the white noise case@pproximation; however, here we compute the equation by
(@) as well as the colored noise cad® r=0.05 and(c) ==2.0.  humerical integration and the results are plotted in Fig. 1 as
White noise strengtiD is 0.2. Other parameters are as listed in Solid lines. The difference between theory and simulation is
Figs. 4a)—-4(c). less than 5%. Now that an analytical explanation for the
white noise case has been obtained, we now turn to another
Huahtatlve and more heuristic explanation that need not con-
jder the detailed shape of bistable potential and can be ap-
ied to the colored noise case. First, positive correlation
between TF and PF means that when TF is positive, PF is
statistically positive with a major probability. Because now
TF and PF are both of white noise, they vary with the same
time scale. Consequently, when the Brownian particle moves
to a positive region due to thermal activation, the instanta-
neous barrier is lifted ufor equivalently the potential well is
lowered with major probability and thus the activation is
suppressed. The negative correlation case is just the contrary:
correlation enhances activation. Therefore, a reasonable con-
lusion is that MFPT of positive correlation is larger than
that of negative correlation. Second, consider the suppression
reffect of the positive correlation. When PF strength in-

negative correlation. That means MFPT difference betwee
positive correlation and negative correlation decreases Wheﬂ
T grows.

(iii) Figure Zb) shows that wherr is large enough all of
the T(Q) curves fall off monotonically, which means the
effect of giant suppression of activatiovanishes with large
enoughr and MFPTs for all values of correlation between
noises decrease monotonically ver€us

(iv) Combining Fig. 2b) with Fig. 2(@), one can see an-
other feature unique for colored noise case. In Fig),2he
curve for positive correlation is above those for noncorrela-
tion and negative correlation, whereas Figb)2exhibits a
contrary tendency: the curve for negative correlation is abov
that for positive correlation. In other words, asgrows
curves for positive and negative correlation are turned ove

negative correlation becomes more suppressive. To exhlbﬁreases the suppression is enhanced. However, when

this feature more clearly we introduce a quantity strength of PF is larger enough than that of TF, the system is
approximately driven solely by the MN. For a symmetrical

bistable potential, the Brownian particles of such a system
Ag(T)=To(TNg) = To(7—No), (4)  distribute mainly around the barrier, which make MFPT very
small. In this way, a€) grows MFPT undergoes a maxi-
mum. Such a pattern can also be seen from the variation of
in which To(7;N) is the MFPT versus for fixed values of  Pg(x)with Q. The curves in Fig. &) are obtained from Eq.
Q andA\. This quantity describes the relative effect of posi- (5). From this figure, one can see that wi@iincreases from
tive correlation to that of negative correlation. Whig(7) zero, the left peak oP¢(x) ascends. However, whep be-
is positive, correlation ofAg is more suppressive; when comes larger, two other influences of increastpigemerge:
Aq(7) is negative, correlation ok, enhances activation, to move the left peak oP¢(x) to the barriex=0 and make
relatively. Figure 3 is the curve af(7) versus7 with Q  the probability diffuse to the positive region, both of which
=0.2 andky=0.9. The curve decreases monotonically fromlead to the decrease of MFPT. Therefore, MFPT is certain to
positive and crosses zero approximatelyratl.75, which  show a maximum a€ grows from zero. As for the negative
means that correlation of;=0.9 changes its relative effect correlation case, in a mechanism likewise, anticorrelation
of activation whenr crosses the approximate value of 1.75. boosts activation and this effect is enhanced by the increase
To comprehend the above phenomena requires some Q, which give rise to the monotonical descent Q)
guantitative or qualitative explanations. First, let us take thecurve.
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6 a ot [see the variations d?(x)againstQ in Fig. 4b)]. However,
) as 7 increases, novel features ascribed to memory of colored
- ‘ MN arise gradually. Wher grows the auto correlation time
Y ‘ ‘ i [ LR region of PF increases and the variance ofF decreases,
i ‘ [ J“ I x"ﬁ'lﬂiul | “ the potential fluctuates more smoottigs shown in Fig.
or Y e ‘1‘ m Y] il which makes the PF lag behind TF as a consequence. For a
: , n r 1 ’ better understanding, consider the positive correlation case.
Supposing TF is negative at tinmiethen PF is also negative
with a major probability. When TF changes from negative to
-6 positive at timet (>t), PF still remains negative due to the
memory effect of colored noise. Then statistically the sup-
pression of activation is weakened, which is equivalent to the
effect of decreasing correlation strengthin this situation,
the effect of increasin@) on the suppression is lessened,
which leads to the phenomenon that the peak(@) curve
becomes lower and flatter. Wh&his large enough, the in-
crease ofQ will boost activation, thus the peak of ti€Q)
curve will vanish. As for the negative correlation case, the
mechanism of colored MN weakens the anticorrelation effect
06— 0 =0 0 o =0 in a mechanism identical to that for positive correlation. That
¢ means the enhancement of activation is statistically weak-
ened, which leads to the increase of MFPT of negative cor-
FIG. 5. Two sample trajectorids(t) of white noise and colored relation asr grows. Whenr is large enough, negative corre-
noise for(a) 7=0.05 and(b) =2.0. The other parameters a@¢ lation becomes more suppressive than positive correlation.
=D=0.2 and\=0.9. Note that in the former case the time scale of This is just the “turn over” phenomenon shown in Fig. 3,
colored noise approaches that of white noise, while in the latter casghich can also be verified by the variationskyf(x) against
the colored noise becomes smoother and is no longer synchronouys[see Fig. 4c)]. In summary, the phenomena we observed
with the white noise. can all be attributed to the collaboration between multiplica-
) ) ) tive noise and additive noise as well as the memory effect of
At present, for the analytical solvable white noise case weyiplicative colored noise that destroys the statistical syn-

have a heuristic explanation of the mechanism that is alsgponization of TF and PF. How to quantitatively explain our
applied to the colored case that cannot be solved exactly iBiscovery will be presented elsewhere.

general. In the regime of#0 but 7<1, the time scale of
MN approaches that of AN and the mechanism of suppres- This work was supported by the National Natural Science
sion due to collaboration between noises still takes effecEoundation of China.
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