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Universal asymptotic eigenvalue distribution of density matrices and corner transfer matrices
in the thermodynamic limit
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We study the asymptotic behavior of the eigenvalue distribution of the corner transfer matrix (MCTM) and
the density matrix (MDM) in the density-matrix renormalization group. We utilize the relationshipMDM

5MCTM
4 , which holds for noncritical systems in the thermodynamic limit. We derive the exact and universal

asymptotic form of theMDM eigenvalue distribution for a class of integrable models in the massive regime. For
nonintegrable models, the universal asymptotic form is also verified by numerical renormalization group
calculations.@S1063-651X~99!50806-4#

PACS number~s!: 05.50.1q, 05.20.2y, 11.30.2j, 75.10.Jm
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The density matrix renormalization group~DMRG! in-
vented by White@1# is one of the most important numeric
methods developed recently. Due to the remarkable succ
the method has now become one of the standard method
studying one-dimensional~1D! quantum systems@2# and
two-dimensional~2D! classical statistical systems@3#. In
spite of the success, little has been understood about
foundation of the method. Studies clarifying the ‘‘origin’’ o
efficiency of the method are important because they lea
various ~including higher-dimensional@4#! extension of the
method. One example is the work of Ref.@5#, where a rela-
tionship between the density matrix (MDM) and Baxter’s
corner transfer matrix (MCTM) @7–9# is pointed out and a
new algorithm~CTMRG! is devised. Another example is th
work of Ref.@10#, where it is pointed out that the DMRG~at
its thermodynamic limit! is a variational method using th
matrix-product-ansatz~MPA! wave function as a trial wave
function. This leads to a direct variational method that do
not need theMDM @10#, and the product-wave-function RG
~PWFRG!, which fully utilizes the MPA form of the DMRG-
fixed-point wave function@6#.

The central object in the DMRG is theMDM , which is
made from the ground-state wave function~respectively
maximal eigenvalue wave function! of quantum Hamiltonian
~respectively transfer matrix! by tracing out information of
one half of the system. Keeping up to a cut-off-eigenva
eigenstate of theMDM , we have a truncated basis set co
sisting of a finite number~conventionally denoted bym) of
bases to describe the remaining half of the system.

Since the accuracy of the DMRG is determined by
cut-off eigenvalue, it is crucially important to investigate t
eigenvalue spectrum$vm%, in particular, its asymptotic (m
→`) behavior, which has not been known precisely. In t
Rapid Communication, we present theexact asymptotic form
of the MDM eigenvalue distribution for a class of~noncriti-
cal! integrable models, and further, make the first system
study for nonintegrable systems employing the CTMRG a
the PWFRG by which we can efficiently obtain the ‘‘fixe
point’’ ~thermodynamic limit of the system! of the DMRG.

Let us first discuss the integrable cases. In these cases
quantum problems are equivalent to 2D classical statist
problems: the Hamiltonian of the former can be derived b
PRE 591063-651X/99/59~6!/6227~4!/$15.00
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log-derivative of the transfer matrix of the latter, and t
ground-state wave function of the former is identical to t
maximal-eigenvalue eigenfunctionCmax of the latter @9#.
Hence, we discuss only 2D classical cases below.

As has been pointed out by Baxter@9#, the wave function
~WF! Cmax is interpreted as a product of two CTMs, in th
thermodynamic limit. Since theMDM is just a squareCmax

2

~with Cmax being regarded as a ‘‘wave function matrix’’!,
this interpretation leads to a relationship@5# between the
MDM , the WF, and theMCTM for 2D classical systems~at
least the noncritical case, where the boundary effect is n
ligible!, which is symbolically written as

Cmax5~MCTM!2,
~1!

MDM5~MCTM!4.

For integrable models, the diagonal form of theMCTM is
easily known, from which we can obtain, for example, t
exact one-point function~spontaneous magnetization, etc!
@9#. Due to the relationship~1!, the diagonal form is also
useful to obtain the exact eigenvalue spectrum of theMDM .

We discuss the simplest case where the diagonal form
theMCTM is given by a single infinite tensor product@9#; due
to Eq. ~1!, diagonal form of theMDM has the same infinite
tensor-product form with redefined parameter. For defin
ness let us consider two cases~type I and type II! where the
exact diagonal form of theMDM is given by

r (diag)5 ^
n51

` S 1 0

0 zcnD , ~2!

with cn5n for type I models~e.g., transverse-field Ising
chain, six-vertex model, eight-vertex model,XXZ chain and
XYZ chain! and cn52n21 for type II models@e.g., the
square-lattice Ising model in the conventional~not eight-
vertex! representation# @9#. The parameterz (0,z,1) rep-
resents the ‘‘degree of noncriticality’’~i.e., z→1, on ap-
proaching the critical point!, and how it relates to
‘‘physical’’ parameters depends on the model. Note that
MDM ~2! is unnormalized. It is ‘‘normalized’’ in such a way
R6227 ©1999 The American Physical Society
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that its maximal eigenvaluev0 is unity; we should divide it
by Trr (diag) for conventional normalization.

Due to the tensor-product structure~2!, each eigenvalue
of r (diag) has the formzn, with n (>0) being an integer.
Further, each eigenvaluezn may have degeneracyp(n). To
study the degeneracy structure of theMDM , it is convenient
to consider Trrdiag,

Tr rdiag5 )
n51

`

~11zcn!5 (
n50

`

p~n!zn, ~3!

where the degeneracyp(n) is precisely the coefficient ofzn

in the infinite series. We should note that, taking the deg
eracy into account, the number of retained basesm in the
DMRG should be

m5m~n!5 (
k50

n

p~k!, ~4!

which means that the cut-off eigenvalue of~unnormalized!
MDM is zn and that we should retain all the degenerate ba
belonging to this cut-off eigenvalue.

Our problem is to obtain the large-n behavior of m
5m(n). For this purpose, we should know the asympto
behavior ofp(n). The partition theory of integers, which ha
played an important role in studies of integrable interacti
round-a-face models, is helpful again@11#. By r (n) we de-
note the number of partitions of a positive integern under a
restriction ‘‘r .’’ Consider the generating functionf (q) asso-
ciated with the restricted partition problem. It has be
known @11# that for a wide class of partition problems,f (q)
can also be given in an infinite-product form,

f ~q![ (
n50

`

r ~n!qn5 )
n50

`

~12qn!2an, ~5!

where eachan is a non-negative real number. For the typ
case, we havean51 for n odd, andan50 otherwise.

The asymptotics of the generating function of the form~5!
is calculated by the saddle point method;r (n) for n@1 is
then given by Meinardus’s theorem~cited in Ref.@11#, page
89!,

r ~n!5Ank exp~Bna/(11a)!1~ less dominant terms!,
~6!

wherea is the real part of the pole of the Dirichlet series

D~s![ (
n51

`
an

ns
, ~7!

andk is given by

k5
D~0!212a/2

11a
. ~8!

Explicit forms of A and B which we have omitted in the
above are also given by Meinardus’s theorem. For the ty
models, we havea51 andk523/4,

p~n!5const3n23/4exp~BAn!, ~9!
-

es

-

n

I

I

whereB5p/A3 @11#. For the type II models, a related theo
rem ~Ref. @11#, pages 99 and 100, examples 10 and 11! as-
sures the same asymptotic form~9! with B5p/A6. It is also
possible to relate the type II models with Meinardus’s the
rem ~Chapters 1 and 6 in Ref.@11#!. We thus have derived
the exact asymptotic form ofp(n).

Using Eq.~4! and changing the summation into the int
gration, we finally obtain

m;n21/4exp~BAn!, ~10!

for the type I and II models. How well the DMRG calcula
tion for the S51/2 XXZ chain reproduces the asymptot
behavior~10! is demonstrated in Fig. 1. In the actual calc
lation, we have employed the quantum version of t
PWFRG@12–14#, by which we obtain the fixed-point wav
function of the DMRG efficiently.

We give a comment on the universality of the asympto
form ~10! among the integrable systems. In the case wh
$an% forms a periodic series or the model itself admits
direct partition-theoretic interpretation@15,16#, the exp(BAn)
behavior is universal~Ref. @11#, Chapter 6, examples 1–16!.
The exponentk may, however, have possibility of mode
dependence@due toD(0)], modifying the prefactorn21/4 in
Eq. ~10!.

Let us now proceed to nonintegrable cases, where
exact diagonal form of theMCTM or theMDM is not known.
TheMDM eigenvalue is no longer given byzintegerwith single
parameterz, or equivalently, ln(MDM eigenvalue! does not
have equal-spacing distribution. Both the integern character-
izing the MDM eigenvalue, and the quantityp(n), which is
essential in the integrable cases lose meaning. Our first
is, then, to translate the result of integrable cases into the
which has meaning also for non-integrable cases.

Writing the mth MDM eigenvalue~including degeneracy!
asvm , we haven5 ln vm/ln z in the integrable case. Subst
tuting n5 ln vm/ln z into Eq. ~10!, we have

m;S ln vm

ln z D 21/4

expS BAln vm

ln z D , ~11!

FIG. 1. PWFRG calculation of density-matrix eigenvalues$vm%
for S51/2 antiferromagneticXXZ chain and comparison with the
exact spectrum. We take the exchange coupling constants t
uJxu5uJyu51 anduJzu5D5cosh(1). The number of retained bas
in the PWFRG calculation ism5207.
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or equivalently,

lnFmS ln vm

ln z D 1/4G5BAln vm

ln z
. ~12!

From Eq.~12!, we obtain the leading asymptotic form

vm;exp@2const3~ ln m!2#, ~13!

where const5u ln zu/B2 for the integrable cases. Clearly, e
pressions~11!–~13! do not contain the parametern, which is
specific to the integrable models.

There arises an intriguing conjecture: the asympto
forms ~11!–~13! would also apply to nonintegrable system
with B and z being suitably redefined. In the ‘‘neighbo
hood’’ of an integrable model with small nonintegrable pe
turbations added, we may well expect this conjecture to
true: In spite of the nonintegrable perturbations, the ‘‘sta
way structure’’~or degeneracy! in theMDM eigenvalue spec
trum still remains in a somewhat smeared-out way, leav
the ‘‘envelope’’ of thevm-m curve essentially unchanged
As a check of the universality for the nearly integrable cas
we made the CTMRG calculations for two systems:
square-lattice Ising model at the critical temperature in fin
external field and the three-state Potts model slightly be
the critical temperature~see Figs. 2 and 3!. We see clear
agreements between the CTMRG calculations and the ‘‘u
versal asymptotic form.’’

As a test of the universality of~11!–~13! for systems far
from the integrability, we take theS51 antiferromagnetic
Heisenberg spin chain. For calculation of theMDM eigen-
value spectrum, we employ the quantum version of
PWFRG@12,13#. The results are given in Fig. 4, which su
port the universal asymptotic form.

We have made similar calculations for theS51 bilinear-
biquadratic spin chain atb520.5 with the HamiltonianH
5(SW i•SW i 111b((SW i•SW i 11)2, whose result~not shown in
this paper! also supports the universality of the asympto
form.

To summarize, we have discussed the asymptotic di
bution of the density-matrix (MDM) eigenvalues for noncriti-

FIG. 2. CTMRG calculation (m5200) of the density-matrix
eigenvalues$vm% for the square-lattice Ising model at a critic
temperatureTc in a small external fieldH. We have also drawn a
line corresponding to the universal asymptotic form.
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cal systems~one-dimensional quantum and two-dimension
classical!, which controls the accuracy of the density-matr
renormalization group. Based on the equivalence betw
the MDM and the corner transfer matrix (MCTM), we derived
the exact asymptotic form of theMDM eigenvalue distribu-
tion for a class of integrable models. The resulting expr
sion has been rewritten in a ‘‘universal’’ form that does n
contain quantities specific to integrable models. Numeric
renormalization-group calculations using the CTMRG a
the product-wave function RG have been performed for n
integrable models, which shows that the nonintegrable m
els actually have the same asymptotic form of t
MDM-eigenvalue distribution, in strong support of the unive
sality of the asymptotic form.

There remains many important problems left for futu
studies. A more ‘‘physical’’ explanation to justify the un
versal asymptotic form is desired. How universal the o
tained asymptotic form itself remains a question to be
swered; there may well be different ‘‘universal classes’’
theMDM . In fact, the valence-bond-solid~VBS! models@17#
have only finite-dimensionalMDMs , which sharply contrast
to the ones studied in this paper. The relation between

FIG. 3. CTMRG calculation (m5242) of the density-matrix
eigenvalues$vm% for the three-state Potts model slightly below th
critical temperature. We have also drawn a line corresponding
the universal asymptotic form.

FIG. 4. PWFRG calculation (m5700) of density-matrix eigen-
values$vm% for S51 antiferromagnetic Heisenberg chain. We ha
also drawn a line corresponding to the universal asymptotic for
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MDM-eigenvalue distribution and the finite-m ~where m is
the number of retained bases! behavior of physical~observ-
able! quantities is not known, although there have been a
works discussing the ‘‘finite-m scaling’’~2D classical@18#,
transverse-fieldXXZ chain @19#!. The behavior of theMDM
for critical system is also an important subject of stu
@20,21#. Our study made in the present paper may be a
step for clarification of these problems@22#.
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