RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999
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We study the asymptotic behavior of the eigenvalue distribution of the corner transfer matrgX and
the density matrix Mpy) in the density-matrix renormalization group. We utilize the relationstig,,
=M¢qu, Which holds for noncritical systems in the thermodynamic limit. We derive the exact and universal
asymptotic form of théM ), eigenvalue distribution for a class of integrable models in the massive regime. For
nonintegrable models, the universal asymptotic form is also verified by numerical renormalization group
calculations[S1063-651%99)50806-4

PACS numbss): 05.50+q, 05.20-y, 11.30—j, 75.10.Jm

The density matrix renormalization gro®MRG) in- log-derivative of the transfer matrix of the latter, and the
vented by Whitg 1] is one of the most important numerical ground-state wave function of the former is identical to the
methods developed recently. Due to the remarkable succegsaximal-eigenvalue eigenfunctioW 5, of the latter[9].
the method has now become one of the standard methods fbtence, we discuss only 2D classical cases below.
studying one-dimensionallD) quantum system$2] and As has been pointed out by Bax{&], the wave function
two-dimensional(2D) classical statistical system8]. In  (WF) W, is interpreted as a product of two CTMs, in the
spite of the success, little has been understood about tHBermodynamic limit. Since thi¥py is just a squarel;,,
foundation of the method. Studies clarifying the “origin” of (with ¥, being regarded as a “wave function matrjx”
efficiency of the method are important because they lead t§is interpretation leads to a relationship] between the
various (including higher-dimensiongH]) extension of the Mowm. the WF, and theMcry for 2D classical systeméat
method. One example is the work of RES], where a rela- I_egst the npncrmcal case, Wherg the boundary effect is neg-
tionship between the density matriMe,,) and Baxters l9ible), which is symbolically written as
corner transfer matrix Nl o) [7—9] is pointed out and a

— 2
new algorithm(CTMRG) is devised. Another example is the Wma= (M),
work of Ref.[10], where it is pointed out that the DMR@t _ 4 @
its thermodynamic limjtis a variational method using the Moum=(Mctm)"™.

matrix-product-ansatgMPA) wave function as a trial wave
function. This leads to a direct variational method that doe
not need theMp,, [10], and the product-wave-function RG
(PWFRG, which fully utilizes the MPA form of the DMRG-
fixed-point wave functiorj6].

The central object in the DMRG is thlp),, which is
made from the ground-state wave functigrespectively

maximal eigenvalue wave functipof quantum Hamiltonian to Eq. (1), diagonal form of theM oy, has the same infinite-

(respectively transfer matlijy_ tracing out mforma_tlon of tensor-product form with redefined parameter. For definite-
one half of the system. Keeping up to a cut-off-.elgenvalueness let us consider two caségpe | and type Il where the
eigenstate of thdip,,, we have a truncated basis set CON- v ~ct diagonal form of thel . is qiven b
sisting of a finite numbe¢conventionally denoted bgn) of g bm 1S G y
bases to describe the remaining half of the system.
Since the accuracy of the DMRG is determined by the (diag) é 10
cut-off eigenvalue, it is crucially important to investigate the p =
eigenvalue spectrurfw,,}, in particular, its asymptoticng
—o0) behavior, which has not been known precisely. In this
Rapid Communication, we present teact asymptotic form with ¢,=n for type | models(e.g., transverse-field Ising
of the Mpy eigenvalue distribution for a class @fioncriti- ~ chain, six-vertex model, eight-vertex mod¥lXZ chain and
cal) integrable models, and further, make the first systematiXY Z chain and c,=2n—1 for type Il models[e.g., the
study for nonintegrable systems employing the CTMRG andsquare-lattice Ising model in the conventiorfabt eight-
the PWFRG by which we can efficiently obtain the “fixed vertex representation[9]. The parameter (0<z<1) rep-
point” (thermodynamic limit of the systenof the DMRG. resents the “degree of noncriticality(i.e., z—1, on ap-
Let us first discuss the integrable cases. In these cases, Jiboaching the critical poift and how it relates to
guantum problems are equivalent to 2D classical statisticdlphysical” parameters depends on the model. Note that the
problems: the Hamiltonian of the former can be derived by aMpy (2) is unnormalized. It is “normalized” in such a way

gor integrable models, the diagonal form of tMety is
easily known, from which we can obtain, for example, the
exact one-point functioispontaneous magnetization, etc.
[9]. Due to the relationshigl), the diagonal form is also
useful to obtain the exact eigenvalue spectrum ofNhg, .

We discuss the simplest case where the diagonal form of
the M ¢y is given by a single infinite tensor prody&X; due

ol 2
n=1 0 z
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that its maximal eigenvalue, is unity; we should divide it 6F ; P
by Trp(d29) for conventionalOnormalization. XXZ chain rf
Due to the tensor-product structuf®), each eigenvalue 5t A=cosh1 it
of pl@9 has the formz", with n (=0) being an integer. — i I
Further, each eigenvali# may have degeneragyn). To T 4t i i
study the degeneracy structure of tHg,,, it is convenient E f
to consider Tpd?s, 2, i i
R i E :
Trpt®=I1 (1+2=23 p(n)z" ®  E?f : © PWFRG(m=207)
" " .1 . x exact

where the degeneragy(n) is precisely the coefficient of’ £ s s s s s s
in the infinite series. We should note that, taking the degen- 1 1.5 25 3 3.5 4
eracy into account, the number of retained baseim the In o, |2

DMRG should be

mzm(n)zg,0 p(k), (4)

which means that the cut-off eigenvalue (@hnormalized

Mpuw is 2" and that we should retain all the degenerate bas

belonging to this cut-off eigenvalue.
Our problem is to obtain the large-behavior of m

=m(n). For this purpose, we should know the asymptotic
behavior ofp(n). The partition theory of integers, which has
played an important role in studies of integrable interaction

round-a-face models, is helpful agdibl]. By r(n) we de-
note the number of partitions of a positive integeunder a
restriction “r.” Consider the generating functiof{q) asso-

ciated with the restricted partition problem. It has been

known[11] that for a wide class of partition problemi,q)
can also be given in an infinite-product form,

©

f(q)=>

n=0

r(n)q”=nljO (1—q") 2, (5)

FIG. 1. PWFRG calculation of density-matrix eigenvalfies,}
for S=1/2 antiferromagnetieXXZ chain and comparison with the
exact spectrum. We take the exchange coupling constants to be
|3x/=13,/=1 and|J,|=A=cosh(1). The number of retained bases
in the PWFRG calculation imm=207.

e\f/hereB:w/ﬁ [11]. For the type Il models, a related theo-

rem (Ref.[11], pages 99 and 100, examples 10 and d¢-
sures the same asymptotic fo8) with B= /6. Itis also
possible to relate the type Il models with Meinardus’s theo-
rem (Chapters 1 and 6 in Refl11]). We thus have derived

the exact asymptotic form gf(n).

Using Eqg.(4) and changing the summation into the inte-
gration, we finally obtain
m~n~Y*expBn), (10)
for the type | and Il models. How well the DMRG calcula-
tion for the S=1/2 XXZ chain reproduces the asymptotic
behavior(10) is demonstrated in Fig. 1. In the actual calcu-

lation, we have employed the quantum version of the
PWFRG[12-14, by which we obtain the fixed-point wave

where eacta, is a non-negative real number. For the type Ifynction of the DMRG efficiently.

case, we have,=1 for n odd, anda,=0 otherwise.

The asymptotics of the generating function of the f@Bn
is calculated by the saddle point methadn) for n>1 is
then given by Meinardus’s theorefuited in Ref.[11], page
89),

r(n)=An“expBn*(*%))+ (less dominant terms

(6)

where« is the real part of the pole of the Dirichlet series,

~ a
D(s)=2>, —, (7)
n=1n
and « is given by
~D(0)—1-al2
= 1+« ®

Explicit forms of A and B which we have omitted in the

above are also given by Meinardus’s theorem. For the type

models, we havexr=1 andx= —3/4,

p(n)=constxn~3expBy/n), (9)

We give a comment on the universality of the asymptotic
form (10) among the integrable systems. In the case where
{a,} forms a periodic series or the model itself admits a
direct partition-theoretic interpretatigt5,16|, the expBy/n)
behavior is universalRef.[11], Chapter 6, examples 1-116
The exponent may, however, have possibility of model-
dependencgdue toD(0)], modifying the prefacton™*#in
Eqg. (10).

Let us now proceed to nonintegrable cases, where the
exact diagonal form of thé -1y or the Mp,, is not known.
The M py eigenvalue is no longer given &% with single
parameterz, or equivalently, Inflpy eigenvalug does not
have equal-spacing distribution. Both the integeharacter-
izing the My, eigenvalue, and the quantity(n), which is
essential in the integrable cases lose meaning. Our first task
is, then, to translate the result of integrable cases into the one
which has meaning also for non-integrable cases.

Writing the mth M py, eigenvalug(including degeneragy
aswp,, we haven=In w,/In zin the integrable case. Substi-
futing n=In wy,/Inz into Eq. (10), we have

Inwy,| ¥ Inwq,
m~ exp B ,
Inz Inz

(12)
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FIG. 2. CTMRG calculation ii=200) of the density-matrix FIG. 3. CTMRG calculation fi=242) of the density-matrix
eigenvalues{w,,} for the square-lattice Ising model at a critical eigenvalue§w,} for the three-state Potts model slightly below the
temperatureT, in a small external fieldH. We have also drawn a critical temperature. We have also drawn a line corresponding to

line corresponding to the universal asymptotic form. the universal asymptotic form.
or equivalently, cal systemgone-dimensional quantum and two-dimensional
| 14 i classical, which controls the accuracy of the density-matrix
n m( ”“’m) i /P®m (1  renormalization group. Based on the equivalence between
Inz Inz the My, and the corner transfer matrisi(zry,), we derived
the exact asymptotic form of thilp,, eigenvalue distribu-
From Eq.(12), we obtain the leading asymptotic form tion for a class of integrable models. The resulting expres-
sion has been rewritten in a “universal” form that does not
wm~exg —consi (Inm)?], (13 contain quantities specific to integrable models. Numerical-

renormalization-group calculations using the CTMRG and
where const |InZ|/B? for the integrable cases. Clearly, ex- the product-wave function RG have been performed for non-
pressiong11)—(13) do not contain the parameteywhich is  integrable models, which shows that the nonintegrable mod-
specific to the integrable models. els actually have the same asymptotic form of the

There arises an intriguing conjecture: the asymptotiov ,,-eigenvalue distribution, in strong support of the univer-
forms (11)—(13) would also apply to nonintegrable systems sality of the asymptotic form.
with B and z being suitably redefined. In the “neighbor-  There remains many important problems left for future
hood” of an integrable model with small nonintegrable per-studies. A more “physical” explanation to justify the uni-
turbations added, we may well expect this conjecture to bgersal asymptotic form is desired. How universal the ob-
true: In spite of the nonintegrable perturbations, the “stair-tained asymptotic form itself remains a question to be an-
way structure”(or degeneragyin the My, eigenvalue spec- swered; there may well be different “universal classes” of
trum still remains in a somewhat smeared-out way, leavinghe Mp,,. In fact, the valence-bond-sol{BS) models[17]
the “envelope” of thew,-m curve essentially unchanged. have only finite-dimensiona\l pys, Which sharply contrast
As a check of the universality for the nearly integrable casesio the ones studied in this paper. The relation between the
we made the CTMRG calculations for two systems: the
square-lattice Ising model at the critical temperature in finite
external field and the three-state Potts model slightly below
the critical temperaturésee Figs. 2 and)3 We see clear
agreements between the CTMRG calculations and the *“uni-
versal asymptotic form.”

As a test of the universality afLl1)—(13) for systems far
from the integrability, we take th&=1 antiferromagnetic
Heisenberg spin chain. For calculation of thl,,, eigen-
value spectrum, we employ the quantum version of the
PWFRG[12,13. The results are given in Fig. 4, which sup-
port the universal asymptotic form.

We have made similar calculations for tBe-1 bilinear-
biguadratic spin chain g8= —0.5 with the Hamiltoniar{
=3S-S.;+B3(S-S.1)% whose result(not shown in
this paper also supports the universality of the asymptotic
form. FIG. 4. PWFRG calculationni=700) of density-matrix eigen-

To summarize, we have discussed the asymptotic distrivalues{w,,} for S=1 antiferromagnetic Heisenberg chain. We have
bution of the density-matrixNl py,) eigenvalues for noncriti-  also drawn a line corresponding to the universal asymptotic form.
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