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Spatial multistability and nonvariational effects
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We investigate the phenomenon of spatial multistability of fronts in thin bistable systems and stress the
important role played by the absence of a variational principle. Nonvariational effects allow, for instance, two
different immobilized fronts to coexist. The morphological instability of the corresponding nucleating solution
can then lead, even in the absence of any diffusive instability, to nontrivial patterns in the depth of one-side-fed
reactors.@S1063-651X~99!50406-6#

PACS number~s!: 82.40.2g, 05.70.Ln, 47.54.tr
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Multistability is a characteristic feature of many drive
nonlinear systems. In a continuous stirred tank reac
~CSTR!, autocatalytic reactions can, for instance, exhibit t
stable homogeneous steady states for a range of values o
flow rate~bistability!. On the other hand, the design of op
spatial gel reactors has triggered a renewal in the experim
tal study of sustained spatial and spatiotemporal pattern
nonlinear chemical systems@1#. In this context, the one-side
fed reactor~OSFR! has proved very useful since it allow
one to indefinitely maintain chemical waves@1,2# and Turing
structures@3,4# at a controlled distance from equilibrium.
consists of a thin film of gel, one side of which is in conta
with the content of a CSTR, while the opposite face
pressed against an impermeable solid surface. The pat
develop in the transverse direction parallel to the plates
they are observed in the longitudinal direction, orthogona
the film. If the gel is thin enough, the concentrations a
expected to be almost constant through its depth and
patterns can be considered to a good approximation as
dimensional. However, it has been pointed out recently
in the case of bistable systems, concentration profiles
develop along the longitudinal direction. These immobiliz
fronts, which can coexist with one of the trivial homog
neous steady states~spatial bistability!, must be taken into
account in the interpretation of the experiments performe
a OSFR@5#.

In this Rapid Communication, we investigate this ph
nomenon of spatial multistability on simple models
stressing the crucial role played by the nonvariational effe
For instance, the absence of a variational principle allo
two different immobilized fronts to exist for the same valu
of the constraints and boundary conditions~BC!. The physi-
cal meaning of these concepts can be clarified by conside
as an illustration the following two-variable reactio
diffusion model:

eut5 f ~u!2v1e2¹2u, ~1!

v t5gu2v2b1¹2v, ~2!

wheree andb are positive constants andg plays the role of
the bifurcation parameter. To be able to compare analyt
results with numerical simulations, we first set
PRE 591063-651X/99/59~6!/6223~4!/$15.00
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f ~u!52u1H~u2a!, b55a, ~3!

@H(x) is the Heaviside step function# recovering a variant of
the piecewise linear McKean model@6#. Such a model has
been used in the study of localized patterns consisting o
droplet of one state embedded in another state@7,8#.

For g l,g,gh @where g l54 and gh5(4a11)/a# the
system admits two stable homogeneous steady state
lower branchul55a/(g11); v l52ul and an upper branch
uh5(5a11)/(g11); vh5(g25a)/(g11) of solutions.
Concentration fronts connecting these two states can als
formed. Whene is small,u undergoes an abrupt change
this wave~‘‘propagator’’ species!, whereas the level ofv in
the front controls its speed and direction~‘‘controller’’ spe-
cies!. In unbounded variational systems, such fronts pro
gate without deformation in such a way as to increase
territory of the most stable~dominant! state and finally re-
store uniformity. Incompatible BC or nonvariational effec
can immobilize these fronts and give rise to asymme
steady solutions@9#. Such nonuniform stationary states al
play an important role, for instance, in the Couette flow
actor @10,11#, heterogeneous catalytic systems@9,12#, the
ballast resistor@13#, and resistive domains in superconduc
ors @14#. In a OSFR asymmetric BC occur naturally. Alon
the surface in contact with the CSTR (x50), the concentra-
tions take values corresponding to one of the homogene
steady states. Let us consider

u5uh , v5vh , at x50. ~4!

No flux BC are required on the other side,

]u

]x
5

]v
]x

50 at x5L. ~5!

In such a configuration, concentrations correspond
roughly to the other steady state~hereul , v l! can be attained
along the solid surface atx5L. Because we are mainly in
terested in the formation of concentration profiles inside
gel, we start by studying the one-dimensional version of
problem.
R6223 ©1999 The American Physical Society
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For the sake of comparison, we first consider the cas
the variational model that can be obtained by substituting
value v5gu2b in Eq. ~1!. The corresponding evolution
equation then takes the form

eut52~g11!u15a1H~u2a!1e2
]2u

]x2
~6!

52
dV

du
1e2

]2u

]x2
. ~7!

The solutionsul anduh correspond to minima of the poten
tial,

V5S g11

2 Du225au2E
0

u

du8H~u82a!. ~8!

The parameter valuegM5(8a11)/2a defines the Maxwell
point at whichV(ul)5V(uh). Wheng.gM , ul is the most
stable state anduh is metastable. This situation is revers
wheng,gM .

Besides the trivial solutionu5uh , with the BC defined
above, the system admits an inhomogeneous steady state
responding to an immobilized front. In a semi-infinite sy
tem, it separates the upper branch atx50 from the other
steady stateul at x5`. The immobility condition for this
kink then takes the form

e2

2 S ]u

]xU
0
D 2

5V~uh!2V~ul !. ~9!

Such a solution thus only exists when the state, fixed at
x50 boundary, is a metastable state@i.e., when V(uh)
.V(ul), g.gM#.

In finite systems, the concentration at the solid surfa
now attains in the profile a valueuL that is higher than that o
the lower branch. The positions of the front, which can be
deduced from the conditionu(s)5a, is given by

cosh@a~L22s!#

cosh@aL#
52a~g2gM !, ~10!

wherea25(g11)/e2.
This equation admits two solutions fors, the smallest

corresponding to a stable profile. Atg5gc.gM , these so-
lutions annihilate and only the trivial stateu5uh remains for
g,gc . gc is determined by substitutingsc5L/2 into Eq.
~12!.

A similar analysis can be applied to the complement
case where the concentration imposed atx50 is equal toul .
A boundary layer in the form of a hole near the origin th
occurs forg,gc8,gM . For each value ofg in the bistable
region, there is thus a minimum length below which
stable front exists~Fig. 1!.

These asymmetric steady states occur as the result
combination of bulk kinetics, favoring the most stable st
of the bistable and a fixed BC imposing the metastable st
The front between these two states transforms itself int
boundary layer on approaching the surface where the c
centration has been fixed. The same conclusions are vali
of
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any gradient system that can be described by an evolu
equation similar to Eq.~9!. In a range of values of the bifur
cation parameter excluding a region centered on the Maxw
point, finite variational systems thus exhibit a trivial case
spatial bistability between the homogeneous metasta
steady state and a boundary layer that develops when
state is fixed at one boundary.

The situation is very different in the case of nonvar
tional systems, such as the model described by Eqs.~1! and
~2!. The inhomogeneous steady solutions that can develo
the presence of the asymmetric BC defined above now
the form (i , j 51,2)

us~x!5 (
i , j Þ i

Ai j

sinh@a j~L2s!#

cosh@a jL#
sinh@a j x#1uh , x,s,

~11!

52 (
i , j Þ i

Ai j

cosh@a js#

cosh@a jL#
cosh@a j~L2x!#1ul ,

x.s, ~12!

and

vs~x!5S e2
d2

dx2
21D us~x!1H~s2x!. ~13!

The a are the zeros of the polynomial

e2a42a2~e211!1~g11!50. ~14!

With the parameter values considered in our simulations,
~14! admits two positive and two negative roots (6a1 ;
6a2). The coefficientsAi j are determined by the BC and th
matchings ofus(x), vs(x) and their derivatives atx5s. We
get

FIG. 1. Width s of the boundary layer vsg in the variational
case@Eq. ~8!#. a50.2, e50.05, and system length:L50.064 ~all
constants are in arbitrary units!. The solutions appearing in th
range 4,g,gc8 correspond to the BC:u5ul at x50; those occur-
ring for gc,g,gh develop whenu5uh at x50. Solid and dashed
lines denote stable and unstable solutions, respectively.
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Ai j 5
11e2a i

2@ul2uh#

e2~a i
22a j

2!
. ~15!

The position of the immobilized fronts is determined by t
conditionu(s)5a. Using Eq.~13! or Eq. ~14!, this relation
yields a transcendental equation fors. It admits a stable
solution corresponding to a narrow boundary layer (s1'e)
in the entire region of bistability (g l,g,gh). Moreover,
two new solutions (s2,s3) appear atg5gN . The larger
value s3 gives the position of a stable immobilized kin
~Fig. 2!. For g,gN , this system therefore exhibits spati
tristability between two immobilized fronts and the homog
neous steady state (uh). The unstable profile (s2) provides
the nucleating solution for the transition between the t
immobilized fronts. Numerical integrations of Eqs.~1! and
~2! with Eq. ~3! produce profiles that coincide with the an
lytical expressions given above. Note that the large bound
layer (s3) appears in the rangeg,gM , where the stateuh is
dominant@V(uh),V(ul)#. In the corresponding variationa
model, the BC defined by Eqs.~6! and ~7! only lead in this
range to transient propagating fronts that finally generate
uniform stateuh . Here such a front can be immobilized at
position where the controller speciesv attains a value corre
sponding to the Maxwell condition~i.e., vM5 1

2 2a'0.3).
This multiplicity of inhomogeneous solutions presents stro
similarities to the nonequilibrium Ising-Bloch transitio
@15,16#, which gives rise in unbounded nonvariational sy
tems to the occurrence of two different fronts propagating
opposite directions for the same values of the constraint

The interplay between these steady asymmetric solut
can generate nontrivial spatial patterns in two-dimensio

FIG. 2. Positions of the immobilized fronts in the nonvaria
tional case@Eqs. ~1!–~3!#; a50.2, e50.05, and system lengthL
51.28 ~all constants in arbitrary units!, when u(0)5uh . In the
inset, the variation of the narrow boundary layers1 is represented
by g. In the region of multistability (g l54,g,gN) the larger
value s3 gives the position of the stable immobilized kink. Th
nucleating solution for the transition between these stable fron
denoted by dashed line (s2).
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systems that correspond to a longitudinal section of the
The planar nucleating solution (s2) is also unstable with
respect to transverse modulations along they direction @17#.
In the perturbed front, the curvature induces an accumula
of the highly diffusive controller species in the concave
gions @B in Fig. 3~a!#, and a depletion in the convex seg
ments@A in Fig. 3~a!#. On the other hand, the position of th
front is determined by the local valuev f of the controller
species in the transition region. The width of the activa
domain (u.a) decreases whenv f increases. As a result th
concave regions recede and fall onto the narrow bound
layer (s1), while the convex segments advance towardss3.
As shown in Fig. 3 the initial modulation is then amplifie
Finally this morphological instability gives rise to a period
row of spots adjacent to a narrow switching front betwe
the upper and lower branch. Note, however, that our mo
exhibits no Turing instability on the stable branchesul and
uh.

The properties we have discussed are not specific to
piecewise linear character of the model. Indeed we have
tained similar results by integrating Eqs.~1! and~2! with the
cubic nonlinearity

f ~u!5u~u2a!~12u!. ~16!

In conclusion, we have shown that the synergy betwe
spatial multistability of fronts and the morphological inst
bility of the corresponding nucleating solution can lead
nontrivial patterns in the depth of a OSFR, even in the
sence of diffusive instabilities, as was also the case in exp
ments with the ferrocyanide-iodate-sulfite system@18#.

We thank J. Boissonade, P. De Kepper, and S. Me´tens for
stimulating discussions. P.B. and G.D. received support fr
the FNRS~Belgium! and M.B. received support from th
‘‘Direction de l’Enseignement Supe´rieur’’ ~Morocco! and
the ‘‘Fondation Universitaire D. and A. Van Buuren’’~Bel-
gium!.

is

FIG. 3. Development of the morphological instability of th
nucleating solution obtained by a two-dimensional numerical in
gration of the piecewise nonvariational model.a50.2, e50.05, g
54.01, and system lengthsLx51.28 andLy52.56~all constants in
arbitrary units!. ~a! Initial transverse perturbation of the nucleatin
solution.~b! Convex segments advance while concave ones rec
~c! Final asymptotic periodic pattern.
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