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Spatial multistability and nonvariational effects
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We investigate the phenomenon of spatial multistability of fronts in thin bistable systems and stress the
important role played by the absence of a variational principle. Nonvariational effects allow, for instance, two
different immobilized fronts to coexist. The morphological instability of the corresponding nucleating solution
can then lead, even in the absence of any diffusive instability, to nontrivial patterns in the depth of one-side-fed
reactors[S1063-651X99)50406-4

PACS numbdss): 82.40—~g, 05.70.Ln, 47.54.tr

Multistability is a characteristic feature of many driven f(uy=—u+H(u—a), b=5a, (3)
nonlinear systems. In a continuous stirred tank reactor
e o A e 101 i he Heaviice st unctiescovering  variant of
flow rate(bis?abilit) On theyother hand the%esi n of open e piecewise linear McKean modg]. Such a model has

Y. ' 9 PEN heen used in the study of localized patterns consisting of a

spatial gel reactors has triggered a renewal in the expenme_n-roplet of one state embedded in another stas8].

tal study of sustained spatial and spatiotemporal patterns in _ _
nonlinear chemical systenig]. In this context, the one-side- For % <y<yy [where =4 and y,=(4a+1)/a] the _
X . system admits two stable homogeneous steady states: a
fed reactor(OSFR has proved very useful since it allows lower branchu,=5a/(y+1): v;=—u; and an upper branch
. . . . . . . | - y I —_ |
one to indefinitely maintain chemical wavigls2] and Turing U= (5a+1)/(y+1); vp—(y—-5a)/(y+1) of solutions.

structureg3,4] at a controlled distance from equilibrium. It Concentration fronts connecting these two states can also be
consists of a thin film of gel, one side of which is in contact ) 9 .
formed. Whene is small,u undergoes an abrupt change in

with the content of a CSTR, while the opposite face is,, . - tor” iek wh the level of i
pressed against an impermeable solid surface. The patter S wave( propagator- species wnereas the eve” n
e front controls its speed and directi@ftontroller” spe-

develop in the transverse direction parallel to the plates an 3. | bounded - tional . h front
they are observed in the longitudinal direction, orthogonal tg-'€9- In unbounded variational systems, such 1ronts propa-
ate without deformation in such a way as to increase the

the film. If the gel is thin enough, the concentrations areJats . X
expected to be almost constant through its depth and thigmory of the most stabledominan) state and finally re-

patterns can be considered to a good approximation as twg_tore_ uniforr’rjity. Incompatible BC or nonyariational effectg
dimensional. However, it has been pointed out recently thaf@n |mmob|I_|ze these fronts ar_ld give rise to asymmetric
in the case of bistable systems, concentration profiles ca teady s_olut|0n$9]. Such nc_)nunlform_statlonary states also
develop along the longitudinal direction. These immobilizedplety a[rl(;rri%ortﬁntt role, for mstantc?,t!n the f%&e&? ﬂt(r)\W re-
fronts, which can coexist with one of the trivial homoge- actor [ 19,14, netérogéneous catalylic syste , the

neous steady statdspatial bistability, must be taken into ballast resistof13], and resistive domains in superconduct-

- ; : - .ors[14]. In a OSFR asymmetric BC occur naturally. Along
ZCS%anFE[IQ]_the interpretation of the experiments performed Ir'?he surface in contact with the CSTR=0), the concentra-

In this Rapid Communication, we investigate this phe_'uons take values corresponding to one of the homogeneous

nomenon of spatial multistability on simple models by steady states. Let us consider
stressing the crucial role played by the nonvariational effects.
For instance, the absence of a variational principle allows U=u,, v=uvp, at x=0. (4)
two different immobilized fronts to exist for the same values
of the constraints and boundary conditidC). The physi-  No flux BC are required on the other side,
cal meaning of these concepts can be clarified by considering
as an illustration the following two-variable reaction-
diffusion model: M_v_ 0 at x=L (5)
IX  IX '
eu,=f(u)—v+e?V2u, (1)
In such a configuration, concentrations corresponding
vi=yu—v—b+V?, (2)  roughly to the other steady stateereu, , v;) can be attained
along the solid surface at=L. Because we are mainly in-
wheree andb are positive constants andplays the role of terested in the formation of concentration profiles inside the
the bifurcation parameter. To be able to compare analyticagel, we start by studying the one-dimensional version of our
results with numerical simulations, we first set problem.
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For the sake of comparison, we first consider the case of

the variational model that can be obtained by substituting the

value v=yu—b in Eq. (1). The corresponding evolution
equation then takes the form

2

J°u
eutz—(y+1)u+5a+H(u—a)+62; (6)
X
B 5V+ ,0%U .
T e "

The solutionsu; andu,, correspond to minima of the poten-

tial,
vz(

The parameter valugy,=(8a+1)/2a defines the Maxwell
point at whichV(u;)=V(uy). Wheny>yy, u, is the most
stable state and,, is metastable. This situation is reversed
wheny<yy .

Besides the trivial solutiom=u,, with the BC defined

y+1

> ) 2—5au—f:du’H(u’—a). (8)

PRE 59
0.064 e o
\\\ -
S~ g
~ vd
~\, /7
N /
\, /

\ /

A

\ g

Vo

1

© 0032}

1

L

I

Iy

[

[

[

I

" . | | N "
0.000
4.0 5.0 60 , 70 8.0 9.0

Yo % Y

FIG. 1. Width o of the boundary layer vy in the variational
case[Eq. (8)]. a=0.2, €e=0.05, and system length:=0.064 (all
constants are in arbitrary unjitsThe solutions appearing in the
range 4 y<1y, correspond to the BQi=u, atx=0; those occur-
ring for y.<y<1y;, develop wheru=u, atx=0. Solid and dashed
lines denote stable and unstable solutions, respectively.

above, the system admits an inhomogeneous steady state cor-

responding to an immobilized front. In a semi-infinite sys-
tem, it separates the upper branchxatO from the other
steady stata); at x=o0. The immobility condition for this
kink then takes the form

|

Such a solution thus only exists when the state, fixed at th
x=0 boundary, is a metastable stdtee., when V(u;)

>V(W), y>ywml

62

2

Ju

oX

2
) =V(up)—V(u)). 9
0

In finite systems, the concentration at the solid surface

now attains in the profile a valug that is higher than that of
the lower branch. The positiom of the front, which can be
deduced from the condition(o)=a, is given by

cosha(L—20)] _, 10

COSI‘[aL] - a(y 7M)1 ( )
wherea?=(y+1)/€.

This equation admits two solutions far, the smallest
corresponding to a stable profile. At=y.> v\, these so-
lutions annihilate and only the trivial state= uy, remains for
v<%Y.. Y. is determined by substituting.=L/2 into Eq.
(12).

A similar analysis can be applied to the complementary

case where the concentration imposed-a0 is equal tay, .
A boundary layer in the form of a hole near the origin then
occurs fory<y/<vyy. For each value ofy in the bistable
region, there is thus a minimum length below which no
stable front existgFig. 1).

These asymmetric steady states occur as the result of

any gradient system that can be described by an evolution
equation similar to Eq(9). In a range of values of the bifur-
cation parameter excluding a region centered on the Maxwell
point, finite variational systems thus exhibit a trivial case of
spatial bistability between the homogeneous metastable
steady state and a boundary layer that develops when this
state is fixed at one boundary.

The situation is very different in the case of nonvaria-
tional systems, such as the model described by Bgsand

). The inhomogeneous steady solutions that can develop in
the presence of the asymmetric BC defined above now take
the form (,j=1,2)

sinfaj(L—0)] .
US(X):i,jzsﬁi A”Wsmf[ajx]Jruh, x<a,
(11
B cosh ;o]
= —i;i Aij mcosf[aj(L—x)]—i-m ,
x>o, (12
and
2
vs(x)=( 52—2—1) us(X) +H(o—x). (13
The a are the zeros of the polynomial
e2a*—a?(e’+1)+(y+1)=0. (14)

a

combination of bulk kinetics, favoring the most stable stateWith the parameter values considered in our simulations, Eq.
of the bistable and a fixed BC imposing the metastable staté14) admits two positive and two negative rootst §;;

The front between these two states transforms itself into a a5). The coefficients\;; are determined by the BC and the
boundary layer on approaching the surface where the cormatchings ofus(x), vs(x) and their derivatives at=o. We
centration has been fixed. The same conclusions are valid fget
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0.00 - ‘ FIG. 3. Development of the morphological instability of the
3.0 4.0

: 5.0 ¥ 6.0 7.0 8.0 v 9.0 nucleating solution obtained by a two-dimensional numerical inte-
L N gration of the piecewise nonvariational modet 0.2, e=0.05, y
=4.01, and system lengthx=1.28 and_y=2.56(all constants in
arbitrary unit$. (a) Initial transverse perturbation of the nucleating
solution.(b) Convex segments advance while concave ones recede.
(c) Final asymptotic periodic pattern.

FIG. 2. Positiono of the immobilized fronts in the nonvaria-
tional case[Egs. (1)—(3)]; a=0.2, e=0.05, and system length
=1.28 (all constants in arbitrary unitswhenu(0)=u,. In the
inset, the variation of the narrow boundary layer is represented

by . In the region of multistability §,=4<y<yy) the larger  systems that correspond to a longitudinal section of the gel.
value a3 gives the position of the stable immobilized kink. The The planar nucleating solutionsg) is also unstable with
nucleating solution for the transition between these stable fronts i?espect to transverse modulations alongytheirection[17].

denoted by dashed linerf). In the perturbed front, the curvature induces an accumulation
of the highly diffusive controller species in the concave re-
1+ €2a?[u—up] gions[B in Fig. 3@], and a depletion in the convex seg-
Ai=—F S5 (15  mentgA in Fig. 3@]. On the other hand, the position of this
e“(ai —aj) front is determined by the local valug of the controller

- . . . , species in the transition region. The width of the activated
The position of the immobilized fronts is determined by the 4. (>a) decreases wheny increases. As a result the
conditionu(o) =a. Using Eq.(13) or Eq. (14), this relation  .,cave regions recede and fall onto the narrow boundary
yields a transcendental equation for It admits a stable layer (o), while the convex segments advance towargs
solution corresponding to a narrow boundary layei€e)  Ag shown in Fig. 3 the initial modulation is then amplified.
in the entire region of bistability % <y<yn). Moreover,  gina|ly this morphological instability gives rise to a periodic
two new solutions ¢,<<o3) appear aty=yy. The larger o of spots adjacent to a narrow switching front between
value o3 gives the position of a stable immobilized kink e ypper and lower branch. Note, however, that our model

(Fig. 2). For y<yy, this system therefore exhibits spatial gyhibits no Turing instability on the stable branchgsand
tristability between two immobilized fronts and the homoge-,

. . h-
neous steady statal(). The unstable profiled,) provides The properties we have discussed are not specific to the

the nucleating solution for the transition between the tWoyiecewise linear character of the model. Indeed we have ob-

immobilized fronts. Numerical integrations of Eq4) and  (ained similar results by integrating Eq4) and(2) with the
(2) with Eq. (3) produce profiles that coincide with the ana- . pic nonlinearity

lytical expressions given above. Note that the large boundary

layer (0/3) appears in the range< yy, , where the stata, is f(uy=u(u—a)(1-u). (16)
dominant[V(u,)<V(u;)]. In the corresponding variational
model, the BC defined by Eq&) and(7) only lead in this
range to transient propagating fronts that finally generate th
uniform stateu,,. Here such a front can be immobilized at a

In conclusion, we have shown that the synergy between
patial multistability of fronts and the morphological insta-
ility of the corresponding nucleating solution can lead to

o . . nontrivial patterns in the depth of a OSFR, even in the ab-
position where the controller speciesattains a value corre- e L . .
sence of diffusive instabilities, as was also the case in experi-

sponding to the Maxwell conditiofi.e., vy, =3—a~0.3). . . el
This multiplicity of inhomogeneous solutions presents strongrnentS with the ferrocyanide-iodate-sulfite systexd].

similarities to the nonequilibrium Ising-Bloch transition  We thank J. Boissonade, P. De Kepper, and Steltefor

[15,16], which gives rise in unbounded nonvariational sys-stimulating discussions. P.B. and G.D. received support from

tems to the occurrence of two different fronts propagating inhe FNRS(Belgium and M.B. received support from the

opposite directions for the same values of the constraints. “Direction de I'Enseignement Supeur” (Morocco and
The interplay between these steady asymmetric solutionthe “Fondation Universitaire D. and A. Van Buurern(Bel-

can generate nontrivial spatial patterns in two-dimensionadjium).
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