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Efficiency of Brownian heat engines
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We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify
and compare the three basic setups characterized by the type of the connection between the Brownian particle
and the two heat reservoirs:~i! simultaneous,~ii ! alternating in time, and~iii ! position dependent. We make a
clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the
former is always irreversible and it is only the third setup where the latter is reversible when the engine works
quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced
arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower
than that of a Carnot cycle.@S1063-651X~99!50106-2#

PACS number~s!: 05.40.2a, 02.50.Ey, 05.60.2k, 05.70.Ln
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Brownian ratchets are spatially asymmetric but perio
structures in which transport of Brownian particles is
duced by some nonequilibrium process@1,2#, such as exter-
nal modulation of the underlying potential or a nonequil
rium chemical reaction coupled to a change of the poten
or contact with reservoirs at different temperatures. The m
intensively studied quantity has been the velocity of
transported particle. However, another important quantit
theefficiencyof the energy conversion characterizing the o
eration of the system when the transported particle d
work ~e.g., advances against an external force!. The system
parameters at maximum efficiency can be significantly d
ferent from those at maximum velocity. The efficiency
some externally and chemically driven ratchet systems
been studied in Refs.@2–6#. Here we investigate the effi
ciency of thermally driven Brownian ratchets orBrownian
heat engines. Two major issues are~i! what the possible
sources of irreversibility, and~ii ! whether the irreversibility
can be suppressed such that the efficiency approaches th
a Carnot cycle.

There are three basic setups for one-dimensional Bro
ian heat engines, which differ only in the type of the conn
tion between the Brownian particle and two reservoirs
temperaturesTA and TB . In the first, exemplified by Feyn
man’s ‘‘ratchet and pawl’’ engine@7#, the particle is in con-
PRE 591063-651X/99/59~6!/6219~4!/$15.00
c

l,
st
e
is
-
s

-

as

t of

n-
-
t

tact with the two reservoirssimultaneously. Feynman esti-
mated the efficiency to approach that of a Carnot cyc
However, detailed analysis by Parrondo and Espan˜ol @8#, and
by Sekimoto@9# revealed that Feynman’s estimation co
tained some inconsistencies: the engine can never work
reversible way, and therefore, can never approach the Ca
efficiency. This is because a particle in contact simul
neously with two reservoirs at different temperatures can
be in thermal equilibrium. The warmer reservoir continua
tends to increase the particle’s~kinetic and potential! energy
while the colder reservoir tends to decrease it. In ot
words, the energy of each ‘‘thermal kick’’ coming from e
ther reservoir is finally dissipated in both reservoirs. Th
continuous and irreversible heat flow from the warmer r
ervoir to the colder one is proportional to the inverse of t
mass of the particle (1/m) @8# and goes to infinity in the
overdamped limit (m→0). It is important to note that if the
system is extended to two spatial dimensions, such tha
ther coordinate is in contact with only one of the reservo
and the coordinates are coupled elastically, the coupling c
stant also controls the heat flow, which remains finite even
the overdamped limit@8,9#.

In a second setup@10,11# the temperature is homogeneo
in space, but alternates in time betweenTA andTB , i.e., the
R6219 ©1999 The American Physical Society
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particle is in contact with the two reservoirsalternately. The
efficiency of such engines was studied in Ref.@11# via a
discrete three-state model with thermally activated tran
tions ~a two-state model would have been enough@12#!. The
analysis focused on the potential energy of the particle,
revealed that there is an irreversible heat flow from
warmer reservoir to the colder one, which prevents the e
ciency from approaching that of a Carnot cycle. Indeed, c
tact with the warmer reservoir raises the average poten
energy of the particle, and then contact with the colder r
ervoir lowers it, dissipating the excess energy to the col
reservoir. The irreversible nature of this heat flow is the m
conspicuous when the engine works quasistatically~ap-
proaching zero velocity! and, therefore, the useful work ap
proaches zero. Further, the kinetic energy~not considered in
the discrete model of Ref.@11#! also results in an irreversibl
heat flow ofkBDT/2 per cycle. Consequently, this type
heat engine is also inherently irreversible because, simila
the first setup, there is an irreversible heat flow between
two reservoirs via both the kinetic and the potential ene
of the particle.

In this paper we give a detailed analysis of a third set

FIG. 1. ~a! A ratchet potential with two wells at different tem
peratures (TA andTB) in each period~of lengthL), superimposed
on a linear potential~with steepnessDE/L). The kinetic rate con-
stants over the barriers areki ( i 51, . . . ,4).t1 andt2 are the trans-
mission coefficients~see the text!. ~b! The potential after applying
the transformation~2! with k5TA /TB for the segments at tempera
ture TB . ~c! The potential can be mapped to a two-state kine
model.
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the Büttiker-Landauer model@13#, where the temperature
distribution along the ratchet potential is constant in tim
but inhomogeneous in space, i.e., the particle is in con
with different reservoirs at differentpositions. We show that
in such systems the heat transfer via the potential energ
the particle is reversible when the engine works quasist
cally and, in some cases, the irreversible heat flow via
kinetic energy can be small enough that the efficiency
proaches that of a Carnot cycle.

Consider the motion of a Brownian particle with massm
and viscous drag coefficientg in a potentialU(x). The po-
tential @such as the one in Fig. 1~a!# consists of a periodic
ratchet potential~that is flat on average! with periodL, plus a
linear potential, which rises byDE(.0) on each period. The
linear part corresponds to the external homogeneous fo
2DE/L against which the particle advances and does ‘‘u
ful work.’’ The temperatureT(x) along the potential with
valuesTA andTB ~where 0,DT5TA2TB) is also periodic
with periodL. Note that Fig. 1~a! shows a specific exampl
but, in general, the periodic ratchet potential can have
arbitrary shape with an arbitrary number of transitions b
tweenTA andTB . Let us denote the sum of the net potent
changes on those segments of a period whereT(x)5TA by
EA and, similarly, that forT(x)5TB by 2EB ~thus DE
5EA2EB).

For simplicity, we absorb the Boltzmann coefficient in th
temperature and measure the temperature in the units o
ergy. Then the motion of the particle is described by t
Langevin equation

mẍ~ t !52g ẋ~ t !2U8~x!1A2gT~x!j~ t !, ~1!

where x denotes the position of the particle andj(t) is a
Gaussian white noise with the autocorrelation functi
^j(t)j(t8)&5d(t2t8). Since the Langevin equation is in
variant under the transformation

$T,U,x%→$kT,kU,Akx%, ~2!

one can easily get rid of the space dependence of the
perature by applying this transformation withk5TA /TB
only to those segments whereT(x)5TB , as illustrated in
Fig. 1~b!. Thus, EB transforms toEB* 5EBTA /TB , and the
potential change on each period of the transformed poten
becomesEA2EB* . Since this transformation results in a su
den change of the velocity at the borders of the segment
is valid only for strongly damped systems, i.e., where
thermal length scale@14# ~the maximal value ofAmT(x)/g),
on which the particle’s velocity is thermalized, is muc
shorter than any other length scale of the system@such as the
length of the segments or the minimal value
AT(x)/U9(x)#. This condition also means that the particle
kinetic energy can be considered to be adapted to the l
temperature at every instant. In the following we confi
ourselves to such strongly damped systems. Thus, the co
tion to get a positive net particle currentJ and, therefore,
positive power output,

JW5JDE, ~3!

can be determined trivially; the transformed potential m
be descending (EA2EB* ,0), i.e.,

c
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0,a5
EB

TB
2

EA

TA
5

DT EA2TA DE

TA TB
. ~4!

Note that the above transformation can be applied
strongly damped systems even with continuously chang
temperature,T(x). In this case, if the transformed temper
ture is chosen to be unity, the potential drop of the tra
formed system over one period isa52*0

L@U8(x)/T(x)#dx.
This allows us to directly compare thermally and chemica
driven motors because, for the latter, similar transformat
to an effective tilted potential is also possible@15#.

To calculate the efficiencyh of the heat engine we als
have to determine the input power, which is equivalent to
heat flowJQ out of the warmer reservoir. This can be divide
into two terms:

JQ5JQ
kin1JQ

pot, ~5!

whereJQ
pot5JEA is the heat flow via the potential energy

the particle, because each time the particle advances on
riod to the right it gainsEA potential energy from the warme
reservoir, and when the particle happens to go back one
riod it releasesEA from its potential energy to the warme
reservoir. The heat flowJQ

kin via the kinetic energy of the
particle is much more complicated to determine. Whene
the particle enters a segment at temperatureTA it picks up
DT/2 energy on average from the warmer reservoir to ra
its average kinetic energy fromTB/2 to TA/2, but when it
leaves this excessDT/2 kinetic energy is always released
the colder reservoir and never to the warmer reservoir o
the particle’s potential energy, indicating the inherently ir
versible nature of this heat flow. The number of times
particle crosses the borders betweenTA andTB depends on
the system parameters very sensitively~see below!. Thus, the
efficiency can be written as

h5
JW

JQ
5

1

11Q
hpot, ~6!

where

Q5
JQ

kin

JQ
pot

, and hpot5
JW

JQ
pot

5
DE

EA
~7!

is the efficiency ifJQ
kin is omitted. Comparinghpot to the

Carnot efficiencyhCarnot5DT/TA , we get

hpot

hCarnot
5

TADE

DTEA
512

TATB

DTEA
a, ~8!

where we substitutedTADE by DTEA1TATBa, in accor-
dance with Eq.~4!. This is one of the main results of th
paper, clearly showing that when the engine works qua
tatically (a→0 or EA→`), the heat transfer via the poten
tial energy of the particle isreversible, becausehpot ap-
proaches the Carnot efficiency, independently of all ot
properties of the system. Notice the difference between
two static limit. In theEA→` limit the particle is essentially
unable to move, because it cannot overcome the infini
high energy barriers, while in thea→0 limit the particle can
move, but with a zero average velocity, because the tra
formed potential is flat on average.
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Now let us examine howJQ
kin affects the engine’s effi-

ciency. It is clear from Eq.~6! that, via the parameterQ, this
heat flow always decreases the efficiency, indicating again
inherently irreversible nature.

First we give an estimation for the magnitude of this he
flow. The ~unidirectional! particle flow from a segment a
temperatureTB to the neighboring segment atTA is propor-
tional to the particle’s probability density at the border a
also to the average velocity of the particle in the desi
direction. The average velocity, supposing equilibriu
~Maxwell! velocity distribution, isA2TB /(pm). Thus,JQ

kin

and Q are proportional to 1/Am and, for smallm, the effi-
ciency is proportional toAm. In the overdamped limit (m
→0) the heat flow goes to infinity and the efficiency goes
zero. However, asm increases from zero the efficiency rise
very quickly, with an initially infinite derivative. The abov
arguments are independent of the details of the system~and
hold even for continuously changing temperature!.

To minimize the heat flow via the kinetic energy of th
particle let us consider the specific example depicted in F
1~a!, where the irreversible heat exchange occurs at the m
rarely visited parts of the potential – the top of the barrie
Another reason for choosing this system is that it can
readily mapped to a two-state kinetic model@12# as shown in
Fig. 1~c!.

Then, the stationary probabilities that the particle can
found in the wells at temperaturesTA andTB are

PA5
k31k4

(
i 51

4

ki

and PB5
k11k2

(
i 51

4

ki

, ~9!

respectively (PA1PB51). This two-state kinetic description
is valid if the relaxation time of the probability density i
each well is much shorter than any inverse rate constantki

21 .
The net particle current in its most symmetric form is

J5
PA~k22k1!1PB~k42k3!

2
. ~10!

A certain fraction ofJQ
kin , which comes from the jumping

events from the potential wells at temperatureTB to the
neighboring wells atTA by omitting the recrossing of the to
of the barriers,

JQ,min
kin 5

1

2
DTPB~k31k4!5

1

2
DTPAPB(

i 51

4

ki , ~11!

is always and inevitably present in the system, yielding
minimum value for the parameterQ:

Qmin5
JQ,min

kin

JQ
pot

5
DT

EA
S k22k1

k21k1
1

k42k3

k41k3
D 21

. ~12!

The question is how to construct a system to avoid ad
tional irreversible heat flow due to recrossing events. H
we show one simple possibility by introducing some gati
mechanism at the top of the barriers.

Usually after a particle crosses the top of a barrierj
51,2 indexes the barriers! it spends some time (t j

dwell

'g/uU j9u) near the top, recrossing many times before
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reaches the basin of attraction of one of the wells. The nu
ber of recrosses is proportional to 1/Am in a strongly damped
system. However, after crossing the top of a barrier there
characteristic time (t j

char5m/g) necessary for the particle t
lose its velocity and return to the top. Thus, by introducin
gating mechanism at the top of the barriers, such that
gates are never open for a longer time thant j

char, and are
always closed for a longer time thant j

dwell , the recrossing can
be almost completely excluded,JQ,min

kin can be well ap-
proached, and, also, the system can be well describe
terms of the two-state kinetic model of Fig. 1~c!. ~Note that
in two-dimensional systems the gating mechanism can
replaced by applying narrow windows at the tops of the b
riers.!

Equation~12! contains only the ratios of the kinetic ra
constants, which can easily be expressed as

k2

k1
5

t2

t1
expS 2

EA

TA
D and

k4

k3
5

t1

t2
expS EB

TB
D , ~13!

where t j5t j
open/(t j

open1t j
closed) are the transmission coeffi

cients, andt j
open and t j

closed are the characteristic times fo
keeping the gates open and closed, respectively. Note
analogous to the chemically driven motors, the thermo
namic driving force of this process is ln@k2k4 /(k1k3)#5a,
which characterizes the average slope of the transformed
tential. Inserting Eqs.~13! into Eq. ~12! with the notationl
5 ln(t2 /t1), we get

Qmin5
DT/EA

tanhS EA

2TA
2

l

2
1

a

2 D2tanhS EA

2TA
2

l

2D . ~14!

The smallest possible value ofQmin can be achieved by se
ting the transmission coefficients, such thatl5EA /TA
1a/2, leading toQmin'2DT/(aEA) for small values ofa.
Inserting this into Eqs.~6! and ~8!, we get

h

hCarnot
'S 12

TATB

DTEA
a D Y S 11

2DT

aEA
D , ~15!
ro
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which approaches one in the quasistatic limitEA→` with all
of the other parameters (TA , TB , anda! fixed. This result
shows that in certain situations the inherently irreversi
heat flowJQ

kin can be suppressed relative to the heat flowJQ
pot,

such that the efficiency of the Brownian heat engine
proaches that of a Carnot cycle.

The irreversible heat flow via the kinetic energy of th
particle is always present in any Brownian heat engi
However, it is only the third type of setup~with spatially
inhomogeneous temperature! where the motion and the tem
perature change are completely coupled, allowing the h
flow via the potential energy of the particle to be reversib
when the engine works quasistatically. In these systems
heat flow via the kinetic energy can be made small compa
to the heat flow via the potential energy, thus the efficien
of the heat engine can approach that of a Carnot cycle.

Numerous authors have examined models of microsco
motors that are inherently irreversible and have very sm
efficiency @3,4,6,8,9,11#. This suggests that microscopic e
gines, for which diffusion is an essential element in the p
duction of useful work, are intrinsically less efficient tha
motors based on macroscopic deterministic principles. In
paper, by presenting an explicit example where the efficie
approaches that of a Carnot cycle, we have demonstrated
there does not exist any fundamental lower limit for micr
scopic heat engines.

The immediate significance of our work lies in the virtu
explosion of experimental results both on biomolecular
gines and chemically synthesized molecular motors@16#. Al-
though biomolecular motors operate isothermally, it is n
difficult to imagine a constructed microscopic motor th
could be immobilized near a heated surface, such that pa
the working cycle takes place near the relatively hot surf
and another part takes place further in the cooler bulk. Bu
explicit realization of the Bu¨ttiker-Landauer model@13# is
possible even with biomolecular engines, whose dipole m
ment,P(x), varies with the reaction coordinate,x, and inter-
acts with a fluctuating electric field,E(t). If E(t) can be well
approximated with a Gaussian white noise, the te
E(t)dP/dx, which should be added to the Langevin Eq.~1!,
corresponds to an effective, position dependent tempera
.
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