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Definition of temperature in equilibrium and nonequilibrium systems
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We combine the definition of temperature for a Hamiltonian dynamical system with the Hamiltonian rep-
resentation of a nonequilibrium isokinetic steady state to obtain an expression for the temperature away from
equilibrium. Results of numerical simulations, performed to assess the validity of this approach for color field
systems, are reported. A strong correlation between the kinetic temperature orthogonal to the color current and
the ratio of the averages of two given phase variables is obsdi82863-651X%99)50101-3

PACS numbd(s): 05.70.Ln

In a recent paper by Rugh], a method of determining where ¢(q,,...,qy) is the total potential energy. Then, the
the temperature in a Hamiltonian dynamical system was prophase variablel takes the form
posed. It begins with the definition of the entroByas the
(canonically invariantweighted area of the energy surfdee N .o

[the level set of the Hamiltoniad (g, p) ], under the assump- a2y, (?_2 +b2dN
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whose time average

where the subscrig indicates that the system is at constant

t

lim ! f dr\lf(l“(r)):L (3)  energy. In the limita—0, ¥¢ reduces to

toe U Jo T(E)
equals the inverse of the thermodynamic temperaifi€) Vo= NdN N2 — dl\ll\l—2, @)
of the system with total enerdy. The first numerical results ) 5 )
based on this definition of the temperature are beginning to ;1 pi (.21 pi ) 21 pi
appear2]. From a physical viewpoint, the phase space de-
rivative with respect tal” is not dimensionally consistent,
therefore we define which misses the correct counting of the degrees of freedom.

Because of energy conservation, the numerator should have
d d d d d d d beendN—1. If the total linear momentum was also con-

ﬁz(a%'b a_p> =(aa—ql,...,a EreN (9_p1"“'b opy)’  served, the numerator should have beg—d—1. Using

the information given by the limia—0, one may conclude

. ] that the first term in Eq(6) is orderO(1), while the second
where the prefactors andb allow us to move to dimension- tarm is ordero(N~1). This is misleading, since the coeffi-

less units for both coordinates and momenta, and give us th§ent of theN 1 term is large fora~b and cannot be ne-
flexibility tq wgight differgntly thg momentum and coordi- glected for systems withl< 1000.

nate contributions. Consider édimensional system oN In Fig. 1 we present the results obtained from constant
partlc_:les .of qnlt mass, subjected to conservative forces. Th@nergy, equilibrium, molecular dynamics simulations of two-
Hamiltonian is dimensional systems of soft spheres of diametewith re-

N duced densityp=0.9, and interaction potential cutoff and
21 pi2+¢(q1,. an)s (5) shift to zero atr=1.50. We report both the approximate

H=
temperaturel’; obtained from Eq(3), neglecting the second

N| =
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FIG. 1. Temperatures calculated from E@8) and (6) as a FIG. 2. Temperatures calculated from E¢3) and (16) as a

function of the weightw=a?, and of the number of particley. function of the weightv=a?, and of the number of particléé The

T,(N) is the temperature obtained from averaging only the firstdensity isp=0.9 and the kinetic temperatureTig=2.0. As in Fig.

term in Eq.(6), whereasT(N) is the average of the full expression 1, T;(N) is the approximate temperature obtained from averaging

Pe. only the first term in Eq(16), whereasT(N) is the average of the

full expression.

term in Eq.(6), and the full resulfl from ¥, as functions

of the number of particles and of the weight=a?, with

2 ¥%<a<1 andb=1. We observe thal, approaches the d= "+ $p™= ¢int_82 CiXi (10)

value of the kinetic temperaturd@, =2 from below, asN i=1

grows, whileT approaches 2 from above. As a functionmgf

T is closer thanT; to the correct value at large while, for . . . L

smallw, T tends to N/(N— 1) rather than o, =2, due to is the total potentlallenerg@ncludmg mternal and external

the problem with counting degrees of freedom. We concludé'elds)' In fact, denoting the temporal variable hywe get

that the dynamic definition of temperatytegs.(3) and(6)],

as well asT,, yield the correct values for our equilibrium d

systems in the thermodynamic linfit— . ai
Consider the possibility of extending the dynamic defini- dx

tion of temperature, given by Eq&) and(3) to nonequilib-

rium stationary states. Indeed, it has recently been shown

that the Gaussian isokineti6GIK) equations of motion for i

systems, in which the forces are derivable from a potegtial ax " F 4K

can be written in Hamiltonian for§8]. This means that Egs.

_e(ﬁ+1)<[)/2K7Ti , (11@

{52

(2) and (3) can be used to define a temperature for such + 2 p2+ 2K | |eB- /K, (110
nonequilibrium systems, despite the presence of the nonholo- T
nomic constraint
N p dNT whereF,= — d¢/ 9q=F"+ scif is the total force on particle
2 5= —— =const, (8 i. Then, connecting canonicalr() and physical ;) mo-

menta by me?®=p;, and rescaling the time ag??/<

whereK is the kinetic energy of d-dimensional system of =dt/d\, we obtain

particles with unit mass. For such a system in a color field
[4], the equations of motion for the canonical coordinates d
I'=(q, ) can be obtained from the Hamiltonian gt di=pi (123

N

1
— _ aB+1)¢lK 2_palB—1)¢l2K

Gt P=Fi 2 [3(2 p2—2K |+ }IZ p|+2KH ap,
whereg is a parameter introduced for greater generality, and (12b




RAPID COMMUNICATIONS

PRE 59 DEFINITION OF TEMPERATURE IN EQUILIBRIW . . . R7

where « is the thermostatting multiplier. Taking initial con- P id a eqs/k N
ditions that satisfy the isokinetic constraint, E§2b) re- — Hg_o(qm)=| — = | — 2 mi+1
duces to the usual GIK equation of motion for the physical Jr J9g; 2 | 2K =1

momentum: dp; /dt=F;—ap;, which then preserves the
constraint[Eqg. (8)]. This model reduces to an isokinetic ><e—¢/2'2,be¢/2km
equilibrium one whenp®'=0.

(.:hoosmg,8=0, so that the canqnlcal apd physical time at all times. Differentiating once more, and using initial con-
variables are the same, we now differentitg_o to con-  gitions and parameters that lead to the GIK equations, and

(13

struct the function of Eq. (2). The gradient yields substituting into Eq(2), we get
|
N 2 N 2 N 2
J J J 17 J
aZe” ¢k —f+b2dN ate 29K Y <—¢ ¢ 39 +2a2bh2e #KD} <—¢ +2b*K
oK i=1 dq oK ij=11d0; dgidq; dq; i=11dq;
‘PK:e('b N P 2 —2€¢ N P 2 2 y
a2e 9K (_¢> + 202K aZe” ¢k (—d) +2b%K
i=1 140 =11 d0
(14)

where the subscriff indicates that the system is at constant kinetic energy. If we consider thealinl, and substitute the
first term of Eq.(14) into Eq. (3), we get

1 1
— /adl2K
T (e?2) T (15

whereTx=2K/dN is the fixed value of the kinetic temperature. Now, the zero of the potential cannot influence the value of
the temperature, hence, we may replat®y o= ¢— ¢y, With ¢o=2K In(e?*), obtaining(e**)=1 and 1T,=1/Ty.
Also, W can be written as

N 2

N 2
J dd ¢ dd
arZef<p/K +b2dN ar4e72<p/K ( . A
2 o i,;zzl i, dgidd;  dq,

N
dp
a/2e7<p/K (_
2’1 Jq;

N 2
Jd

<—¢) +2b*K
= | aq;

2 1

+2a'%p%e K
|

) K= e(p/2K _ 2e<p/2K

2
+2b2%K

N 2
0
a,2e7¢/K2 ( ('{) +2b2K
=199

(16)

where we have introduced the modified weiglht necessarily compare equivalent state points. Equdtiéh
=ae %/ Therefore, in the numerical simulations, it suf- combined with Eq(3), can now be used to define a nonequi-
fices to choose values afandb, and to calculate the average librium temperature. We calculated this temperature and
of the right-hand sidéRHS) of Eq. (14) ande?’*, in order  compared the results with those obtained by other means
to obtain the results correspondingdb. (Fig. 3.

In Fig. 2 we present the results obtained from GIK simu- At N=56 anda?= 1, the temperaturg, calculated using
lations of systems of two-dimensional soft spheres at density¢ys (3) and(16) is dominated by the potential contributions.
p=0.9 and zero color potentigh™. Again the weights are The result 2.07(assuming errors of at least 1% rather
obtained by setting=1 and varyinga. The results are very ¢|oge tg the fixed kinetic valu§,=2.0, and to the orthogo-
similar in character to those obtained from the constant eny . ic temperature, defined ®p5y=dNTy1 which is

ergy simulations described above, showing the same kind of _ 5 :
convergence, both withl and withw to the desired value of ¥~ 1.994. FoN=224 anda”=1, the temperaturgis 1.98,

T, =2.0. which is in even better_ agreement vv_ith tr_\e corresponding
If $=¥£0, the system evolves to a nonequilibrium steadyTy: 1.966. AtN=896, T is 1.93, which is a little Iovyer than
state with a nonzero average dissipation. Moreover, it hady=1.954. We conclude that the temperature defined by Eq.
been shown that this system has a transition from homogd16) agrees with the orthogonal part of the kinetic tempera-
neous flow to a separated state, in which particles of eacture, i.e., the part that is unaffected by the streaming motion.
color collect together and flow at a faster rf¢ The value It would appear that Eq.16) is a reasonable starting point
of color field e, for which the separation transition occurs, for a definition of the temperature away from equilibrium.
depends on the density and on the system size, thereforBuring these simulations, the value ®f appeared to be

comparing systems with same and differentN does not strongly correlated to the quantity
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FIG. 3. Temperatures calculated from E#6) as a function of T
the weightw=a?, and of the number of particléd. The density is y

p=0.9, the kinetic temperature Bx=2.0, ande=1.0. T;(N) is

the temperature obtained from averaging only the first term in Eq. FIG. 4. Correlation between the ratioof two average quanti-

(16), whereasT(N) is the average of the full expression. The ar- ties, and the orthogonal temperatdrg, which is close to the av-

rows on the RHS mark the average values of the kinetic temperaerage of the ratio of the same quantities. The markedly outlying

ture orthogonal to the flow, , for the system sizes indicated. points are low density, high color field states, in which some sepa-
ration of the two colored species may have occurred.

N
< > (52¢/3q2)> present a plot oK against the orthogonal temperatdrg, as
X i=1 17 obtained in our simulations; the straight line represents the
N ’ relationX=T, .
<E (a¢/aqi)2> . . . .
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