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Phase separation in two-dimensional fluids: The role of noise
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We use a lattice Boltzmann scheme within which the noise can be turned on and off to investigate the effect
of stochastic terms on the phase ordering of a two-dimensional binary fluid. Sufficiently strong noise slows the
growth in the hydrodynamic regime, changing the growth exponen2/3 to a=1/2.
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[. INTRODUCTION when the Reynolds number is still too small to allow hydro-
dynamic flow to be important.
Binary mixtures of immiscible fluids, sayA and B, A second, faster growth process is curvature-driven hy-

quenched below the critical temperature phase separate infibodynamic flow[4]. This corresponds to an exponemt
A- andB-rich domains that grow in time. Once integral do- =2/3, which follows from dimensional analysis of the term
mains have formed experimental and theoretical evidencgn the left-hand side of the Navier-Stokes equati®nand
shows that the typical domain si&(t) grows as a power the pressure term on the right-hand side. This mechanism is
law with timet as[1] important in systems with a low viscosity when the velocities
R(t)~te. (1)  are sufficiently developed. It leads to circular domains as
flow is induced by the pressure difference between points of

The exponent is believed to be universal, depending only gitferent curvature. However, it cannot decrease the number
on the growth mechanism and not on the details of the par.

iUl he aim of thi ! larifv the eff f()f domains in the system. Hence, it is important on increas-
t'CL.j ar system. The aim of this paper is to canfyt ee ecto ingly long length scales: the circular domains remaining at
noise on the value ofe for phase separation in two-

dimensional binary fluids. shorter length scales grow more slowly by the Lifshitz-

The dynamics of binary fluids can be described on con-SIyOZOV mechanisifb]. This is in accord with a recent paper

tinuum length and time scales by the continuity, Navier-by Grant and Eldef6], who pointed out that the asymptotic

e . growth exponent must be<1/2.

Stokes, and convection-diffusion equatia@ In this Rapid Communication we shall be concerned with

dn+d,(nu,)=0, 2 a third mechanism for growth in a two-dimensional binary
fluid, which can result when stochastic terms are present in
the Navier-Stokes equations. As first pointed out by San
+35N N (Nu)}+ L5, (3) Miguel et al. [7] sufficiently large .noise leads to a gr.ovvth
exponenta=1/2. However, there is some confusion in the
literature about whether and when noise changes the value of
the critical exponent and about the mechanism for noise-
driven growth.

The valuea=1/2 has been observed in computer simula-
tions of domain growth in binary fluids using molecular dy-
e . . namics[8]. «=2/3 was seen in lattice Boltzmann simula-
f|C|e_nt. P.“ﬁ is the pressure tensor ardu the chemical po- tions of growth where noise was absg¢@i. However, the
tential d|fferenceabetween thé and B components. The situation is not entirely clear. Lookmagt al. [10] performed
noise terms and{ are Gaussian distributed with zero aver- simulations without noise that gave=1/2 and calculations
age and correlations with strength representing temperatuigsing lattice gas cellular automata where noise is an integral
effects [2]. Greek indices are used to represent Cartesia@art of the simulation gave both=1/2 [11] and a=2/3
directions and the usual repeated summation convention [g2].

assumed. _ o ~ Toinvestigate these points we consider domain growth in
Several growth mechanisms are operative in binary fluidg two-dimensional binary fluid using lattice Boltzmann simu-
[1]. The first is Lifshitz-Slyozov growth, the relative diffu- |ations[13], which have the advantage that it is possible to
sion of A and B atoms between domairi§]. This is de- include stochastic terms that can be switched on anfleif
scribed by Eq(4) with u=0, and simple dimensional analy- In this way we are able to test directly the effect of noise on
sis gives the correct growth exponent 1/3. The diffusive  the domain growth. We consider both noise that couples to
mechanism is dominant at early times and large viscositiethe pressure and noise that couples to the chemical potential.

I(NUR) + 3, (NULUE) = — 3P 5+ vVZ(NUp)

+§ 4

¢
S+ d,(eu,)=T OV2A u— aaa<ﬁaﬂpaﬁ

wheren is the total density of the fluidy is the bulk fluid
velocity, ¢ is the density difference between the two com-
ponents,y and\ are viscosities, anll 6 is a diffusion coef-
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FIG. 1. Growth of typical domain sizR with timet for a two-
dimensional binary fluid fo®, no noise ¢;=0.8);A, a stochastic
term in the pressure tensft;=0.8; var()=0.005. The lines
correspond to growth exponents:§ (solid line) and a:%
(dashed ling

We first summarize the lattice Boltzmann approach and
describe how stochastic terms are introduced into the simu-
lations. We then present the results of the computer simula-
tions and discuss the mechanism by which noise changes the
value of the growth exponent.

Il. MODEL

We use a nine-velocity lattice Boltzmann model described
in detail in Ref.[15]. The lattice Boltzmann method is es-
sentially a finite difference scheme for solving the continuum
equations2)—(4) [13]. One-particle, directional distribution

functionsf;(x,t) andg;(x,t) are defined at each siteof a £ =29050 £ =9050
square lattice for each of nine directionsorresponding to FIG. 2. Snapshots of the domain growth of a binary fluid com-
lattice vectorse; . These are related to the physical variablesparing the evolution fofa) no noise, andb) a stochastic term in the
by pressure tensdrr;=0.8; var()=0.005 in(b)].
n=> f,, =2 0;, nu,=> fe.,. (5)  model fluid minimizes a chosen input free energy density
i i i

[16]. In these simulations we use

The {f;} and{g;} evolve by streaming along directidn .
followed by a collision step that conserves density, momen- \I’:J dr
tum, and density difference. The evolution equations are

a b
S+ (@' 2 (Ve2l,  ®)

1 with a=—1b=1, andk=1. The pressure tensét,; and
fi(x+eAt,t+At)—f,(x,t)=— —(f;—f2+¢), (6) chemical potentialdx which are calculated17] from ¥
71 appear in the Navier Stokes equati@®) and convection-
o R 1 diffusion equation4), respectively.
gi(x+eAt,t+At)—g;(x,t)=— —(gi— gi°+ &), The lattice Boltzmann scheme reproduces to second order
2 the continuum equation&)—(4) with viscosities and diffu-
sivity related to the relaxation parametetsand r, through

c? dpo)

identical to those of Ref.15] except for the addition of the
stochastic termg; and &, [14]. The right-hand sides of Egs. (21,—1) )

(6) and(7) are linearized collision operators with the source V= T(AUC » A(n)= ( T E)At
termsf? andg? chosen first so that the conservation laws are

obeyed and second so that in thermodynamic equilibrium the 0= (At)c?(m,—1/2). 9

2 dn
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FIG. 3. Local features of the growing domain pattern and the

corresponding velocity field for no noigkeft-hand-columi, and a
stochastic term in the pressure tengaght-hand-colump The ve-
locity field is randomized by the noige;=0.8, var{)=0.005 in

b)].

We use c=1, At=0.01, ,=(1+1/{/3)/2=0.79, and

I'=1. Different values ofr; are used in different runs to

control the value of the viscosity.
We now describe how we choose the noise térrim Eq.
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FIG. 4. Growth of typical domain sizR with time t for a two-
dimensional binary fluid when a stochastic term coupling to the
pressure tensor is switched on during the growth procgss0.8.

O, no noise}® var({)=0.003A, var({)=0.005. The lines corre-
spond to growth exponents=3 (solid line), and a=3 (dashed
line).

IIl. RESULTS

In all of the simulations reported the system was initial-

(6). oxx and oy, are chosen as independent Gaussian variized withn=1.0 ande chosen randomly between0.5 and

ables with a given variance. We takg,= — 0,0y, = 0y
and put

1
§1:€3:§0—xxv 52:§4:§0’yy1 (10

1
§5:_§6:g7:_§8:zaxy- (11
It can be easily verified that for the nine-velocity model

12

Z =0, 2 {i€i,=0,

and hence that the conservation of mass and momentum ¢

0.5 and then quenched to a final state defined by parameters
a=—1b=k=1. The densityn remains an essential con-
stant throughout the fluid in all of the cases considered. The
system size was 256256 and simulations were typically
run for 1& time steps. Consider firgt=0,,# 0; that is, the
addition of a noise term in the pressure tensor which directly
affects the velocity field. Figure 1 shows the average size of
domains following a quench measured by the inverse of the
first moment of the structure factor for two sets of runs. All
of the parameters were the same except for the noise. Each
set consists of three different runs, and the results of each set
are averaged in the figure. For no noise the usual growth
exponenta=2/3 is clearly seen. In the simulations with
noise the growth law ise=1/2.

Pictorial snapshots of the time evolution of runs with and
ithout noise are compared in Fig. 2. The immediate con-

unaffected by the noise. The contribution of the noise to th&lusion is that noise increases the roughness of the surfaces

pressure tensor is

PaﬁEEi gieiaei[}:aaﬁ' (13)

In particular, {; with 1<i<4 contributes toP,, and P,
while ¢; with 5<i<8 contributes td®,, . The ¢ are defined

of the domains. This corresponds, on a mesoscopic scale, to
the randomization of the velocity field, as shown in Fig. 3.
The crossover in the value of the growth exponent from
2/3 to 1/2 occurs because the noise destroys the driving force
for growth, which results from the pressure difference be-
tween points of different curvature on a domain surface. The
velocity field is now driven by the noise rather than the
Laplace pressure. Hence, the exponart1/2 can be de-

similarly. This allows us to tune the strength of the fluctua-duced from dimensional analysis balancing the noise term
tions, which is measured by the variance of the random vari~R™*(R?) Y2 and the inertial terms on the left-hand side

ables, var().

of Eq. 3~Rt 2.
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The crossover betwean=2/3 and 1/2 is expected to oc- 3.5
cur when

AP~ g/R~var({), (14

whereAP is the Laplace pressure amdis the surface ten-

sion. This is illustrated in Fig. 4. A simulation was run with-

out noise until the 2/3 growth law was well established. The
noise was then turned on and further evolution of the run was 2.5
compared with vai{) =0, 0.003, and 0.005. With no noise =
the a«=2/3 growth persisted as expected. For yar( &
=0.005 the exponent rapidly crossed overde 1/2. For A
var(()=0.003 the crossover was slower. The approximate <
values ofc and R at the crossover arB~16,0=0.05 for
var({)=0.005 andR~18, o=0.04 for (¢)=0.003, consis-
tent with Eq.(14).

To check the role of the noise in the domain growth we
turned off the Laplace pressure artificially by removing the
derivative terms in the pressure tend®j;. The system
grew very slowly, approaching an exponent consistent with 1
1/3. Therefore, the value 1/2 found[ib4] remains puzzling.

Finally, we consider the effect of the noise teémwhich ) . o )
couples to the chemical potential and hence directly affects F'G- 5- Growth of typical domain size with time for a binary
the order parametes rather than the velocity field. Figure 5 11id with a stochastic term in the chemical potential differerice:
shows the evolution of the domain size for three differen low nonie[var(g)zo.o_og, low wsc_osny _(leo_'s)‘ ®, high noise
sets of parameter values starting from the same initial c0rt|[-_vgr((fl) _hQ'Ohl]‘. IOW.V'SCO_S"&% (T%;O'S).’A‘.hk'lgl?. noP:se_[\_/arl(g;)
ditions. These correspond 9 low viscosity (r;=0.8), low ], high viscosity ;=50). The noise infibits the initial for-

. o . . ; . mation of the domains, but neither the diffusive growth law
no!se [var(§)=0.00Q, ,(_'_') high Y'SCO_S'ty (1=50), h!gh =1/3 expected at high viscosities nor the hydrodynamic growth
noise [var(¢)=0.01]; (iii) low viscosity (r;=0.8), high  \iith o=2/3 expected at low viscosities is altered. The straight lines

noise[var(f)=0.0_1]. The main_ effect of the r_]O_ise is at early correspond tow=2/3 (solid), a=1/2 (short dashed and a=1/3
time when domains are forming. In the noisier systems thgong dashey

order parameter takes longer to reach its equilibrium value ) )
within each domain. We conclude that noise can destroy curvature-driven hy-

Once the domains have formed the noise has no obsergrodynamic growth and hence the corresponding2/3
able effect on the evolution. In the low viscosity simulations970Wth regime. The system crosses over to a regime with
inertial flow gives an exponent 2/3 independent of the®=1/2, where the velocity field is driven by the noise.
strength of the noise. This is because noise in the chemical
potential difference is local and does not destroy the flow
field. Similarly, for the high viscosity simulation where dif- We thank A. Malevanets, M. R. Swift, and P. Bladon for
fusive growth is expectedy=1/3. This is also as expected: helpful comments. J.M.Y. acknowledges support from the
noise is known to be irrelevant for Lifshitz-Slyozov growth EPSRC (Grant No. GR/K97788 and NATO (Grant No.
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