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Fragmentation of percolation clusters in general dimensions
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The scaling behavior for binary fragmentation of critical percolation clusters in general dimensions is
investigated by Monte Carlo simulation as well as by exact series expansions. We obtain values of critical
exponentsl and f describing the scaling of the fragmentation rate and the distribution of cluster masses
produced by binary fragmentation. Our results forl andf in two to nine dimensions agree with the conjec-
tured scaling relations511l2f by Edwards and co-workers@Phys. Rev. Lett.68, 2692~1992!; Phys. Rev.
A 46, 6252~1992!#, which in turn excludes the other scaling relations suggested by Gouyet~for d52), and by
Roux and Guyon@J. Phys. A22, 3693~1989!#, wheres is the crossover exponent for the cluster numbers in
percolation theory.@S1063-651X~99!51005-2#

PACS number~s!: 64.60.Ak, 05.40.2a
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The fragmentation process is widely observed in spati
random objects such as coal particles, branched polym
atomic nuclei, etc. Understanding the fragmentation prop
in random porous materials is essential to characterizin
statistical property of degradation in time as well as to pro
an internal structure of random materials. Recently there
been great interest in describing this through binary fragm
tation of bond percolation clusters because its descriptio
simple and it captures the important scaling properties of
random object@1–6#. Quantities of interest are the fragme
tation rate and the mass distribution of fragments a
breakup.

The fragmenting bond in a binary fragmentation of bo
percolation cluster is a bond whose removal results in
disconnected clusters. The fragmentation rate is proportio
to the numberas of fragmenting bonds of a mother cluster
s bonds, and the mass distribution is a probability distrib
tion bs8s , which is the probability of finding a daughter clu
ter of sizes8 after a binary fragmentation of a mother clust
of s bonds. In one dimension~1D! @6# and on the Bethe
lattice@3# the exact results for these quantities show a sca
behavior for larges without dependence on the bond occ
pation probabilityp. For dimensionsd.1, as and bs8s do
not have a scaling behavior at allp due to thep dependence
of cluster structure, except at the percolation thresholdpc ,
where there exists self-similarity. From the scaling behavi
for d51 and Bethe lattice, the generalized scaling forms
d.1 were suggested, namely,

as~p5pc!}sl, ~1!

bs8s~p5pc!5s2fg~s8/s! ~2!

as cluster size increases@7,8# ~for d51, l51,f51 and for
Bethe latticel51,f53/2). Edwards and co-workers pe
formed an intensive Monte Carlo simulation for a bina
fragmentation of percolation clusters on the square latt
and identified these scaling behaviors to provide the crit
exponentsl51.00160.006,f51.60160.008 @7,8#. Their
results satisfied the scaling relation
PRE 591063-651X/99/59~5!/4733~4!/$15.00
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which was derived using the analogy between red and fr
menting bonds, wheres is the crossover exponent of th
cluster number in standard percolation theory@9#. Based on
this observation they conjectured that these scaling behav
should exist atpc with l51 and the scaling relations52
2f must be validfor all higher dimensions also. These
scaling laws for fragmentation, if applied to Ising mode
instead of percolation, may also explain the failure of t
traditional~Becker-Döring! cluster dynamics right at the Cu
rie point @10#.

Two other scaling relations relating the critical expone
f to the standard critical exponents in the percolation the
were also proposed. Gouyet proposed

f511~dH21/n!/df ~4!

in the limit of a perfectly compressible displaced fluid co
sidering the time fluctuations of the invaded volume in inv
sion percolation@11#. n is a critical exponent for the corre
lation length, anddH and df are the fractal dimensions fo
the hull and the bulk of percolation clusters, respective
and we note thatdH5df only for d>3. Roux and Guyon
proposed

f5t1s2dH /df , ~5!

wheret is that for the mass distribution@12#. In three and
higher dimensions Eqs.~4! and ~5! become

f522s, f5t211s, ~6!

usingndf51/s5g/(32t) provided thatl51 exactly, and
g is the mean cluster size exponent. Later, Debierre p
formed Monte Carlo simulations for the three-dimension
percolation clusters on the cubic lattice, and found the cr
cal exponentsl51.00160.004,f51.54860.016, which
supports the scaling relations by Eq.~3! and ~4! @13#. The
situation, however, is far from clear because the predic
values forf from Eqs.~3!–~5! are 1.604, 1.527, and 1.527 i
two dimensions, and 1.548, 1.547, and 1.640 in three dim
R4733 ©1999 The American Physical Society
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sions, respectively. Although the numerical calculations s
port the scaling relation of Eq.~3! in 2D, and that of Eqs.~3!
and ~4! in 3D, the discrepancy in two dimensions amo
these three scaling relations was not discussed clearly
Ref. @11# Gouyet was originally concerned with the fragme
tation of the hull of percolation clusters, and proposed
above scaling relation@Eq. ~4!#. Interestingly enough, this
scaling relation becomes exactly the same as that of Edw
and co-workers for three dimensions and above becausdH

5df for d>3 and dHÞdf for d52. In three and higher
dimensions, the empty sites at the percolation threshold p
etrate through the whole cluster of occupied sites, and t
hull and perimeter are roughly the same. The perimeter
the other hand, is known since Leath and others to be
portional to the cluster mass in all dimensions larger tha
@14#. Therefore, Gouyet’s scaling relation can also be app
to the bulk fragmentation of percolation cluster only ford
>3 by simply replacingdH by df , not for the general di-
mensions becausedH is different fromdf in two dimensions,
but it can be applied to the general dimensions for the h
fragmentation. Therefore, the claim made by Debierre t
Gouyet’s scaling relation is exact for the bulk fragmentatio
in the general dimensions is not justified@13#. Even in Refs.
@11,13# this crucial point was not discussed explicitly. F
dimensions higher than 3 there has been no numerical
for these three scaling relations so far.

The validity of these conjectured scaling laws and scal
relations ingeneral dimensionsis investigated in this Rapid
Communication. We report our investigation for the scali
properties of the binary fragmentation of bond percolat
clusters in general dimensions by extensive Monte Ca
simulations as well as by exact series expansions. Our re
show that the critical exponent for the fragmentation rate
l51.0 in all dimensions, and for the fragment’s ma
distribution f51.5960.02,1.5560.01,1.5360.06,1.51
60.08,1.4860.04,1.5260.03 for two to six and nine dimen
sions. These values satisfy the scaling relation by Eq.~3! in
general dimensions, which consequently excludes the r
tions by Eq.~4! ~for d52) and Eq.~5!. Above six dimen-
sions Bethe lattice exponents should be exact.

The Monte Carlo simulations were performed in the h
percubic lattices for two to seven dimensions. The bond p
colation clusters were generated atpc by Leath algorithm at
each dimension, and tested for the fragmentation by a b
ing algorithm @14#. If the removal of a chosen bond on
mother cluster results in two disconnected clusters, suc
bond is a fragmenting bond. When the size of a daugh
cluster is either zero ors21 or when the other end of
chosen bond is reached in the middle of the burning proc
it is not a fragmenting bond. Applying a burning algorith
from either end site of a removed bond gives the sizes8 and
s2s821 of daughter clusters, if any. Continuing this bur
ing procedure for each bond on the clusters of sizes provides
the average number of fragmenting bonds per clus
as(pc)}sl for larges. We also calculate the average numb
cs8s5asbs8s of daughter clusters of sizes8 from fragmenting
a mother cluster of sizes in order to calculate the first mo
ment ms5(s851

(s21)/2s8cs8s . Assuming that the conjecture
scaling laws in Eqs.~1! and~2! are valid, the first moment is
-
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expected to scale asms(pc);sc, wherec521l2f, from
which one can find the critical exponentf. From now on we
assumel51 @11#.

In two to seven dimensions at the percolation thresho
our Monte Carlo simulations made 15 000, 27 800, 64 7
0.45 million, 0.236 million, and 1.8 million attempts to gro
a bond percolation cluster by the Leath algorithm in hyp
cubic lattices ofLd sites, withL up to 400, 100, 31, 13, 9
and 9 ford52 to 7. About 7000 processor hours were spe
on a Cray T3E. Here, the effects of the finite lattice sizes
strong for the cluster size distribution~not shown! but statis-
tically insignificant for the fractionas /s of fragmenting
bonds~Fig. 1! and the first momentms ~Fig. 2!. Figure 1
suggests that the fraction of fragmenting bonds approac
for large clusters a constant near 0.25, 0.44, 0.56, 0.60, 0
and 0.62 ford52 to 7, with a typical error of 0.02; Edward
and co-workers gave 0.24 ford52 and 0.6321 ford5`.

FIG. 1. Ratioas /s of the number of fragmenting bondsas vs
the sizes for two to seven dimensions. The marksL, 1, h,
3, n, * correspond to 2,3,4,5,6,7 dimensions.

FIG. 2. First momentms vs the sizes in log-log scale. The slope
gives 32f. The marks L, 1, h, 3, n, * correspond to
2,3,4,5,6,7 dimensions. The straight line is drawn with a slope
for eye guidance.
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The fraction of fragmenting bondsas /s versuss in a cluster
increases rapidly for the smalls and saturates from above t
a constant value for the larges consistent with the large-s
scaling behavioras}s1, which thus results in the peak i
between for all dimensions. The nonlinear behavior ofas
~Fig. 1! andms ~Fig. 2! versus the smalls is due to the finite
cluster size effect, which illustrates the importance of
correction-to-scaling especially for the small size clust
@7,8#. The higher the dimension is, the larger the const
value ofas /s is for the larges. This shows that the critica
percolation clusters in higher dimensions are easier to f
ment, because the loops in critical percolation clusters
come irrelevant in higher dimensions on which most no
fragmenting bonds exist.

As a rough estimation from Fig. 2, the exponent 32f
.1.5 for the first moment is the same ford52 –7, and apart
from two dimensions, this ‘‘superuniversality’’ seems
hold also for the proportionality factor~‘‘amplitude’’ ! and
correction to the asymptotic behavior. However, a care
analysis for d52, 3, 4, and 5 gave an exponent of 1.
60.02 ford52, 1.4560.01 ford53, and 1.5060.05 ford
5 4 and 5, which is also compatible with the two
dimensional estimates 1.40 of both Edwards and co-work
@7,8# and Cheon and Chang@15# and the three-dimensiona
estimate 1.452 of Debierre@13#. It agrees with the scaling
prediction 11s51.396, 1.452, 1.488, 1.495, 1.5, and 1.5
Edwards and co-workers, but agrees only ford>3 with
1.473, 1.453, 1.48, 1.49, 1.50, and 1.50 of Gouyet ford52 –
7, respectively. The prediction 1.473, 1.36, 1.2, 1.1, 1.0,
1.0 (542t2s for d>3) of Roux and Guyon, already ex
cluded by Debierre ford53, is violated even more strongl
in higher dimensions@12#. Thus our data are compatible wit
l51, and with one of the three competing scaling relatio

We also applied exact series expansions to calculate
critical exponentsl andf in general dimensions. Given th
occupation probabilityp of a bond, each realization of th
random system consists of clusters (G) of sites intercon-
nected by bonds. We define the low concentration series
pansions for the average number of fragmenting bonds a

Qa~p!5(
G

W~d,G!as~G!s2~G!pnb(G)~12p!np(G), ~7!

and that for the first moment of the sum of daughter clus
size as

Qm~p!5(
G

W~d,G!ms~G!s2~G!pnb(G)~12p!np(G), ~8!

which is the weighted sum ofas and ms on the clusterG,
respectively. HereWd(G) is the embedding weight ofG on
thed-dimensional hypercubic lattice, whilenb(G) andnp(G)
are the numbers of bonds inG and on its perimeter. The
generation of series forQa(p) andQm(p) only requires the
topology of clusters, since the fragmentation process is
affected by the geometry of clusters. We generated th
series in general dimensions up to 13 bonds, which requ
20 724 clusters of different topologies, and our series c
tains exact averages over all the random configuratio
Now, assuming Eqs.~1! and ~2!, the singular behavior for
Qa(p) and Qm(p) at p5pc is expected to beQa(p)
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}up2pcu2za , Qm(p)}up2pcu2zm, with za52b1(b1g)(l
11) and zm52b1(b1g)(31l2f) from standard per-
colation theory. Hereb is the percolation order paramete
exponent. Since the values ofb,g are known numerically in
general dimensions, the values ofl,f can be calculated di-
rectly from za andzm .

The analysis for singular behaviors ofQa(p) andQm(p)
involves ad log Pade´ analysis to locate the rough position o
poles (pc) and the residuesza and zm in each dimension
@16#. We employed the recently developed efficient thre
dimensional visualization methods@17# together with the
M1 and M2 analysis algorithms@18#, which allow a very
accurate determination of the thresholdpc , the leading criti-
cal exponent ~denoted by h below!, and the confluent
correction-to-scaling exponentD1 simultaneously. Denoting
the general series byH(p), we assume the formH(p)
5A(pc2p)2h@11a(pc2p)D11•••#. In the M1 method,
we study the logarithmic derivative ofB(p)5hH(p)2(pc
2p)@dH(p)/dp#, which has a pole atpc with residue2h
1D1. For a given value ofpc we obtain graphs ofD1 versus
input h for all Padéapproximants, and we choose the tripl
(pc ,h,D1) where a selection of high, near-diagonal Pad´s
converge to the same point. In theM2 method, we first
transform the series inp into a series in the variabley51
2(12p/pc)

D1 and then take the Pade´ approximants to
G(y)5D1(y21)d/dy ln@H(p)#, which should converge to
2h. Here we plot graphs ofh versus the inputD1 for differ-
ent values ofpc and choose again the triplet (pc ,h,D1),
where the Pade´s converge to the same point.

In Fig. 3 we present three slices from theM1 analysis of
theQm(p,d55) series. The best convergence from differe
Padéapproximants is achieved atpc50.118260.0003. Fig-
ure 4 shows a slice atpc50.1182, from which we read the
value of the leading critical exponentzm54.12 as well as the
correction to scaling exponentD1'1.02. We repeated thes
analyses many times forQa(p,d) and Qm(p,d) in other
general dimensions, and found average valuespc
50.24886 0.0010,0.16006 0.0005, 0.118260.0003,0.0942
60.0005,0.059560.0002, f51.5560.05,1.5360.06,1.51
60.08,1.4860.04,1.5260.03, l51.060.04, and D1'1.0
from M1 andM2 analyses of two series for 3,4,5,6,9 dime
sions, respectively. This directly shows the validity of t

FIG. 3. M1 analysis of theQm(p,d55) series. The best con
vergence from different Pade´ approximants is achieved atpc

50.118260.0003.



lt
f
h

ad
ng

rlo
o-

g
r-
le

vior
rs
ion
ent

di-
Ed-

the

ce

e

e.

RAPID COMMUNICATIONS

R4736 PRE 59CHEON, HEO, CHANG, AND STAUFFER
scaling relation by Eq.~3!, although the error bar off is not
small enough to distinguishf ’s in different dimensions. In
view of the relatively short length of our series, our resu
however, is quite satisfactory since it shows a nice trend of
from 1.55 to 1.50 for three to six dimensions and above. T
series in two dimensions do not behave well in the P´
analysis because they are too short to show a strong si
larity. Overall our estimate forl andf from the series ex-

FIG. 4. M1 analysis of theQm(p,d55) series atpc50.1182.
The value of the leading critical exponentzm54.12 and the correc-
tion to scaling exponentD1'1.02.
d
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,
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e
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pansions agrees with those from our current Monte Ca
simulation in every dimension, with Edwards and c
workers for 2D@7,8#, with Debierre for 3D@13#, and with
Cheon and Chang for 2D and 3D@15#. Although our numeri-
cal values off support Edwards and co-workers’ scalin
relation Eq.~3!, we cannot exclude the possibility of supe
universality for d>3 because they are indistinguishab
within our numerical error bars.

To summarize, we have investigated the scaling beha
for binary fragmentation of critical bond percolation cluste
in general dimensions by extensive Monte Carlo simulat
as well as by exact series expansions. The critical expon
for a fragmentation rate isl51.0 in all dimensions,
and for a fragment’s mass distribution f
51.59, 1.55, 1.53, 1.51, 1.48, 1.52 for two to six and nine
mensions. These values are clearly consistent with the
wards and co-workers’ scaling relations511l2f,l
51 in general dimensions, which consequently excludes
relations by Gouyet~for d52) and Roux and Guyon. Above
six dimensions Bethe lattice exponents should be exact.

We acknowledge partial support from the Korea Scien
and Engineering Foundation through KOSEF-DFG~Grant
No. 985-0200-00402! and RCDAMP, and support from th
Korea Research Foundation~Grant No. BSRI-98-2412! at
Pusan. We also thank HLRZ, Ju¨lich for time on their CRAY-
T3E. One of us~I.C.! is grateful to Amnon Aharony, A.
Brooks Harris, and Joan Adler for series expansion advic
r-

t-
sics

,

.

@1# R.M. Ziff and E.D. McGrady, J. Phys. A18, 3027~1985!; E.D.
McGrady and R.M. Ziff, Phys. Rev. Lett.58, 892 ~1987!; M.
Sahimi and T.T. Tsotsis,ibid. 59, 888 ~1987!.

@2# Z. Cheng and S. Redner, Phys. Rev. Lett.60, 2450~1988!; J.
Phys. A23, 1233~1990!.

@3# A.R. Kerstein, J. Phys. A22, 3371~1989!.
@4# S. Redner, inStatistical Models for the Fracture of Disordere

Media, edited by H.J. Hermann and S. Roux~Elsevier, New
York, 1990!.

@5# A.Z. Mekjian, Phys. Rev. Lett.64, 2125~1990!.
@6# B.F. Edwards, M. Cai, and H. Han, Phys. Rev. A41, 5755

~1990!; M. Cai, B.F. Edwards, and H. Han,ibid. 43, 656
~1991!.

@7# M.F. Gyure and B.F. Edwards, Phys. Rev. Lett.68, 2692
~1992!.

@8# B.F. Edwards, M.F. Gyure, and M. Ferer, Phys. Rev. A46,
6252 ~1992!.

@9# D. Stauffer and A. Aharony,Introduction to Percolation
Theory, 2nd ed.~Taylor & Francis, London, 1991!; M. Sahimi,
Application of Percolation Theory~Taylor & Francis, London,
1994!; A. Bunde and S. Havlin,Fractals and Disordered Sys
tems~Springer, Heidelberg, 1996!.

@10# R. Becker and W. Do¨ring, Ann. Phys. ~Leipzig! 25, 719
~1935!; J.L. Katz, H. Saltsburg, and H. Reiss, J. Colloid Inte
face Sci.21, 650 ~1966!; Z. Alexandrowicz, J. Phys. A26,
L655 ~1993!; M. Behrens and D. Stauffer, Ann. Phys.~N.Y.!
2, 105 ~1993!; D. Stauffer and I. Chang, J. Stat. Phys.~to be
published!.

@11# J.F. Gouyet, Physica A168, 581 ~1990!; Phys. Rev. B47,
5446 ~1993!; J.F. Gouyet and Y. Boughaleb,ibid. 40, 4760
~1989!.

@12# S. Roux and E. Guyon, J. Phys. A22, 3693~1989!.
@13# Jean-Marc Debierre, Phys. Rev. Lett.78, 3145~1997!.
@14# P.L. Leath, Phys. Rev. B14, 5046~1976!.
@15# Mookyung Cheon and Iksoo Chang,Springer Proceedings in

Physics, edited by D.P. Landau, K.K. Mon, and H.-B. Schut
let, Computer Simulation Studies in Condensed Matter Phy
VIII Vol. 83 ~Springer-Verlag, Berlin, 1997! p. 161.
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