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Fragmentation of percolation clusters in general dimensions
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The scaling behavior for binary fragmentation of critical percolation clusters in general dimensions is
investigated by Monte Carlo simulation as well as by exact series expansions. We obtain values of critical
exponents\ and ¢ describing the scaling of the fragmentation rate and the distribution of cluster masses
produced by binary fragmentation. Our results Xoand ¢ in two to nine dimensions agree with the conjec-
tured scaling relatior=1+\ — ¢ by Edwards and co-workef®hys. Rev. Lett68, 2692(1992; Phys. Rev.

A 46, 6252(1992], which in turn excludes the other scaling relations suggested by G@oyet=2), and by
Roux and GuyorJ. Phys. A22, 3693(1989], whereo is the crossover exponent for the cluster numbers in
percolation theory[S1063-651X99)51005-3

PACS numbdis): 64.60.Ak, 05.40--a

The fragmentation process is widely observed in spatially o=1+\N—¢, ®)
random objects such as coal particles, branched polymers,
atomic nuclei, etc. Understanding the fragmentation propertyvhich was derived using the analogy between red and frag-
in random porous materials is essential to characterizing eenting bonds, wherer is the crossover exponent of the
statistical property of degradation in time as well as to probecluster number in standard percolation thef#y Based on
an internal structure of random materials. Recently there hathis observation they conjectured that these scaling behaviors
been great interest in describing this through binary fragmenshould exist ap. with A=1 and the scaling relatioor=2
tation of bond percolation clusters because its description is- ¢ must be validfor all higher dimensions alsoThese
simple and it captures the important scaling properties of thacaling laws for fragmentation, if applied to Ising models
random objecf1-6]. Quantities of interest are the fragmen- instead of percolation, may also explain the failure of the
tation rate and the mass distribution of fragments aftetraditional(Becker-Daing) cluster dynamics right at the Cu-
breakup. rie point[10].

The fragmenting bond in a binary fragmentation of bond Two other scaling relations relating the critical exponent
percolation cluster is a bond whose removal results in twap to the standard critical exponents in the percolation theory
disconnected clusters. The fragmentation rate is proportionatere also proposed. Gouyet proposed
to the numbeg of fragmenting bonds of a mother cluster of
s bonds, and the mass distribution is a probability distribu- ¢=1+(dy—1/v)/d; 4
tion by, which is the probability of finding a daughter clus-
ter of sizes’ after a binary fragmentation of a mother cluster
of s bonds. In one dimensiolD) [6] and on the Bethe
lattice[ 3] the exact results for these quantities show a scalin
behavior for larges without dependence on the bond occu-
pation probabilityp. For dimensionsdi>1, a; and by do

in the limit of a perfectly compressible displaced fluid con-
sidering the time fluctuations of the invaded volume in inva-
ion percolatiof11]. v is a critical exponent for the corre-
ation length, andd,; andd; are the fractal dimensions for
the hull and the bulk of percolation clusters, respectively,

not have a scaling behavior at alidue to thep dependence and we note thatdy=d only for d=3. Roux and Guyon
of cluster structure, except at the percolation threstpgld ~ Proposed
where there exists self-similarity. From the scaling behaviors
for d=1 and Bethe lattice, the generalized scaling forms for

d>1 were suggested, namely, where 7 is that for the mass distributiof12]. In three and
higher dimensions Eqg$4) and (5) become

¢=7+o—dy/d;, (5)

as(p=pc) s, (1)
$p=2—o0, ¢=7—1+o0, (6)

by's(p=pc)=s"’g(s'/s) (2 usingvd;=1/o=y/(3—7) provided that\ =1 exactly, and
v is the mean cluster size exponent. Later, Debierre per-

as cluster size increasgg,8] (ford=1,A=1,¢=1 and for formed Monte Carlo simulations for the three-dimensional
Bethe latticex=1, ¢=23/2). Edwards and co-workers per- percolation clusters on the cubic lattice, and found the criti-
formed an intensive Monte Carlo simulation for a binarycal exponents\=1.001+0.004,¢=1.548+0.016, which
fragmentation of percolation clusters on the square latticesupports the scaling relations by E®) and (4) [13]. The
and identified these scaling behaviors to provide the criticasituation, however, is far from clear because the predicted
exponents\ =1.001+0.006,o=1.601+0.008 [7,8]. Their values for¢ from Egs.(3)—(5) are 1.604, 1.527, and 1.527 in
results satisfied the scaling relation two dimensions, and 1.548, 1.547, and 1.640 in three dimen-
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sions, respectively. Although the numerical calculations sup-

port the scaling relation of E¢3) in 2D, and that of EqS3) 0.6
and (4) in 3D, the discrepancy in two dimensions among
these three scaling relations was not discussed clearly. It
Ref.[11] Gouyet was originally concerned with the fragmen-
tation of the hull of percolation clusters, and proposed the
above scaling relatiofEq. (4)]. Interestingly enough, this
scaling relation becomes exactly the same as that of Edwardg,&
and co-workers for three dimensions and above becdyse

=d; for d=3 anddy#d; for d=2. In three and higher
dimensions, the empty sites at the percolation threshold pen
etrate through the whole cluster of occupied sites, and thus 03[
hull and perimeter are roughly the same. The perimeter, or
the other hand, is known since Leath and others to be pro
portional to the cluster mass in all dimensions larger than 1 o2 ' ' ' '
[14]. Therefore, Gouyet's scaling relation can also be applied ! 10 wog w 1! 10
to the bulk fragmentation of percolation cluster only fbr
=3 by simply replacingd, by d;, not for the general di-
mensions becausk, is different fromds in two dimensions,
but it can be applied to the general dimensions for the hul
fragmentation. Therefore, the claim made by Debierre that

Gouyet's scaling relation is exact for the bulk fragmentationsEXPected to scale ass(pc)js‘/’, where=2+\— ¢, from
in the general dimensions is not justifigts]. Even in Refs. Which one can find the critical exponeAt From now on we
[11,13 this crucial point was not discussed explicitly. For @8SSume =1 [11].

. : . . In two to seven dimensions at the percolation threshold
dimensions higher than 3 there has been no numerical test . . '
for these three scaling relations so far. our Monte Carlo simulations made 15000, 27 800, 64 700,

. 0.45 million, 0.236 million, and 1.8 million attempts to grow

} . . A . R N9, bond percolation cluster by the Leath algorithm in hyper-
relations ingeneral dimensions investigated in this Rapid cubic lattices ofL¢ sites, withL up to 400, 100, 31, 13, 9,

Communication. We report our investigation for the scalingand 9 ford=2 to 7. About 7000 processor hours were spent

properties of the binary fragmentation of bond percolation,, 5 cray T3E. Here, the effects of the finite lattice sizes are

clusters in general dimensions by extensive Monte CarlQyong for the cluster size distributignot shown but statis-
simulations as well as by exact series expansions. Ourresul@&auy insignificant for the fractionay/s of fragmenting
show that the critical exponent for the fragmentation rate isbonds(pig_ 1) and the first momeni (Fig. 2). Figure 1
A=1.0 in all dimensions, and for the fragment's masssuggests that the fraction of fragmenting bonds approaches
distribution ¢=1.59+0.02,1.55-0.01,1.530.06,1.51  for large clusters a constant near 0.25, 0.44, 0.56, 0.60, 0.61,
+0.08,1.48-0.04,1.52- 0.03 for two to six and nine dimen- and 0.62 ford=2 to 7, with a typical error of 0.02; Edwards
sions. These values satisfy the scaling relation by(Bgin and co-workers gave 0.24 fat=2 and 0.6321 ford=c.
general dimensions, which consequently excludes the rela-
tions by Eq.(4) (for d=2) and Eq.(5). Above six dimen-
sions Bethe lattice exponents should be exact.

The Monte Carlo simulations were performed in the hy-
percubic lattices for two to seven dimensions. The bond per-
colation clusters were generatedpatby Leath algorithm at
each dimension, and tested for the fragmentation by a burn
ing algorithm[14]. If the removal of a chosen bond on a
mother cluster results in two disconnected clusters, such
bond is a fragmenting bond. When the size of a daughtel
cluster is either zero os—1 or when the other end of a
chosen bond is reached in the middle of the burning process 107
it is not a fragmenting bond. Applying a burning algorithm
from either end site of a removed bond gives the sizand 10
s—s’—1 of daughter clusters, if any. Continuing this burn-
ing procedure for each bond on the clusters of sigevides 1
the average number of fragmenting bonds per cluster, 1 10 102 108 100 108
as(p.)=s" for larges. We also calculate the average number §

Csrs=2asby s of daughter clusters of siz from fragmenting FIG. 2. First momenj vs the sizesin log-log scale. The slope

a mother clléssﬁglzof, sizein order.to calculate the f|.rst MO- gives 3-¢4. The marks O, +,0, X, A,* correspond to
ment us=2g_1 's'Cys. Assuming that the conjectured 234,56 7 dimensions. The straight line is drawn with a slope 1.5

scaling laws in Eqs(1) and(2) are valid, the first moment is for eye guidance.
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FIG. 1. Ratioag/s of the number of fragmenting bonds vs
the sizes for two to seven dimensions. The marks, +, [,
f<, A, * correspond to 2,3,4,5,6,7 dimensions.
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The fraction of fragmenting bonds,/s versussin a cluster

increases rapidly for the smadland saturates from above to 460
a constant value for the largeconsistent with the largs-

scaling behavioragxs!, which thus results in the peak in 4
between for all dimensions. The nonlinear behavioragf ™
(Fig. 1) and ug (Fig. 2) versus the smah is due to the finite &
cluster size effect, which illustrates the importance of the 41p
correction-to-scaling especially for the small size clusters

[7,8]. The higher the dimension is, the larger the constant 398

value ofag/s is for the larges. This shows that the critical
percolation clusters in higher dimensions are easier to frag-
ment, because the loops in critical percolation clusters be-
come irrelevant in higher dimensions on which most non-
fragmenting bonds exist.

As a rough estimation .from Fig. 2, the exponent 3 FIG. 3. M1 analysis of theQ ,(p,d=5) series. The best con-
=1.5 for thg first moment _'S the same .ﬁd>1=2—_7, and apart vergence from different Padapproximants is achieved gi,
from two dimensions, this “superuniversality” seems to _ 1182+ 0.0003.
hold also for the proportionality factaf‘amplitude”) and
correction to the asymptotic behavior. However, a careful

: _pnl %|p—pd %, with {,=—B+(8+v)(\
analysis ford=2, 3,4, and 5 gave an exponent of 1.41oclp Pd » QulP)P—Pd| °#, a Y
" 0.00 ford=2, 1.45-0.01 fordg=3, and 150005 ford  +1) andg,==p+(B+7)(3+\~¢) from standard per-

— 4 and 5, which is also compatible with the two- colation theory. HereB is the percolation order parameter

dimensional estimates 1.40 of both Edwards and co—worker‘EXponemi Sincg the values Bfy are known numerically ir)
[7,8] and Cheon and Char{d5] and the three-dimensional general dimensions, the values)of¢ can be calculated di-

; : : . ly from ¢, and{, .
estimate 1.452 of Debierrel3]. It agrees with the scalin rect a; we .
prediction 1+ o=1.396, 1.452, 1.483, 1.495,1.5, and 1.590f The analysis for singular behaviors @(p) andQ,(p)

Edwards and co-workers, but agrees only &3 with involves ad log Padeanalysis to locate the rough position of
1.473,1.453,1.48, 1.49, 1.50, and 1.50 of Gouyetdfera—  POles @c) and the residueg, and £, in each dimension
7, respectively. The prediction 1.473,1.36,1.2,1.1, 1.0, anii0-- We employed the recently developed efficient three-
1'0(:4_7__0 for d=3) of Roux and GuyE)n élrea,ldy éx- dimensional visualization method47] together with the
cluded by Debierre fod=3, is violated even more strongly M1 andMz2 analysis algorithm$18], which allow a very

o ; . : .. accurate determination of the threshpld, the leading criti-
in higher dimensionfl12]. Thus our data are compatible with cal exponent(denoted byh below), and the confluent

A=1, and with one of the three competing scaling relations. ' . X :
We also applied exact series expansions to calculate th orrection-to-scaling exponent; simultaneously. Denoting

critical exponenta. and ¢ in general dimensions. Given the the generalhserles bjﬂ(p)A, we assume the fornH(p)
occupation probabilityp of a bond, each realization of the =A(pc—p) "[1+a(pc—p) +-- -] In the M1 method,
random system consists of clusters)(of sites intercon- we study the Ioganthmlc derivative (B(p)'=hH(.p)—(pc
nected by bonds. We define the low concentration series ex- p)[dH(p)/dp], which has a pole ap; with residue—h

pansions for the average number of fragmenting bonds as _’LAl' For a given value Opc we obtain graphs of, Versus
input h for all Padeapproximants, and we choose the triplet

(pe.h,A;) where a selection of high, near-diagonal Pade
Qa(p):; W(d,Iay(T)s(I)p™H(1—p)™» ™, (7)  converge to the same point. In thd2 method, we first
transform the series ip into a series in the variablg=1
and that for the first moment of the sum of daughter cluster- (1—p/pc)*t and then take the Padapproximants to
size as G(y)=A.(y—1)d/dyIn[H(p)], which should converge to
—h. Here we plot graphs df versus the input\; for differ-
ent values ofp. and choose again the triplep{,h,A,),
QM(p)=; W(d,T) pg(T)$*(T)p™tD(1—p)"tD), (8) where the Padeconverge to the same point.

In Fig. 3 we present three slices from thEL analysis of
which is the weighted sum g and ug on the clusted’, the Q,(p,d=5) series. The best convergence from different
respectively. Hera\V,(T') is the embedding weight df on  Padeapproximants is achieved pt=0.1182+0.0003. Fig-
thed-dimensional hypercubic lattice, whitg,(I') andn(T") ure 4 shows a slice gi.=0.1182, from which we read the
are the numbers of bonds i and on its perimeter. The value of the leading critical exponetit=4.12 as well as the
generation of series fa@,(p) andQ,(p) only requires the correction to scaling exponent; ~1.02. We repeated these
topology of clusters, since the fragmentation process is nanalyses many times foQ,(p,d) and Q,(p,d) in other
affected by the geometry of clusters. We generated thesgeneral dimensions, and found average valups
series in general dimensions up to 13 bonds, which requiree 0.2488+ 0.0010,0.1606= 0.0005, 0.1182 0.0003,0.0942
20724 clusters of different topologies, and our series con=0.0005,0.059%0.0002, ¢=1.55+0.05,1.53:0.06,1.51
tains exact averages over all the random configurationst0.08,1.48-0.04,1.52-0.03, A=1.0=0.04, andA;~1.0
Now, assuming Eqs(l) and (2), the singular behavior for from M1 andM2 analyses of two series for 3,4,5,6,9 dimen-
Qa(p) and Q,(p) at p=p. is expected to beQ,(p) sions, respectively. This directly shows the validity of the
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4.60 . ' - pansions agrees with those from our current Monte Carlo
simulation in every dimension, with Edwards and co-
aaal ] workers for 2D[7,8], with Debierre for 3D[13], and with
Cheon and Chang for 2D and 35]. Although our numeri-
cal values of¢ support Edwards and co-workers’ scaling
4281 ] relation Eq.(3), we cannot exclude the possibility of super-
Su , universality for d=3 because they are indistinguishable
412 ] within our numerical error bars.
AAAAAAAAA To summarize, we have investigated the scaling behavior
""" for binary fragmentation of critical bond percolation clusters
396 ] in general dimensions by extensive Monte Carlo simulation
as well as by exact series expansions. The critical exponent
3.80 . : . . for a fragmentation rate is\=1.0 in all dimensions,
0 0.4 0.8 1.2 1.6 2.0

and for a fragment's mass distribution ¢

=1.59,1.55,1.53,1.51, 1.48, 1.52 for two to six and nine di-
FIG. 4. M1 analysis of theQ ,(p,d=5) series ap,=0.1182. mensions. These values are clearly consistent with the Ed-

The value of the leading critical exponef)f=4.12 and the correc- wards and co-workers’ scaling relatiom=1+\—¢,\

tion to scaling exponenk;~1.02. =1 in general dimensions, which consequently excludes the

relations by Gouyetfor d=2) and Roux and Guyon. Above

scaling relation by Eq(3), although the error bar ab is not six dimensions Bethe lattice exponents should be exact.
small enough to distinguisk’s in different dimensions. In We acknowledge partial support from the Korea Science
view of the relatively short length of our series, our result,and Engineering Foundation through KOSEF-DFGrant
however, is quite satisfactory since it shows a nice trendl of No. 985-0200-00402and RCDAMP, and support from the
from 1.55 to 1.50 for three to six dimensions and above. Th&orea Research FoundatigGrant No. BSRI-98-2412at
series in two dimensions do not behave well in the ‘Padéusan. We also thank HLRZ; lith for time on their CRAY-
analysis because they are too short to show a strong singG83E. One of us(l.C.) is grateful to Amnon Aharony, A.
larity. Overall our estimate fox and ¢ from the series ex- Brooks Harris, and Joan Adler for series expansion advice.
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