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Effect of an external magnetic field on the gas-liquid transition in the Heisenberg spin fluid
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We present the theoretical phase diagrams of the classical Heisenberg fluid in an external magnetic field. A
consistent account of correlations is carried out by the integral equation method. A nonmonotonic effect of
fields on the temperature of the gas-liquid critical point is found. Within the mean spherical approximation this
nonmonotonic behavior disappears for short-range enough spin-spin interacdin063-651X99)51204-X]

PACS numbg(s): 64.70.Fx, 75.50.Mm, 05.70.Jk, 61.20.Gy

The behavior of magnetic fluids in an external field hasand spatial ordering can lead to an interesting behavior of the
commanded more and more attention in recent years and hgas-liquid critical point at small fields. In this Rapid Com-
some peculiarities. In the presence of an external magneti@unication we show that in the systems with the long-range
field the orientationalmagnetig phase transition is absent, enough spin-spin interactions the nonmonotonic effect of the
but there are the first order transitions between ferromagnetiexternal fields on the gas-liquid critical temperature takes
phases of different densitie¢e.g., gaseous and liquid Place. There is a temperature range where weak external
phases Physical properties of anisotropic fluidto these fields suppress the gas-liquid phase separation. By the inte-
belong also, besides magnetic fluids, nematic liquid crystalsdral equation method we show that while the range param-
are determined by the interplay between orientational an&ter of the model potential decreases, this temperature inter-
translational degrees of freedom. Therefore, by varying theal first gets smaller and then disappears.
magnetic field it is possible to effect structural properties of ~We shall consider the model that was studied before for
magnetic fluids, in particular, to change the region of thethe case of zero external fiel8,7]. The pair potentia(ana-
gas-liquid coexistence. Such investigations with a calculatiofegically to the paperg3,4]) is a sum of the hard sphere
of phase diagrams were carried out for model spin system@otential ¢(R;;) for spheres of diameterr and of the
within the mean fieldMF) approximatior{1,2]. It was found  Heisenberg spin-spin potenti®(Ry,, w1, w5),
that for fluids of hard spheres carrying Ising spins an external

magnetic field decreases the temperature of the gas-liquid (D(Rlz,wl,wz)=.J(R12)§1-§2, D
critical point. On the other hand, the presence of isotropic

van der Waals attractions between molecules can lead to the (zo)? exd —z(R—0o)]

inverse effec{2]. In Ref.[2] the fluid of hard spheres with J(R)=—-K p—] Rio : (2

the classical Heisenberg spins and strong isotropic attractions
was considered also. It was shown that at weak magnetic
fields there can be two first order phase transitions in thi
model: gas-liquid and liquid-liquid. In strong fields the weak e i X : .
liquid-liquid transition disappears. as thez dllrect.lon. The potential of the par.tlcle interacting
The need to take into account orientational-translationalV/th the f'eldz'svi: ~ #Boc0sG. In expressior(2) the co-
correlations for the description of physical properties oféfficient @o)“/(zo+1) is chosen to make the integral
magnetic fluids stimulated studies of the external field effects 2
by more complgx tgqhniqugs. The effegt of an externa_l field — N_f dwlf dwzf ARy (Ry, 01, 2) f(w1)F(5)
on the gas-liquid critical point was studied by the functional 2V Ri>0
integration and Green function methd@® for the quantum 3
Heisenberg ferrofluid and by the Monte Carlo and integral
equation methods for the classical dre5]. The pair poten- [where f(w) is a single-particle orientational distribution
tials of those models consisted of contributions of hardfunction], independent oto. The integral describes a con-
spheres and of the spin-spin interactidhe so-called ideal tribution of the spin-spin potential into the free energy func-
Heisenberg fluigl In these works the conclusion was that antional within the MF approximatiorisee, for example8]).
external magnetic field favors the phase separation, i.e., thEherefore, within the MF approach the model phase diagram
application of the external field increases the gas-liquid critiiS independent ofo, if we use dimensionless units for the
cal temperature. Let us note that the results of Hdf§] are  temperature =kgT/K, the densityn=(N/V)(7c3/6), and
obtained for quite strong fields. In our point of view, it was the external field strength=uB,/K J3. For the free energy
the effect of small fields that is of special interest. This fol-of the hard sphere system we use the “quasiexact”
lows from the fact that at small fields orientational fluctua-Carnahan-Starling expressi¢@]. The MF phase diagrams
tions are large and the corresponding correlations have abtained by the well-known double-tangent construction are
long-range character. Therefore, small external influencepresented in Fig. 1. One can see a nonmonotonic effect of the
can result in significant changes of macroscopic properties afxternal field on the temperature of the gas-liquid critical
magnetic fluids. Besides, the interplay between orientationgboint at small values ofi. With the increase of the external

hereS is a unit vector in the directiom; = (6; ,¢;) of the
magnetic dipole momen, referred to the uniform field,
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137 v(1)==2 vYie(wy). (6)

12 +
For a self-consistent solution of Eqg) and(5) we shall use

the method suggested id,12]. The method is based on the
algebraic representation of the Lovett equation for uniaxial
fluids. Using the general expansion for the direct correlation
function of linear molecules

11+

14

0.9 1

c(1,2)= % AR Ymu(01) Y (02)Yin(0r)  (7)

MVN

0.8 T4

and the exponential form of the one-particle distribution
function

05 t , : . N\ 7 o1
0 01 02 03 04 05 flw)=2 exF{ IZJO AIYIO(“’)> ; (8)

FIG. 1. Phase diagram of the Heisenberg fluid in the externa\INe obtain, following Refs[7], an algebraic representation of
magnetic field within the MF approximation. The results are the ' 9 = 9 P

same for anyze. The thick lines constitute the phase diagréhe the Lovett equation for a uniaxial fluid in the external field

Curie line and the gas-liquid binoddor h=0. The thin lines are

the gas-liquid coexistence lines fbr=0.1,0.5,2,5,10,26. L= 2 CimYmriln+V,= 2 CimPmt Vi, (9)
mn m

field strength the gas-liquid critical point first moves down -
_ where all indices take the values greater or equal t&,1,
(h=0.1,0.5), then ~moves up h&2), and Ias_t \ i /kgT, Co— [HO (RYAR, Y = p(Yoa(0) Yy ())
=5,10,20) grows higher than the top of the zero field bin- 7B 1, ~mn mno 'oomn ml nl w!
odal. It should be noted that the model potent@lin the (*)o=Jf(@)(---)do, Li=vI(I+1)A, P
limit zo— 0 belongs to a family of the so-called Kac poten- =pVI(I+1)(21+1)(Pi(cos6)),,, Pi(cosf) is thelth order
tials, for which the MF approach is accurate. Therefore, rel-€gendre polynomial. Let us note that the average values
lying on the MF result§Fig. 1) we can state that for long- (Pi1(c0sd)), play the role of order parameters in anisotropic
range enough spin-spin interactionszo{-0) the fluids. Relationg9) are accurate, and their use, as well as the
nonmonotonous field effect on the critical temperature doe§se of the integro-differential equatid®), does not intro-
take place. But for finite values a@ir we are forced to carry duce any approximation into the theory. _
More consistent consideration of anisotropic fluids can bénodel[Egs.(1) and(2)] an analytical solution of the aniso-
done on the basis of the integral equation method that allow0Pic OZ equatior(4) within the mean spherical closure,
one to calculate both the one-particle distribution function _
and the pair distribution function. The task cons[4§] of a €(1.2=~P(Ryz,1,02)/kgT,  Rip>o0,

solution of the anisotropic Ornstein-Zernik®Z) equation h(1,2=—1, R,< 0.

Condition (10) for h(1,2) follows directly from the fact that
hard spheres do not overlap. The mean spherical clg¢$0ye
restricts correlation functions of our model to those of the
where d(3)=dRsdws, p(1)=pf(wy), h(1,2) andc(1,2) form

are the total and direct correlation functions of the system.

Since Eq.(4) contains the one-particle distribution function, f(1.2)= f R)Y| m(01)YE (w,) (11)

we need(besides a closure relation for the anisotropic OZ (1.3 |1|22m 1zm(Ra2) Yiym( @) ol 2

equation some additional relation for the determination of ) ) -

p(1). It can be thefirst equation of the Bogolubov-Born- (l1,12=0,1), and representatia®) results in equalities
Green-Kirkwood-Yvon hierarchythis was used in Refs.

[4,5] to obtain a numerical solution of E¢4)] or the Lovett Al:A1p<|Yll(w)|2>wj c111(R)AR+ kv_{l_
equation for anisotropic fluidgl 1], B

h(1,2)=c(1,2)+fp(3)h(1,3)c(3,2)d(3), (4

(12

v(1 = U1
lelnp(1>+vwl%= f c(12V, p(2)d(2), () Ar=Aap(Yid @) f CrlRIAR* =
B
_ . . Here we use the notations of E@.1) for harmonics of the
whereV,, is an angular gradient operatar(1) is a poten-  direct correlation functiorc(1,2); v,=uBo/+/3. Thus, the
tial of interaction with a uniform external field, its spherical use of the mean spherical closure yields for our model van-
harmonic expansion is of the form ishing of coefficientsA; with [>1 in Eq. (8), and the self-
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consistent one-particle distribution function in the mean &,7/k Lotk - (@
spherical approximatiofMSA) takes the form 177 1(;435 i F
L6 ¢ 1.043
f(w)=eX|I[A1Y10(w)]/ J eXniAlYlo(w)]d(U (13) 151 1.0425
1.042 +
14 +
L . . 0415
A uniaxial symmetry of our system leads to factorization of ;3 | 11021 |
Eq. (4) on the equations with differemh. At m==*1, :
12 + 1.0405
1.04 t t } |
h11m(R12) = C1am(R12) + p{| Y im(@)[?),, L 017 018
1 4
Xf C11m(R13)N11m(R32) dRs. (14 09
0.8 T
For m=0 we have a system of integral equations that after . , , , , -
the Fourier transformation gains the matrix form "o oi 02 03 04 05
k,T/K ()

1.192 1
11915

F

1.191

11905 T

1.19

1.1895

1.189

1.1885 ¢
1.188 t —t

0.19 021 0.23

Hij(k):Cij(k)'l'Z_, Cii (K)pirj Hjri(k), (15 17
- 16+
where Hij (K) = hijo(K), Cij (k) =cijo(k), Pij 151
=p(Yio(®)Yjo(w)), , indices take the values 0 and 1. The 1l
problem of a self-consistent solution of the anisotropic OZ
and Lovett equations has reduced at this stage to the solutio13 1
of Egs. (14) and (15 under conditiong12) and the self- ;, |
consistentf (w) given by relation(13). On the basis of the
Wertheim-Baxter factorization methdd3] one can find the
analytical solution of such equations in the form of a set of 11
algebraic equations. The detailed derivation of similar solu-gg |
tions can be found in the literature, and therefore we omit
any details and refer the reader to the previous publicationso'8 ]
[7,12]. The explicit form of the solution is quite unwieldy 97
and will be given in a future presentation. Here we point out
only that it is efficiently computable, and we use it for cal-
culation of isotherms by the virial route to thermodynamics
in order to locate the gas-liquid transition by the Maxwell sl
construction.
The configuration of the MSA zero-field phase diagrams
slightly differs from that of the MF theor{Fig. 1). The MSA
via the virial route to thermodynamics demonstrafelg. 2)
the lack of the tricritical poin{7] in the Heisenberg fluid
[Egs.(1) and(2)] contrary to the MF and modified MF theo-
ries [8]. Within the MSA the Curie line joins the gas-liquid
binodal at its vapor brancftsee the insets to Fig.)2This
result is in whole agreement with the available zero-field L3
simulations for the same modg]: the liquid phase is fer-
romagnetic and the gaseous phase is mainly paramagneti 1
except in the neighborhood of the critical point, where the
transition ferroliquid-ferrogas takes place. The quantitative o o o o o
agreement with simulations is also quite perfgste Fig. ) ’ | ) ’
2(a)]. In the insets to the figure one can distinguish the criti-
cal point(CP, the top of the gas-liquid binodalnd the criti-
cal end poin{CEP in which the Curie line joins the binodal.

In the tempe_rature _range frotgep to tep three SPa“_a”y Uni-  the MSA. The thick line is the case of zero field. In the insets the
form phasesisotropic gas, ferrogas, and ferroliquicen ex- \;cinity of the ferrogas-ferroliquid critical point is shown, ahdnd

ist. For long-range enough potentials this intervake( mark isotropic and ferromagnetic domains. The thin lines are the
—tcep) decreases with the decreasezof (see Table)land  gas-liquid binodals of the fluid in the magnetic figltie attached
tends to zero for small values abr: the CP and the CEP numbers are the values of the figi)l. Simulation dat46] (h=0)
coincide and form the tricritical point, as is shown in Fig. 1. for zo=1 (a) are shown as black circleghe gas-liquid coexist-

In practice we cannot distinguish the CP and the CEP by thence and diamondgCurie points. It should be noted thadtgT/K
MSA virial route already aro=0.1. =T*/6 from Ref.[6].

0 0.1 02 03

kT/K ©

19 +

FIG. 2. Phase diagram of the Heisenberg fluid in the external
field for zo=1 (a), zo=2 (b), andzo=3 (c). Lines are results of
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TABLE I. Coordinates of the gas-liquid critical point and its small fields on the gas-liquid separation gets weak and fi-

distance from the critical endpoint at different. nally disappears for short-range enough spin-spin interac-
tions.
zo tep ncp tecp—tcep  7Wcp— Wcep The field effects may be explained by the existence of two

concurrent tendencie$he firsttendency is that the external

2 11013 02119 0.0016 00185  fig|q aligns the spins and, therefore, causes a more effective

1 1.0430  0.1587  0.0015 0.0151  attraction between particles. This raises the bindda., in

0.5 0.9811 0.1316  0.0008 0.0063  simple nonmagnetic fluids the binodal goes up when the in-
0 (MF theory  0.938 0.117 0 0 teraction increasesThe secondendency takes place if the

susceptibility of the rarefied phase is larger than that of the
coexistent dense phase. In this case the magnetization and
The effect of strong magnetic fields on the Heisenberd"® ?ffgctnr/]e attr‘?l_ﬁ'on dbetween ptz;\]rtlcles grotw tiette_r n fthtf]
fluid [Egs.(1) and(2)] consists of a considerable increase ofrirgs'g sep aerlngn %ierggéfssﬁse seio%r:je{gﬁdlgﬁc 9";”[';' oressees
the critical temperature. Strong external fields spread the ga$: _'p X SR . y suppres
liquid coexistence region on the phase diagram, in othe e gas-liquid separation |n.the. fluid. The secpnql tenplency IS
' yery strong ath=0 in the vicinity of the gas-liquid critical
point. In this region the vapor branch of the binodal almost
: A ' coincides with the Curie linéwhere the susceptibility tends
from the MSA phas_e (_jlagram_s_m F|g._2_that small fields Caly infinity), whereas the branch of the coexistent liquid phase
suppress thg gas-llqmd transition at finite valueg@f(_not . rapidly deviates from the Curie line. The proximity of the
only in the limit zo—0). For example, one can see in Fig. \a06 hranch to the Curie line is the most considerable when

2(a) (zo=1) that the external field of strength=0.1 totally  yhe yricritical point takes place, and the suppression effect is
removes the phase separation at temperatures fepf0.1)  {he most pronounced in the case=0. The susceptibilities

=1.002 totcp(0)=1.043. In the systems with more short- ¢ 1o coexistent phases level with increasing, and the

range anisotropic interactions this temperature interval dego.ong tendency gets weak for short-range potentials. The

creases. For example, in Figb? (zo=2) the temperature  gjmilar external field effect has also been noticed in the re-

interval, where the external field=0.1 removes the gas- et study of the Ising magnetic fluid within the cluster ap-
liquid separation, is much less. For short-range enough P%roach[14].

tentials even very weak fields do not suppress separation,
e.g., forzo=3 the same fielch=0.1 increaseg¢p [Fig. We are grateful to I. M. Mryglod, for he compelled our
2(c)]. Thus, the MSA predicts that the suppression effect ofattention to the problem.

words, it favors the gas-liquid phase separation. This resu
agrees with the conclusions of Ref8-5|. But it follows
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