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We show that the decay of a passive sc#l@advected by a random incompressible flow with zero corre-
lation time in the Batchelor limit can be mapped exactly to a certain quantum-mechanical system with a finite
number of degrees of freedom. The Salinger equation is derived and its solution is analyzed for the case
where, at the beginning, the scalar has Gaussian statistics with correlation function of thes T . Any
equal-time correlation function of the scalar can be expressed via the solution to theliSgarequation in
a closed algebraic form. We find that the scalar is intermittent during its decay and the averaj® of
(assuming zero mean value 6f falls ase™ ?«P! at larget, whereD is a parameter of the rowya:%a(6
—a) for 0<a<3, andy,=2 for a=3, independent of. [S1063-651X99)51004-(

PACS numbdps): 47.27—i, 03.65—w

Kolmogorov theory(K41) [1] remains the cornerstone of furthermore, turn our attention to the Batchelor lindit 2,
our understanding of fully developed turbulence. This simplewhich corresponds to smooth flows with very large velocity
theory predicts a scaling lavithe famous Kolmogorov- correlation lengthgfor comparison, the inertial range of real
Obukhov k=52 law) of the energy spectrum that is in re- turbulence corresponds &= 2.) This limit has attracted re-
markable agreement with experimental data. Since theent interest due to its good analytical featurks,12.
1980’s, however, data gathered have consistently pointed out Our result is that the scalar becomes more and more in-
the failure of K41 in predicting the scaling law of high-order termittent during the decay. Specifically, we found that the
correlation function$2,3]. The breakdown of K41 is closely average of | #(x)|%), wherea is an arbitrary positive num-
related to the non-Gaussianity of the distribution of velocityber, decays ag™ ?«P' at asymptotically large, where y,
increments. The phenomenon, dubbed intermittency, has be=%a(6—«) if «<3, andy,=3 when «=3. The flatness
come one of the central issues of theoretical works on turbu¢6%)/( 9?)~e’®"4 goes to» ast grows. This is in sharp
lence. Recently, it has been found that the intermittency of @ontrast with the steady-state case, where the scalar statistics
passive scalar advected by a turbulent flow might be eveis largely Gaussianl2].
stronger than that for the velocity4]. Such observations To attack the problem, we will reduce it to a certain prob-
have led to the hope that the study of simple models, such dem of quantum mechanics, which can then be solfed
the Kraichnan model of scalar advectigee Refs[5-10]  another attempt to apply quantum mechanics to turbulence,
and below, may provide clues to understanding the muchsee[13].) We first note that the probability distribution func-
more complex Navier-Stokes intermittency. tional of the scalar, which will be denotel[t,#], can be

In this Rapid Communication, we consider the problem ofexpressed in term of a path integfa#]
turbulent decay of a passive scalar. In other words, we want
to find statistical properties of a scalé@satisfying the equa-

tion \If[t,6]=J Dar(t,X)DO(t,X)Dv;i(t,X) p[v]
&t0+vi(9i0=KA0, (1)

X i dtd 00+v,0,0—kA0)|, (4
wherex is a small diffusivity,v; is a Gaussian random field, exp{lf Xm0+ v,016-KkAb)|, (4

which is white in time,

()it y)) = S(t—t" )i (1), 2 where the Gaussian measure for the velopity] is chosen
(it X)v;(t".y))= MTi(r) @ to satisfy Eq.(2). The auxiliary variabler enforces Eq(1).
and Integrating ovew, one obtains
&+2
(NN=VS: —D| Z—35& . ré—ré2r.r.
fij(r)=Vé =D == ayr=—r*"rr; |, ) \I’(t,0)=J DwDeexp{iJ dxwd,0
wherer=x—Yy, and ¢ is some real number. The Kraichnan L
model usually contains a random external scalar source on -2 f dtdxdy m(t,x)d; 6(t,x)

the right-hand sidéRHS) of Eq. (1). Such a source would
make the steady state possible, but since we are interested in _ .
the decay, it is assumed that the source is absent. We will, X B (x=y)m(ty) 9 0(Ly) 'KJ dx A 0}'
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The path integral describes the evolution in Euclidean timesimilar discussion without quantum mechanics, [d6#.) Let

of a quantum field theory with the Hamiltonigh5] us for a moment concentrate on the states in whidhas
Gaussian statistics. This corresponds to the wave functions
of the form W[@]~exp(—30K 16), where K(x—y)
=(0(x)6(y)). We will further restrict ourselves to functions

K that have the Gaussian sha|dé(x—y)~exp[—%bij(x
+in dx A6, (5) —Y)i(x—y);]. More strictly, we require that, in Fourier com-

ponents, the spectrum @fhas the form

H=3 f dxdy m(x)d; 0(x) f;;(X—y) m(y)d; 6(y)

where 6 and 7 are conjugate variables satisfying the usual 1

commutation relatiof 6(x), 7 (y)]=i8(x—y). The operator (6*(k)O(k"))= 69 ex;( ~ 58 kikj) S(k—k"),
ordering in Eq.{5) corresponds to the physical regularization

of the path integral4). The evolution of the distribution where, is a constant independent af :(bij)fl (one can

functional W[ 4] is described by the Euclidean version of the choosed,=1.) Denote such states #&:). The group ele-
Schradinger equationg, ¥’ = —HW. Note that the functional ants act orfay) as follows: i

¥ itself, not its square, determines the probability distribu-

tion of 6. The average of, e.glg|* is defined as(|6|*) e Pitii|a;)=|e Pa(e ATy if B;=0,
=[D6|0|*¥[6]. In further discussion, we will use the (®)
guantum-mechanical terminology, so the terms “probability e“ﬂiiDii|a”—>= laj; +48i)).

distribution functional” (PDF and “wave function” are

used interchangeably. We now choose our representation to be the one acting on

In the Batchelor limit(3), the Hamiltonian can be simpli- the subspace of the Hilbert space that contains all linear com-
fied considerably. We will concentrate our attention on thebinations ofia;;) (although the latter do not form an orthogo-
homogeneous case, i.e., when the system is invariant undggl basis. A vector in this subspace is characterized by the
spatial translations. In the quantum language, this means thfunction ¢(a;;), which is the coefficient of the expansion
we restrict ourselves to the stati) having zero total mo- |V)=/[da;; ¥(a;j)|a;;). In general, the scalar statistics in
mentum,P;|¥)=0, whereP;= [dx 7(x)d;0(x) [16]. With  |¥) is not Gaussian. The operatdrg andD;; can be written
this restriction, the Hamiltoniab) can be rewritten in the as first-order differential operators with respectaip, and
following form: the Schradinger equation becomes a second-order PDE.on

Moreover, if the initial condition is isotropic, i.e., invari-
ant under SC8B) rotations €L, the wave function de-
pends only on the eigenvalues of the matijx, not on the
Eulerian angles characterizing the orientation of the eigen-
where the operatorss;; andD;; are defined as vectors. The wave function is now a function of three vari-
ables,(uq,u,,uz), where we have denoted the eigenvalues
of a; ase®i. We rescaley so that the statgl) is expressed

D .
H=2(4LjLij—LiLj—LijLi) +1xDj, (6)

Lij:f dXXﬂT(X)&jH(X), Dij:j dX’ZT(X)(?l(?Je(X)

via (u) as
It is straightforward to check that;; and D;; form a
closed algebra with the commutation relations, (W)= ] duidU g(u)la(u,u)), ©
[Lij L] =1(0kLi— &iiLy;), where a(u,U)=U diag@®)u~%, U belongs to SC8), and
the integration ovel is performed using the invariant mea-
[Lij ,Dul=—1(8iDj+ 6Dy, (7)  sure on the S@) group manifold.
The Schrdinger equationy(u) can then be derivette-
[Dij,Di]=0. tails are found if19]). It has the form
The fact that the algebra is closed implies that the system is Ouh=D (934 95+ 95— 0102— dpd3— 9301)

actually one with a finite number of degrees of freedom. The 3
guantum field theory thus degenerates to quantum mechan- —ou;
ics. Notice that thel;; form a closed subalgebra. Indeed, _;1 [3Ddi(Tiyh) + 2k (e )], (10
they are the operators of linear coordinate transformations. In
fact, only the SI3,R) generators enter into the Hamiltonian whereg;=4d/4du; ,
(6) (cf. [10Q].) H is invariant under the S@) algebra formed
by the antisymmetric part df;; . gt1— g2zt u3)

In principle, the Schidinger equation witiH defined in (e?U1—e?12)(e?V1—e?V3)’
Eq. (6) can be solvedat least numerically.In this paper, we (12)
will choose a representation of the algebfawhereH has a fo=f(uy;uz,uy), fa=f(uz;us,uy).
relatively simple form, but the physics is nontrivial. Our
choice is inspired by the observation by Townséhd| that  Special caution is required when twg are equal to each
a Gaussian-shaped hot spot preserves its Gaussianity whether; however, this will not affect our subsequent discus-
advected by Batchelor-limit velocity flowfor a somewhat sion.

fi=f(ug;up,uz)=
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To fully define the problem, the initial condition @f(u)
is needed. One can take as the initial state the veafpr,
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When « is small, the exponential behavior ¢f¢|“) can
be found analytically. This can be done by using the path-

wherea;; =diag(1,1,1). This corresponds to a scalar that hagntegral description of the random walk2) and finding the
Gaussian statistics, zero mean value, and the correlatiossaddle-point trajectories that dominaté|® [19]. In this
function (#(x) 6(0)) proportional toe ¥ att=0. The cor- Rapid Communication, we use a heuristic, yet more physical,
relation length off is taken to be of order 1. In terms gf ~ Method to find the large time behavior ¢#|*).
the initial condition isy(t=0,u) = &(u;) 8(u,) 5(us). Let us assume that after letting the syster®) evolve for

Equation(10) can be interpreted in an intuitive way by @ while, the values ofi;, u,, anduz become widely sepa-
using a three-dimensional random walk that has the Fokkerfated. We assume;<u,<ug, and wide separation means
Planck equation coinciding with E410) [20], Up—u;>1, u3—u,>1. From Eq.(11) one sees immediately
that in this regimef,=—1, f,=0, andf;=1 (in fact, these
asymptotic values of; are related to the Lyapunov expo-
nents, see, e.g., RgR21]).

Let us first ignore the term proportional to diffusivity in
Eq. (12). The velocityu; has two contributions: one frorf
and another from the noigg. The first contribution implies
that the mean values af; drift with constant velocities,
u,(t)=—3Dt, u,(t)=0, andus(t)=3Dt, while the noises
makeu; fluctuate around these mean values. The condition
of wide separation olu’s is satisfied whent>D 1. The
advection, on average, compresses a fluid element in one
direction by a factor 0&*P' and stretches it in another direc-
tion by the same factor. The remaining third direction is not
substantially compressed or stretched. In this regime, the dif-

U;=3Df,+2ke i+ ¢, (12

where¢; are white noises that correlate as follows:
&1+ 621 63=0,

(£1(D&1(1))=(&2(1) €2(1")) = (£3(D) §3(1"))=2D 5(t—t"),
13
(&a(D)&(1)) =(&a(1) E3(t)) =(&3(1) £1(1)

——D&(t—t").

Let us discuss the physical meaning of Ef2). A point
(ug,uy,u3) corresponds to the configuration @having the  fusion is still not operative, an¢| 8|*) remains constant.
spectrum (| (k) |?)~exp(—3=ek?). In the configuration Att=(6D) tInk 1 (>D tif kis very small, the mean
space,d is approximately constant inside an ellipsoid with value ofu; becomes; In k. The termxe™2"1 in the Lange-
major axes proportional te'i. When advected by the flow, vin equation(12) cannot be ignored anymore. Physically,
this ellipsoid is subjected to random linear transformationsregions of differentd have been brought this close together
If the only transformations of the ellipsoids are those thatso that diffusion is no longer negligible. Let us consider the
stretch or compress the ellipsoid in the directions of its majoequation for u;, U;=—3D+2ke 2'1+&;, near Ump
axes, the results would bi;=¢;, where & are random. =3In «. The first term on the RHS pushag toward smaller
Equation(13) reflects the conservation of the volume of the values, while the second term prevents from becoming
ellipsoid during random stretching and compressing. Howsubstantially smaller than,,,. The variableu, thus fluctu-
ever, the ellipsoid may be subjected to stretching or comates aroundi,. Therefore, the random walk becomes ef-

pressing in directions other than the major axes, as well as tfectively two dimensional:

shearing. These effects are accounted for by the tdpfy 3
on the RHS of Eq(12). The incompressibility is not vio-
lated, due to the identity, + f,+ f;=0. The terms e~ 2!

are not important unless one major axis of the ellipsoid is as

Up=§,, U3=3D+¢&3,

(£2(1)&(1))=(&3(1)3(t"))=2Do(t—t"), (14

small as the diffusion scale. In the latter case, diffusion

smears out the scalar and causes it to be correlated at a larger

distance. This is exactly the effect of th&@ 2'i terms in

(£2()&3(t"))=—Da(t—t").

the Langevin equation. Due to the sign of these terms, the Additionally, it is required thati,+uz not decrease with

volume of the ellipsoid and, hence, alsp+u,+ u;, always
grows during the random walk.
Since any correlation function can be computed|&gy),

time, due to the previously found fact that+u,+u; can
only increasd(if u,+u; decreases, this means thatsteps
away from the valual;=u,,.) Now there is a possibility

where the scalar statistics is Gaussian, one can find any cdier | 6| to decay, since it is proportional & *(U1*+t2+Us)2

relation function with respect tpF) if one knows the solu-
tion to Eq. (10) (e.g., from numerical integrationFor ex-
ample, the average ¢f|“ (a>0) over the stat¢a(u,U)) is
proportional toe™ *(U17U2¥Us)/2: therefore, its average with
respect td¥) is

(1017 =C.(7(1=0))"2 [ duytu

o
xex;{ - E(u1+ Up+Us)

whereC,= 7~ Y2*2I'[(a+1)/2]. This relation is exact.

but u; +u,+u5 is no longer a constant. Assuming that the
random walk(14) starts atu,=u3 anduz=u3, the distribu-
tion of u, anduy at large times is Gaussian:

1 0y2 0 2

p(Uz,Uz)~exp — zo[(Up—U3) "+ (us—uz—3D1)
—u® —ul-

+ (U= u3)(uz—uz—3D1)];.

(15

The mean value of|9|* can be computed by taking
the average ofe *(Y2*U3)2 gyer the distribution (15).
Consider the case of Qa<3 first. The integral
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fdu,dug p(u,,ug)e”*U27U3)2 js dominated by the region ellipsoid in which @ is approximately constant has never
nearu,—uJ=—%a Dt, u3—u3=(3—a/2)Dt. The value of been too thin during its evolutionThe averagg|6|®) is
the average is proportional te~«P!, where y,=1a(6  thus determined by the probability of such realizations,
—a) which depends only on characteristics of the ﬂov% but not on
: i i ~9Dt/4 i
Note that the region where the integral is saturatedias @ This probability, as has been found, Zallsezlsg - This
implies, in particular, that the flatneg#*)/{6°) grows as

decreasing with timeuzzug—%a Dt. Eventually,u, will 714 . >
. —2uy ; _t"% meaning that the scalar becomes more and more inter-
become as small as,;,, and the termxe in the Lange mittent during its decay.

vin equation becomes important. Now, bathandu, fluc- More careful analysis shows that the decay lew’=P
tuate aroundip,,. However, as we will explain, the expo- ot e have found is valid only at large enoughAt inter-
nential decay law does not change. Indeed, wireandu, — megiatet, there is a smooth transition frofhd|*)= const to
remain approximately constant, the evolution wof is de- (|6]*)~e~ 7Pt [19]. The full analysis does not change the
scribed by the one-dimensional random walk, long-time tail of (| 4]%).
. Sy Y In conclusion, we have shown that by mapping to quan-
U3=3D+&, (&(1Es(t))=2Da(t—t"). tum mechanics, the problem of turbulent decay of a ran-
tribt ; - _ -1, .0 domly advected scalar in the Batchelor limit can be made
tg%g'zsm.?;;?]n ?;23 : (:r(;wep ((;a*"_)aujzx [(i h('i ?t).s (L:% g? completely solvable. The power of the approach described in
i I)t]. |0|a' 9 v dg tV\nl) ! 'f. pd pth i this paper is not limited to the calculations @#|“); analo-
fonal to(|6]%) sinceuy aﬂ.‘t up are consla f one finds tha gous calculations can be done for any equal-time correlation
the decay law is stile™?«”*, wherey,=7a(6—a).
For the particular case=2, our result can be checked -, bt

function. For example, the long-time tail ¢fd,6|“) is also
against the calculations based on the exact evolution eqUike st

with the samey, . The situation here is not similar to
. . . eady state, where the scalar and its derivatives have
tion for the scalar spectrufb]. This comparison has been y
done; the results indeed agree.

very different statistics, with the scalar being largely Gauss-
i 1 _ ian and its derivatives being intermittdri2]. The relevance
When .a>3’ the sqlutlon Uy~ =37 Dt, us (.3 of the techniques presented and results to the general prob-
— a/2)Dt is no longer realizable, since it has decreasing
+u3. The average off|“ is then determined by the edge of

lem of intermittency is yet to be explored.
the distribution function, i.e., by,~— 3Dt and uz~ 3Dt, The author thanks E. Farhi, J. Goldstone, and K. Rajago-
or, afteru, reachesun,, u,~up;, anduz~const. The ex- pal for helpful discussions, and R. Kraichnan for pointing out
pectation value decays as°°!4. The reason the decay law Ref.[18] to me. This work was supported in part by funds
does not containx is the following: whene=3, the main  provided by the U.S. Department of Ener¢OE) under
contribution to| 8| comes from the realizations in the statis- Cooperative  Research  Agreement No. DF-FC02-
tical ensemble wherd is unaffected by diffusior(i.e., the = 94ER40818.
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