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Quantum chaos induced by scaled disorder
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Quantum chaos is obtained for a two-dimensional square lattice with a number of vacancies that scales with
the linear size of the clustdr. The appearance of quantum chaos is signaled by both level and wave function
statistics. Since states are extended, ballistic transport behavior is expected. In particular, we show that the
static conductance increases linearly wit S1063-651X99)51104-5

PACS numbgs): 05.45.Mt, 73.20.Dx, 03.65.Sq

The statistical properties of measurable magnitudes of The model of a quantum chaotic billiard presented in this
mesoscopic systems play an important role in the physics dRapid Communication is not only the more general one pos-
mesoscopic phenomen,2]. Random matrix theoryRMT)  sible but also simpler than the original one because the sub-
[3] has been successfully used to explain most of the experbtitution of defects by vacancies eliminates one unnecessary
mentally known statistical results. The nonlinear supersymiechnical complication. Nondiagonal or topological disorder
metric o-model demonstrates the relevance of RMT inoccupies the place of diagonal disorder, eliminating one ir-
slightly disordered system@] and makes detailed predic- rélevant parameter from our model, the width of the distri-
tions for some deviation§s]. However, generalization of bution of diagonal energies. Only one energy scale remains,

these results to chaotiballistic systems brings technical the one defined by the hopping integral. The other superflu-

complications, since average over disorder should be subsfus characteristic of our former billiard model was the place-

tuted by energy averaging of an action in which the LiouviIIernent qf all the defects_ on the su_rfac_e of the system. We were
operator replaces the diffusion operator. Alternatively onemOOIeIIng roughness in a pra(_:tlcal mplementa’qon but here
) ' we show that bulk roughness in the form of forbidden places

can study disordered systems that are nevertheless ba”lsﬁlé) also valid. In other words, what matters is just the rela-

f“’".’ the point of view of t.heirtransport properties. A billiard tionship between forbidden and allowed sites but not their
having a rough surface is the model of chojég7]. Other relative spatial distribution.

possible models are distorted integrable billigi@ls Follow- Our model of a quantum billiard is described by means of

ing this idea, Blanter, Mirlin, and Muzykantskii have pre- 5 tight-binding Hamiltonian with a single atomic level per
sented a detailed supersymmetric study of the statisticahice site,

properties of rough circular billiard®]. The level statistics

for the same problem was studied by Tripathi and A L

Khmelnitskii [10]. Motivated by the important differences H=-2 ciTcJ-i, (1)
between systems having surface or bulk disorder, we have bli

further analyzed our original modgT] in order to unravel R

the relevant parameters. It happens that the crucial characteshere the operatot; destroys an electron on siteall the

istic is not the physical placement of defects but their num-hopping integrals are taken equal to1 and restricted to
ber, or more precisely, the scaling of the number of defectiearest neighboring siteg. gives just the labels of the ex-
as the size of the system grows. If the ratio between thésting nearest neighbors of site Periodic boundary condi-
number of defects and the billiard area, i.e., the defect derfions are used for the study of spectral properties in order to
sity, is constant, transport properties of the system scale froflinimize finite size effects. Therefore, the difference be-
the diffusive regime towards localization at large enoughtween our HamiltoniarH and the one corresponding to an
size scales. At the same time, statistical properties scale froifeal L XL cluster of the square lattice is the absence of
Wigner-Dyson behavior to Poisson statistics. On the othehopping to and fronk sites chosen at random among tite
hand, if the number of defects is proportional to the numbesites defining the lattice. Spectral calculations have been car-
of surface sites, i.e., defect density is inversely proportionatied out on clusters of linear sizes up to=100, whereas

to linear size, transport properties are ballistic all size  conductance has been measured up#db00.

scales(see below. Diffusive or localized transport behavior The classical analog of our model shares some features
is never reached. Statistical properties are well described bwith the pinball game. Certainly, a classidak L table in-
RMT at any system size. Moreover, the detailed distributioncluding about./a circular scatterers of linear sizecentered

of defects over the billiard does not matter. In this way, weat random positions shows classical hard chaos. Notice that
arrive at the simplest model showing chaotic statistics an@ur model is characterized by two length scales: a micro-
ballistic transport properties: a square cluster of &iddth a  scopic one equal t@ and a mesoscopic one given hy
number of vacancies of ordérplaced at random positions. Scaling towards chaos requires a number of defesttatter-
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FIG. 1. Nearest-neighbor statistics obtained for 25 samples of FIG. 2. Number variance obtained for 100 samples ok 50
100x 100 billiards compared to the Wigner-Dyson distribution. systemgthin line) and 25 samples of 100100 billiards(thick line)

Level separation is given in units of the mean level separation. compared to the standard GOE regbitoken ling.

ers of orderL/a, i.e., just the ratio between length scales.plained by Blanter, Mirlin, and MuzykantskjB]. Both the
This is a basic characteristic discussed in our previous modeiaturation value and the small oscillations about that value
on a general quantum-mechanical billidid. Alternatively,  allow a closer comparison with the balliséemodel predic-
our model can be described as a billiard having internal surtions. The period of the oscillations increases with /N,
faces limiting forbidden areas instead of just one surfaceN being the number of sitgse., proportional to the number
bounding the overall particle movement. Therefore, ourof levels up to the Fermi enerpys predicted by Blanter,
guantum model is not very far from standard classical bil-Mirlin, and Muzykantskii and expected for a generic chaotic
liards, such as Bunimovich stadium or Sinai once a superfibilliard [12]. Nevertheless, the saturation value does not
cial first sight is substituted by a somewhat closer analysisseem to depend oN as predicted by Eq15) of Ref.[9].
Random placement of vacancies is equivalent to a random Let us now turn to the statistical properties of wave func-
shape of the internal surface, and this is the stronger justifitions. Owing to the use of periodic boundary conditions, fi-
cation of calling our model the more general quantum bil-nite size effects are minimized and both participation ratio
liard model. and its fluctuation closely follow RMT predictions for matri-
We follow standard quantum mechanical analysis of ources of comparable sizes. Squared wave function amplitude
model in order to show the existence of chdd4]. We  statistical distribution should follow the corresponding
obtain spectral and wave function statistics and show gooéorter-Thomas law according to OD supersymmetric nonlin-
agreement with random matrix theofRMT). Eigenvalues ear o model resultd4]. Figure 3 shows the wave function
of one hundred samples of 8®0 clusters and 25 samples of probability results obtained for all eigenstates between the
100X 100 systems(250000 levels have been collected. one being number 6923 and the one being number 7692 in a
Nearest-neighbor statistics has been computed for the stat&#80x 100 billiard with a variable number of vacancies.
between energies 2.2 and— 0.5 for both sets of eigenval- These numbers do not have any physical meaning; it is just a
ues. Remember that the spectrum lies betwednand 4 for  nonbiased form of selecting a relevant part of the whole set
our model and is symmetric about 0 since the lattice is bi-of eigenstates. We see that GOE prediction is closely fol-
partite. Results are shown in Fig. 1. Accordance with thdowed over more than five decades when the number of va-
Wigner-Dyson distribution corresponding to the Gaussiarcancies is of order 10Qthe linear size of the systeniut
orthogonal ensemblgSOE) is excellent and independent on clearly differs from it both for smaller and larger number of
the system size. Level repulsion, spectrum rigidity, etc. aralefects. Actually, the distribution is narrower for a smaller
implied by this result, which is the standard hallmark of concentration of vacancies, whereas it shows a significantly
guantum chaos. Nevertheless, other statistics, such as teahanced tail when the number of defects is proportional to
variance of the number of states in an energy window othe cluster area. These results have a straightforward expla-
variable width is a deeper measure of the spectral propertiegation. Almost ordered systems are characterized by Bloch
Figure 2 shows our results for the two sets of data togethewave functions having spatial uniform probability. This
with GOE prediction. The energy range covered is exactlywould imply a é-like distribution. Nevertheless, many states
the same as previously, i.e., a major part of the whole speare degenerate and this fact opens the computational possi-
trum. We see that results are now slightly size dependent artility of choosing random linear combinations of degenerate
differ qualitatively from RMT prediction. states and having some amplitude fluctuations. This is the
Certainly, GOE statistics is followed for energy windows main purely numerical origin of the finite width of the prob-
extending over a small number of eigenvalues, whereas cakbility distribution of wave functions of a quasiordered sys-
culated fluctuations are sensibly smaller and almost equal tem. On the other hand, relatively large disordered systems
1 for larger energy windows. This result was previouslyshow some tendency towards localization. Its numerical
found for our rough billiard model and theoretically ex- manifestation is just the increased distribution (&fge am-
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10° : TABLE I. Finite size effects of the inverse participation rafle
and its fluctuation as obtained for a large number5000) of
eigenvectors corresponding to the Gaussian orthogonal ensemble
and our billiard model.
107 GOE
=
=
P oP
9 L P,X L2 Zz2 —ZxL
8 P, P,
&,
A 10 16 2.9328 0.096835 1.549
32 2.9816 0.049701 1.590
64 2.9960 0.025584 1.637
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FIG. 3. Wave function statistics as a function of the number of 2 2
vacancies. Squared amplitude is given relative to its mean value. 16 2.9281 0.118610 1.898
Statistics are calculated for 1/13 of the total number of states of a 32 2.9923 0.070508 2.256
100X 100 clusters with E(thln Stair), 103 (tthk Stair), and 1992 64 2.9996 0.038744 2.480

(thicker staiy vacancies at random positions. Porter-Thomas distri-
bution describing GOE wave function probability distribution is
also shown(thick line).

close to the band center and the second roughfy at the

) , . bandwidth. A nice linear behavior is obtained for both en-
plitude values are allowed for localized stateSimilar re- ergy values up to cluster sizes as large as>8800. Con-
sults are obtained for smaller systems and/or different disorg,ctance fluctuations are also shown in the figure and are
der realizations. Therefore, we are allowed to conclude thaﬁ/pically a small number of times the quantum conductance
measurable deviations from Porter-Thomas statistics are ngj, it (6?/h). The meaning of this scaling behavior is unam-
present in our two-dimensional billiard. Let us remind onep;q,0us: our model shows ballistic transport behavior. The
that Porter-Thomas statistics excludes the possibility of gnear increase is just reflecting the linear increase in the
fractal character of wave functions, a result that is in agreen mper of channels, whereas the typical linear decrease
ment with the co_nclusions attained in the study of our origi-ak)ng the electrical field direction is absé@hm'’s law pre-
nal model 7]. Going a step further, we can say that any weakyjcts a constant value of the conductance in two-dimensional

localization manifestation is absent from our model at thediffusive systems. See an example of diffusive behavior in
studied length scales. The wave function statistics found ir;

our billiard model should be contrasted with the one proved “ggjjistic transport characteristics could have been inferred

for two-dimensional metals in the diffusion regimé<L  fom the scaling behavior of the mean free path. Using the
< §) [13]. In the last case, pre-localized states give rise both

to extended tails in the distribution and inverse participation
numbers signaling a multifractal behavior of wave functions. [

Further analysis of wave function statistics comes from
the study of finite size effects for the inverse participation
ratio. Results are summarized in Table I. We see that fluc
tuations about spatial uniformity of eigenfunctions of our
model follow the same trend as GOE wave vectors obtaine=
for matrices of the same order. Namely, the relative fluctua-g
tion 6P, /P, decreases asll/L being the square root of the % 100 | ,4/"-
matrices ordef14]. Therefore, although fluctuations are a bit 8
larger for our model billiard, exotic dependences such as the -
InL linear dependence proposed by Blanter, Mirlin, and ="
Muzykantskii in[9] can be disproved from our numerical | £ ol
results. Notice that such kind of deviations from GOE statis- 0 Lo~
tics would also imply deviations from Porter-Thomas law 0
that we have not observed.

Letus now turn to transport propertigs OT the model under FIG. 4. Scaling of the billiard conductance @3/h units as a
study. To this end, we open to opposite sides of the squar@nction of the linear size of the system. Fermi energyEis
cluster and connect them to two ideal leads of widith —0 1751 for the thick continuous line alit= 2.243 99 for the thick
through hopping integrals equal to bulk valu@bat is, |ong dashed line. The thin dotted line shows the typical conduc-
—1). Kubo formalism is used to calculate the conductanc@ance behavior of a diffusive system: Fermi energyEis 0.1751
of several samples of increasing sizEk5]. Results are and the number of vacancies is 2%. Error bars measure the typical
shown in Fig. 4 for two values of the Fermi energy, one verydispersion of data.
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computational scheme reported[it6], a mean free path of tem size, an effect related to the increasing number of chan-
the order of the cluster sidd €0.6L for E=—2.18 andL nels and the absence of decay in the transport direction. Due
randomly distributed vacanciess obtained. Actually, when- both to the simplicity of the model and their nice chaotic
ever the number of vacanciesds, ¢ being a constant, the behavior, we hope that it can be used as a firm basis for a
mean free path is proportional to/'c. This is what can be construction of a general theory of quantum chaos beyond
understood as a ballistic transport behavior, no mattefandom matrix theory. In particular, we plan a thorough nu-
whether the mean free path is larger or smaller than the Sysnerical study of wave function spatial correlations for which

tem linear size. _ _several theoretical predictions exj&17-19.
In summary, statistical and transport properties of a wide

class of ballistic billiards have been numerically studied. Sta- We are thankful to E. Cuevas and A.D. Mirlin for
tistical properties are well described by the Gaussian orsuggesting to us the use of vacancies and adatoms at the
thogonal ensemble except for the level number variance thaurface of the billiard as a way to simulate roughness in a
saturates at-1 for a number of levels larger than the linear realistic fashion. This work was supported in part by
size of the system. Exotic behavior of wave functions, likethe Spanish CICYT (Grant No. PB96-0085 and the
multifractality or presence of pre-localized states, is absenEuropean TMR Network-Fractals Contract No. FM-
from our study. Conductance increases linearly with the sysRXCT980183.
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