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Trace formula of quantum Liouville operator

Mitsusada M. Sano
Department of Fundamental Sciences, Faculty of Integrated Human Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, J

~Received 5 November 1998!

The spectral property of quantum Liouville operators (L9 ) is investigated by introducing its trace formula. It
is shown that this trace formula coincides with the two-point level correlatorR2(2 is) except some coefficients
for quantized maps on a torus. Using semiclassical theory, for quantized chaotic systems, this enables us to

write the trace formula~i.e., the spectrum ofL9 ! in terms of Pollicott-Ruelle resonances. Consequently, it is
shown that the decay rates of density matrix is just semiclassically determined by the Pollicott-Ruelle reso-
nances for the classical counterpart.@S1063-651X~99!50304-8#

PACS number~s!: 05.45.2a, 03.65.Sq
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Recently, the spectral statistics for a system whose c
sical counterpart exhibits chaos has attracted the attentio
physicists. The research area of this subject is now wid
spread, i.e., mesoscopic, nuclear, and atom-molecular
tems. As a first approximation, the behavior of such syste
agrees well with the prediction of random matrix theo
~RMT! @1#. It basically neglects details of a given system,
instance, many degrees of freedom with unknown interac
between particles. Thus one assumes randomness in
RMT, i.e., ensemble of Hamiltonian matrices.

However, a quantized chaotic system is deterministic. I
natural to question the compatibility of the behavior of su
a system with the prediction of the RMT. To answer this, o
of the important quantities usually investigated is the tw
point level correlatorR2(s), which characterizes spectra
correlation of a given system. For semiclassical analysis
such systems, periodic orbits of the classical counterpart
an essential role@2#. Periodic orbits determine the semicla
sical behavior ofR2(s). This approach is powerful for shor
time behavior, however, not for long time behavior~i.e., the
severe convergence problem!. In fact, applicability of semi-
classical theory will be limited up to a characteristic tim
scale, i.e., the Heisenberg timetH52p\d̄, which is the time
scale in which the system starts to feel the discreteness o
spectrum. Hered̄ is the mean density of states. Despite th
difficulty, in @3–5# it has been shown thatR2(s) is semiclas-
sically written in terms of Pollicott-Ruelle resonanc
$gn%n50

` which are the eigenvaluesegn of L,

~L tr!~x!5E dyd„x2f t~y!…r~y!, ~1!

wherex5(q,p) is a pair of position and momentum coord
nates,r~x! is the phase space density, andf is the classical
flow. Note that the contribution from the leading resonan
g0 to R2(s) coincides with the RMT universality and th
nonuniversal character is encoded in higher resonancegn
(nÞ0).

The achievement of@3–5# encourages us to extend the
result to the spectrum of the quantum Liouville operatorL9
for von Neumann-Liouville equation
PRE 591063-651X/99/59~4!/3795~4!/$15.00
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@Ĥ,r̂ #5L9 r̂. ~2!

The real part of eigenvalues ($Gn%n50
` ) of L9 governs the

decay rate of the density matrix. The determination of
spectrum ofL9 is a rather old problem@6–8#. One can expect
that the spectral property ofL9 is also strongly influenced by
the nature of underlying classical dynamics, i.e., regular
chaotic. For a system whose density matrix is decaying to
equilibrium state, chaotic nature of the underlying classi
dynamics is essential there. In this Rapid Communicati
we address a question about the relation between the ei
values ofL andL9 for a chaotic case. We will show indee
that Gn coincides withgn in the leading order of\ for the
chaotic case. Hence in some sense, we will show
classical-quantum correspondence between classical L
ville equation and quantum Liouville equation. This is do
by introducing the trace formula forL9 and relating this for-
mula to R2(s) with the help of the results in@3–5#. The
detailed calculation is in preparation@9#.

First we introduce the definition of the trace of usual o
erator ~indicated by a single hat! and superoperator~indi-
cated by double hats! tr(Â)5(a^EauÂuEa& and Tr(A9 )
5(a,b^Eau$A9 uEa&^Ebu%uEb&, whereuEa& is the eigenket for
Ĥ. The notations ‘‘Tr’’ and ‘‘tr’’ are for superoperator and
usual operator, respectively.

Let us separately consider two cases, namely, quan
maps on torus and autonomous systems.

Quantum maps on torus.In this case, the time evolution
of the wave function is governed by successive multiplic
tions of the Floquet operatorÛ with the finite dimensionN,
where N5A/2p\ ~A: the area of torus!. The eigenvalue
problem is nowÛcn5eivncn . The two-point level cor-
relator R2(s) that characterizes the statistical property
spectrum is defined as

R2~s!5
1

2p E
0

2p

dvFdS v1
s

2D2d̄GFdS v2
s

2D2d̄G
5

1

2p2 Re(
n51

`

utr~Ûn!u2eisn, ~3!
R3795 ©1999 The American Physical Society
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whered(v)5(n51
N ( l 52`

` d(v2vn22p l ) is the density of

states,d̄5N/2p is the mean density of states, and in t
second line the Poisson sum formula was used. On the o
hand, the resolvent of the quantum Liouville operator
quantized map systems is given as

TrS 1

12es2L9 D 5(
a,b

1

12es2 i ~va2vb!
. ~4!

If Re(s),0, we can use the geometrical series. Then we
tain

Re TrS 1

12es2L9 D 5Re(
n50

`

utr~Ûn!u2esn52p2R2~2 is!

1N2. ~5!

This is the first main result of this paper. Note that Eq.~5! is
quantum mechanically exact. The trace ofL9 for quantized
maps on a torus coincides withR2(2 is) except for the pro-
portionality constant and the additional factorN2. The sum
in R2(s) starts fromn51, while that for the trace starts from
n50. Note that asN→`, Tr~¯! diverges due to the part o
the mean density of states. In order to obtain approxim
pole structure of Eq.~5!, we need the semiclassical analys
below.

Now we employ the semiclassical analysis forR2(s) and
write its semiclassical expression asR2

(sc)(s). Here we as-
sume that the corresponding classical dynamics is cha
and the actions of periodic orbits do not systematically
generate. If this assumption is violated, the system m
have systematic degeneracy of eigenenergies and doe
decay in time. Carrying out the same type of analysis
@3–5# to R2(s) of non-time-reversal systems for quantiz
maps on torus which have chaotic classical counterpart@10#,
we have

R2
~sc!~s!52

1

4p2

]2

]s2
lnD~s!1

cos~2pd̄s!

2p2d̄
D~s!, ~6!

where

D~s!5expF2(
p

(
n51

`
1

n2

1

udet~M p
n2I !u

einTpsG . ~7!

M p is the monodromy matrix of a periodic orbit labeled byp
andTp is the period ofp. If the system is very unstable, w
can approximateD(s)'uZcl( is)u22 by neglecting the repeti
tion of periodic orbits@3–5#. Zcl(s) is the Fredholm deter
minant for the associated Perron-Frobenius operatorL. ~For
its derivation and applications, see@11,12#.!

Zcl~s!5det~12e2sL!5)
n

~s2gn!,

5)
p

)
l 50

` S 12
e2sTp

uLpuLp
l D l 11

, ~8!
er
r

-

te

tic
-
t

not
n

where the expression ofZcl(s) in the second line was de
rived by the periodic orbit expansion for the two
dimensional case andLp is the largest eigenvalue of mono
dromy matrix for the primitive periodic orbitp, respectively.
Note that the leading resonance isg050 corresponding to
the equilibrium state and Re(gn),0 for nÞ0. In the second
line, since for the quantized map system on a torus the
mension of the Hilbert space is finite, the product over pe
odic orbits should be truncated up to the Heisenberg t
Tp,tH5N by the bootstrap effect. By Eq.~6!, the spectrum
of L9 is expressed in terms of the Pollicott-Ruelle resonanc

Re TrS 1

12es2L9 D 2N2

5(
n

1

us2gnu2
1

cosh~2pd̄s!

d̄
)

n

An
2

us2gnu2 , ~9!

whereAn51 (n50) or gn (nÞ0). This is the second resul
The poles on the left-hand side are determined by
Pollicott-Ruelle resonances~i.e., the eigenvalues ofL!.
Therefore, it can be regarded as an approximate spectra
composition by semiclassical theory. Formally, the eigenv
uesGn of L9 can be expanded in terms of\ and the repetition
of periodic orbits,

Gn5 (
k50

`

(
r 50

`

\kGn
~r ,k! . ~10!

Therefore, the result impliesGn'Gn
(0,0)5gn . Originally, the

Bohr frequency i (v i2v j ) is purely imaginary. Reader
might see a contradiction, since the result obtained~i.e.,
Pollicott-Ruelle resonances! involves the real part. However
the obtained result only expresses diffusive behavior up
the Heisenberg timetH . Thus, we emphasize here that th
validity of this result is limited in the range 0,t,tH . Be-
yond tH , the off-diagonal part might become significant. I
role is, however, still unexplored.

Autonomous systems.Compared with the case of a qua
tized map system on a torus, two difficulties arise. One i
problem due to the dimension of the associated Hilb
space. The other is nonlinearity of the action with respec
energy. We will see these problems below. For discrete sp
tra, the density of states is given as

d~E!5(
n

d~E2En!52
1

p
Im tr

1

E2Ĥ
. ~11!

The standard semiclassical theory@2# gives us the expressio
of d(E) for f -dimensional systems whose classical dynam
exhibits chaos,

d~E!5d̄~E!1dosc~E!, ~12!

where

d̄~E!5
1

~2p\! f E E dqdpd@E2H~q,p!#1O~\2~ f 21!!,
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dosc~E!5
1

p\ (
p

(
r 51

`
Tp

udet~M p
r 2I !u1/2

3cosF r S Sp~E!

\
2

pnp

2 D G1O~\0!, ~13!

whereM p , Sp , andnp are the monodromy matrix, the ac
tion, and the Maslov index for the primitive periodic orbitp.
The eigenvalues ofĤ are also specified as zeros of the sp
tral determinantD(E)5det(E2Ĥ).

D~E!5C~E!)
n

Fn~E!~E2En!5e2 ipN̄~E!Z~E!, ~14!

where in the first line functionsC(E) andFn(E) are intro-
duced for the regularization,Z(E) is defined in the above
way, andN̄(E) is the mean staircase. Note that ifE is real,
D(E) takes real value. The trace of the resolvent forĤ is
related to the spectral determinant by

tr
1

E2Ĥ
5

]

]E
ln D~E!52 ipd̄~E!1

]

]E
ln Z~E!. ~15!

Z(E) is semiclassically approximated by the Gutzwille
Voros~GV-! zeta functionZGV(E)

Z~E!.ZGV~E!5)
p

)
k50

` S 12
e~ i /\!Sp~E!2~ ipnp/2!

uLpu1/2Lp
k D ,

~16!

for the two-dimensional case.
The following relation for the resolvent ofL9 is the start-

ing point of our analysis for autonomous systems@7,8#:

1

s2L9
5

\

2p
E
C
dz

1

z2Ĥ

1

z2 i\s2Ĥ
. ~17!

The contourC is the semicircle contour with infinite radius i
the upper half plane plus the line integral from2`6 i e to
1`6 i e which is shifted in an appropriate way according
the value ofs. The contribution from the semicircle contou
vanishes.

Taking the trace of Eq.~17!, the resolvent ofL9 is ex-
pressed as the integral of the product of two resolvents oĤ,

TrS 1

s2L9
D 5

\

2p
E
C
dz trS 1

z2Ĥ
D trS 1

z2 i\s2Ĥ
D

5 (
n,m50

`
1

s2
1

i\
~En2Em!

. ~18!

It is clear that in the second line the diagonal sum diverg
thus it does not belong to the trace class. This diverge
corresponds to the fact that the contribution from the m
density of states has a problem of the divergence of the
-

s,
ce
n

n-

tegral, sinceN(E)→1` as E→1`. However, here we
continue to employ formal manipulation. Substituting E
~15! into Eq. ~18!, we have

TrS 1

s2L9
D 5

\

2p
E
C
dE

]

]E
ln D* ~E!

]

]E
ln D~E2 i\s!.

~19!

Here we used the fact thatD(E) is real for realE. To re-
move the contribution of the mean part, we replaceD(E) by
Z(E) and insertZGV(E) into Z(E) ~semiclassical approxi-
mation!,

TrS 1

s2L9
D 5

\

2p
(
p,q

(
r ,k50

E
C
dz

]ztp,r~z!

12tp,r~z!

]ztq,k~z2 i\s!

12tp,k~z2 i\s!
,

~20!

wheretp,k(z)5eiSp(z)/\2 ipnp/2/uLpu1/2Lp
k and we use the no

tation ‘‘Tr’’ after removing the mean part. We can approx
mate the latter actionSp(z2 i\s).Sp(z)2 i\sTp(z). The
poles are determined by 12tp,k(z* )50 and 12tp,k(z*
2 i\s)50 for all p. Therefore, the location of poles depen
on the functional form of the actionSp(z). We have to ana-
lytically continue the energyz into the complex domain and
specify the location of poles by the above conditions. Amo
an infinite number of polesz* , the poles in the upper hal
plane contribute to the integral. The determination of t
analytical structure of the integrand is, in general, difficul

However, the diagonal approximation by the same pro
dure of@3–5# can give us an approximate expression for t
regularized trace. The result is

Tr~diag!S 1

s2L9
D 5~1`!

1

2p\

]2

]s2
lnD~s!. ~21!

The factor of infinity comes from the integration with respe
to z. This means that the regularization is still needed
sides removing the mean part of the density of states.
cause of the nonlinearity in actions, the off-diagonal p
cannot be expressed in a compact form. The result imp
that the poles of the regularized trace are the Pollicott-Ru
resonances in the same way for the case of quantized m
on a torus.

Here, in order to avoid the problem of the nonlinearity
actions, we consider the simplest case where the actio
linear with respect to energy. One such case is the Riem
zeta function, which is a mathematical test field of quantiz
chaotic systems. The action is given asSp(E)5E ln p, where
p is prime number. The Riemann zeta function is defined
z(z)5Pp(121/pz)21, for Re(z).1. We shall regard the
nontrivial zeros1

2 1 izn as eigenvalues of a hypothetical He
mitian operator, which is now actively investigated@13,14#.
Here we formally consider the associated quantum Liouv
operatorL9 R . For the Riemann zeta function, settingZ(z)

5z( 1
2 1 iz), Eq. ~20! can be rewritten as~in this case,\

51!
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TrS 1

s2L9 R
D 5

1

2p
(
p,q

E
C
dz

]ztp~z!

12tp~z!

]ztq~z2 is!

12tq~z2 is!
,

~22!

where tp(z)5e2 iz ln p/p1/2. Notice that the analytical struc
ture ofz(x) is symmetric with respect to Re(x)50. Using the
geometrical series and carrying out the integration, we g

TrS 1

s2L9 R
D 5(

p,q
(

l ,k51

`
ln pln q

pl /2qk/2
e2sk ln qd~ ln pl2 ln qk!.

~23!

The diagonal approximation~p5q,l 5k! gives us the fol-
lowing formula:

Tr~diag!S 1

s2L9 R
D 5d~0!

1

2

]2

]s2
lnF~s!, ~24!

where

F~s!5expF2(
p

(
l 51

`
1

l 2 S e2s ln p

p D l G . ~25!

If we use the approximation(n51(1/n2)xn'x for uxu,1, we
can replaceF(s) as F(s)'uz(11s)u2. Next consider the
off-diagonal part. Since the argument of thed function does
not become zero, therefore, the off-diagonal part of this c
vanishes. Compared with the result in@4#, for the Riemann
zeta function, although another regularization for the fac
of infinity is needed, the trace formula forL9 R surely coin-
,

cs

tt.

.

e

r

cides with the diagonal part ofR2(2 is). The difference is
the absence of the off-diagonal part, which forR2(s) is re-
lated to Hardy-Littlewood conjecture on the two-point corr
lation of primes@15#. We hope that this also holds for gen
eral autonomous systems after unfolding of spectrum
appropriate regularization.

In summary, we have investigated the trace formula foL9
by employing semiclassical theory. For a quantized map o
torus, the trace formula forL9 is exactly related toR2(s). As
a result, by semiclassical theory for systems which exh
chaos in\→0, an approximate spectral decomposition w
obtained. It has been shown that in the leading order,
decay rateGn of L9 coincides withgn of L. For general au-
tonomous systems, we encountered two difficulties, i.e.,
contribution from mean density of states and the nonlinea
in actions. However, for the case of the Riemannz function,
thanks to the linear energy dependence of actions we c
evaluate the semiclassical expression for the trace ofL9 for
this system, although the regularization is still needed
sides the contribution from the mean part of the density
states. For general autonomous systems, it is unclear whe
or not this approach gives the same result. Finally, altho
our approach is the semiclassical treatment, the relation
tween the result obtained here and the work by the Brus
school~for instance, see recent review@16#! would be inter-
esting for future investigation.
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