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Trace formula of quantum Liouville operator
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The spectral property of quantum Liouville operatol?.g (s investigated by introducing its trace formula. It
is shown that this trace formula coincides with the two-point level correR6r-is) except some coefficients
for quantized maps on a torus. Using semiclassical theory, for quantized chaotic systems, this enables us to
write the trace formuldi.e., the spectrum of) in terms of Pollicott-Ruelle resonances. Consequently, it is
shown that the decay rates of density matrix is just semiclassically determined by the Pollicott-Ruelle reso-
nances for the classical counterp281063-651X99)50304-9

PACS numbeps): 05.45-a, 03.65.Sq

Recently, the spectral statistics for a system whose clas- ap 1 .
sical counterpart exhibits chaos has attracted the attention of gt E[H,P]:
physicists. The research area of this subject is now widely
spread, i.e., mesoscopic, nuclear, and atom-molecular sys- : o A
tems. As a first approximation, the behavior of such systemg‘he real par]E %f e|genyalues{1(n}n:ﬁ) of L governs thfe h
agrees well with the prediction of random matrix theory ecay rate ‘3_‘ e density matrix. The determination of the
(RMT) [1]. It basically neglects details of a given system, forSPectrum ofL is a rather old problerf6—8]. One can expect
instance, many degrees of freedom with unknown interactiothat the spectral property f is also strongly influenced by
between particles. Thus one assumes randomness in thige nature of underlying classical dynamics, i.e., regular or
RMT, i.e., ensemble of Hamiltonian matrices. chaotic. For a system whose density matrix is decaying to the

However, a quantized chaotic system is deterministic. It issquilibrium state, chaotic nature of the underlying classical
natural to question the compatibility of the behavior of suchdynamics is essential there. In this Rapid Communication,
a system with the prediction of the RMT. To answer this, onewe address a question about the relation between the eigen-

of the important quantities usually investigated is the two-yalues ofZ andL for a chaotic case. We will show indeed
point level correlatorRy(s), which characterizes spectral thatT',, coincides withy, in the leading order of. for the
correlation of a given system. For semiclassical analysis ofhaotic case. Hence in some sense, we will show the
such systems, periodic orbits of the classical counterpart plaglassical-quantum correspondence between classical Liou-
an essential rolg2]. Periodic orbits determine the semiclas- ville equation and quantum Liouville equation. This is done
sical behavior 0R(s). This approach is powerful for short 1,y iytroqucing the trace formula fdt and relating this for-
time behavior, however, not for long time behavioe., the mula to Ry(s) with the help of the results ifi3=5]. The
severe convergence problgnn fact, applicability of semi- detailed calculation is in preparatidl.

classical theory will be limited up to a characteristic time ;< \ve introduce the definition of the trace of usual op-

scale, i.e., the Heisenberg timg=2x#d, which is the time erator (indicated by a single hatand superoperatofindi-
scale in which the system starts to feel the discreteness of t'leated by double hatstr(A)=3 (E |A|E ) and Tr@)
spectrum. Herel is the mean density of states. Despite this_s /£ fAIE W(E.IVE whel;e Ea is tahe eigenket for
difficulty, in [3-5] it has been shown th&,(s) is semiclas- x5 Eal {AIE.XE[HEp), [Ea) g
sically written in terms of Pollicott-Ruelle resonances
{¥n}n=0 Which are the eigenvalues of L,

>

p- 2

H. The notations “Tr” and “tr” are for superoperator and
usual operator, respectively.

Let us separately consider two cases, namely, quantum
maps on torus and autonomous systems.

Quantum maps on torus$n this case, the time evolution
(ﬁtp)(x)=f dys(x— ¢'(y)p(y), 1) of the wave function is governed by successive multiplica-

tions of the Floquet operatds with the finite dimensiom,
where N= A/27h (A: the area of torys The eigenvalue

wherex=(q,p) is a pair of position and momentum coordi- Problem is nowUy;,=e'“nyr,. The two-point level cor-
nates,p(x) is the phase space density, afds the classical elator Ry(s) that characterizes the statistical property of
flow. Note that the contribution from the leading resonanceSPectrum is defined as

o t0 Ry(s) coincides with the RMT universality and the

nonuniversal character is encoded in higher resonapges R (S)Zijzwdw g a)-l-i 3 d((u—E) 3
(n#0). 2 21 Jo 2 2

The achievement df3—5] encourages us to extend their "
result to the spectrum of the quantum Liouville operdtor — iReE |tr(0n)|2eisn @)
for von Neumann-Liouville equation 2= '
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whered(w)=3N_,37" __8(w—w,—27l) is the density of where the expression &(s) in the second line was de-
states,d=N/27 is the mean density of states, and in thefived by the periodic orbit expansion for the two-
second line the Poisson sum formula was used. On the oth&fmensional case andl,, is the largest eigenvalue of mono-
hand, the resolvent of the quantum Liouville operator fordromy matrix for the primitive periodic orbjp, respectively.

quantized map systems is given as Note that the leading resonanceig=0 corresponding to
the equilibrium state and Rg()<0 for n#0. In the second

1 1 line, since for the quantized map system on a torus the di-

Tr( ) =2 —_—. (4) mension of the Hilbert space is finite, the product over peri-

1-e5L) apl-e® (e wp) odic orbits should be truncated up to the Heisenberg time

T,<m4=N by the bootstrap effect. By E¢6), the spectrum
If Re(s)<<0, we can use the geometrical series. Then we obof |_ is expressed in terms of the Pollicott-Ruelle resonances,

tain
1
1 ” A ReT = | —N?
ReT | =Re Y, [tr(0M)]2e3"=272R,(—is) 1-e5t

1-est n=0 o ,

1 cosh2mds) Aj

+N2, (5) => s+ ——11 5 9
n |S_7n| d n |5_7n|

This is the first main result of this paper. Note that E).is o
quantum mechanically exact. The traceloffor quantized WheréAn=1 (n=0) ory, (n+0). This is the second result.
maps on a torus coincides wifky(—is) except for the pro- The poles on the left-hand side are determined by the

portionality constant and the additional factéf. The sum _IP_kc])Ihcoftt—Ru_?lle rgsonancggae., the e|gen\_/alutes ol’C)t. ld
in R,(s) starts fromn= 1, while that for the trace starts from _ "¢'€'0r€, It can be regarged as an approximate spectral de-

n=0. Note that ad—, Tr(---) diverges due to the part of composition by semiclassical theory. Formally, the eigenval-

the mean density of states. In order to obtain approximat&€sI's of L can be expanded in terms &fand the repetition
pole structure of Eq(5), we need the semiclassical analysis Of periodic orbits,

below.

Now we employ the semiclassical analysis s) and

Now we employ ssical analysis Ry(s) F=> 3 e, (10)
write its semiclassical expression E§ (s). Here we as- =0 <o

sume that the corresponding classical dynamics is chaotic
and the actions of periodic orbits do not systematically deTherefore, the result implie,~T'{*%= y, . Originally, the

generate. If this assumption is violated, the system mighBghr frequencyi(w;— ;) is purely imaginary. Readers
have systematic degeneracy of eigenenergies and does nfight see a contradiction, since the result obtairieel,
decay in time. Carrying out the same type of analysis inpollicott-Ruelle resonancegvolves the real part. However,
[3-5] to Ry(s) of non-time-reversal systems for quantized the obtained result only expresses diffusive behavior up to
maps on torus which have chaotic classical countefd@f  the Heisenberg time, . Thus, we emphasize here that the
we have validity of this result is limited in the range<Ot<7y. Be-
yond 7, the off-diagonal part might become significant. Its
1 &2 cos(2was) role is, however, still unexplored.
RFI(s)=— — —IND(s)+ —————D(s), (6) Autonomous system@ompared with the case of a quan-
4m” Js 27°d tized map system on a torus, two difficulties arise. One is a
problem due to the dimension of the associated Hilbert
where space. The other is nonlinearity of the action with respect to
energy. We will see these problems below. For discrete spec-

1 . tra, the density of states is given as
|nTps . (7)

[

>

1
—— €
=1 n? [de(Mb—1)]

D(s)zexr{zz
P

d(E)=2, 5(E—En)=—£|mtr —
n T  E-H

11
M, is the monodromy matrix of a periodic orbit labeled fpy D

andT, is the period ofp. If the system is very unstable, we

can approximat®(s) ~|Z(is)| ~? by neglecting the repeti- The standard semiclassical the§} gives us the expression

tion of periodic orbits[3—5]. Z(s) is the Fredholm deter- of d(E) for f-dimensional systems whose classical dynamics
minant for the associated Perron-Frobenius operdtdFor  exhibits chaos,

its derivation and applications, sg&l,12.)
d(E):d(E)+dosc(E)u (12)

zc.<s)=de(1—efsz:>=fnl (5= 7n), where

% efsTp 1+1
= 1— s
I (2]

— 1
8 _ _ ~(f-1)
. ® B oyt | [ dadporE-H@pI+ OB,
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1 © T tegral, sinceN(E)— +« as E— +«. However, here we
dOSC(E)z—ﬁZ > PPTVIRREL continue to employ formal manipulation. Substituting Eq.
mh %5 =1 [detM 1) (15) into Eq. (18), we have
S,(E TV
XCOS{r ";L )—Tp) +O(1%), (13 1 5 5 5
Trl — :—de—InD*(E)—InD(E—iﬁs).
s—C) 2mlc oE JE

whereM, S,, and v, are the monodromy matrix, the ac-
tion, and the Maslov index for the primitive periodic orpit

The eigenvalues dfi are also specified as zeros of the spec-
tral determinanD (E) = detE—H).

(19

Here we used the fact th&@(E) is real for realE. To re-
move the contribution of the mean part, we replaq&) by
_ Z(E) and insertZg(E) into Z(E) (semiclassical approxi-
D(E)=C(E)[] F(E)(E-E,)=e"™EZ(E), (14  mation,

n

where in the first line function€(E) andF,(E) are intro- —( 1 | 7% q Itp(2)  dgtqu(z—itis)
duced for the regularizatiorZ(E) is defined in the above o[ Tonh o e Zl—tp,,(z) 1—tp'k(z—iﬁs)’
way, andN(E) is the mean staircase. Note thafis real, (20)

D(E) takes real value. The trace of the resolvent ibiis

related to the spectral determinant by wheret k(z):eisp(z)/ﬁ—iva/2/|A |1/2Ak and we use the no-
p, p p

1 J o J tation “Tr” after removing the mean part. We can approxi-
tr =—InD(E)=—iwd(E)+ —InZ(E). (15) mate the latter actior§,(z—i%is)=S,(z) —iAsTy(z). The
E-H JE JE poles are determined by -it,,(z*)=0 and I-t,(z*
—ifs)=0 for all p. Therefore, the location of poles depends
Z(E) is semiclassically approximated by the Gutzwiller- on the functional form of the actio§,(z). We have to ana-

VorogGV-) zeta functionZgy(E) Iytically continue the energy into the complex domain and
specify the location of poles by the above conditions. Among
- li/h)Sp(E) = (imvpf2) an infinite number of poleg*, the poles in the upper half
Z(E)zzev(E):rp[ kﬂo (1_Wk_ - plane contribute to the integral. The determination of the
= p

(16) analytical structure of the integrand is, in general, difficult.
However, the diagonal approximation by the same proce-
for the two-dimensional case. dure of[3-5] can give us an approximate expression for the

The following relation for the resolvent df is the start- regularized trace. The result is
ing point of our analysis for autonomous systemS]:
— 1
Tr<d'a9>( =(+x)—— —InD(s). (21
1 h 1 1 2
—=— dz - —. (17) 2mh Js
s—L 2mJ¢ z-H z-ihs—H

s—L

. . L _ . The factor of infinity comes from the integration with respect
The contoulC is the semicircle contour with infinite radius in {4, This means that the regularization is still needed be-

the upper half _plant_a plu_s the line mte_gral fromro+ie Fo sides removing the mean part of the density of states. Be-
+oo£ie which is shifted in an appropriate way according t0 cayse of the nonlinearity in actions, the off-diagonal part
the value ofs. The contribution from the semicircle contour -5nnot be expressed in a compact form. The result implies
vanishes. . that the poles of the regularized trace are the Pollicott-Ruelle
Taking the trace of Eq(17), the resolvent of_ is ex-  resonances in the same way for the case of quantized maps
pressed as the integral of the product of two resolvents,of on a torus.
Here, in order to avoid the problem of the nonlinearity in
( 1 ) % ( 1 ) ( 1 ) actions, we consider the simplest case where the action is
Tr —|=— | dztr tr
27T C zZ— w

linear with respect to energy. One such case is the Riemann

s—L H z—ifis—H zeta function, which is a mathematical test field of quantized
w chaotic systems. The action is given®gE) =E In p, where
_ 2 1 (18) p is prime number. The Riemann zeta function is defined as
n,m=0 1 ' {(2)=Tp(1— 1/p? 1, for Re@)>1. We shall regard the
S— E(En_ Em) nontrivial zeros; +iz, as eigenvalues of a hypothetical Her-

mitian operator, which is now actively investigatgi,14].

. . . . . Here we formally consider the associated quantum Liouville
It is clear that in the second line the diagonal sum diverges, y q

thus it does not belong to the trace class. This divergenc@PeratorLg. For the Riemann zeta function, settizgz)
corresponds to the fact that the contribution from the mearr {(3 +iz), Eq. (20) can be rewritten agin this casef
density of states has a problem of the divergence of the in=1)
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— 1 1 ot(2) aty(z—is) cides with the diagonal part &®,(—is). The difference is

Tr —|=— f 2P 29 —, the absence of the off-diagonal part, which ®y(s) is re-
s—Lg/ 2mratc 1-ty(2) 1-tg(z—is) lated to Hardy-Littlewood conjecture on the two-point corre-

(22)  lation of primes[15]. We hope that this also holds for gen-
eral autonomous systems after unfolding of spectrum and
appropriate regularization.

In summary, we have investigated the trace formulafor
by employing semiclassical theory. For a quantized map on a

wheret,(z)=e~'2"P/p!2 Notice that the analytical struc-
ture of {(x) is symmetric with respect to Re&0. Using the
geometrical series and carrying out the integration, we get

— Inping __,, | ) torus, the trace formula fdr is exactly related tdr,(s). As
M —]=2 & nwe e *"95(Inp'~Ing"). a result, by semiclassical theory for systems which exhibit
s—Lg/ Palk=l prq chaos inA—0, an approximate spectral decomposition was

(23)  obtained. It has been shown that in the leading order, the

lowing formula: tonomous systems, we encountered two difficulties, i.e., the
contribution from mean density of states and the nonlinearity
- 1 42 in actions. However, for the case of the Riemdnfanction,
Tr(diag — | =6(0) = —InFs), (24)  thanks to the linear energy dependence of actions we could
s—L 2 Jds . . . A
R evaluate the semiclassical expression for the trace @dr

this system, although the regularization is still needed be-
sides the contribution from the mean part of the density of
g-sh p) |} states. For general autonomous systems, it is unclear whether

where

o0

}'(s):exp{ 2> > —12
b

(25 or not this approach gives the same result. Finally, although
P our approach is the semiclassical treatment, the relation be-
tween the result obtained here and the work by the Brussels
school(for instance, see recent revigd6]) would be inter-
esting for future investigation.

=1

If we use the approximatioB ,_;(1/n?)x"~x for |x|<1, we
can replaceF(s) as F(s)~|{(1+s)|?. Next consider the
off-diagonal part. Since the argument of théunction does
not become zero, therefore, the off-diagonal part of this case The author thanks P. Gaspard for a stimulating discussion
vanishes. Compared with the result[#], for the Riemann  and hospitality at the Universiteibre de Bruxelles, Brus-
zeta function, although another regularizqtion for the factosels, Belgium. This work was partially supported by JSPS
of infinity is needed, the trace formula férg surely coin-  and the Isaac Newton Institute, Cambridge, U.K.
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