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Effective forces between macroions in highly charged colloidal suspensions
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It is shown based on the systematic theory recently developed for charge-stabilized colloidal suspensions of
interacting Brownian particles with Coulomb interactions that the effective force between highly charged
colloidal macroions can be written as

Fefi(r)=ke TZ213{Z2 exf — (ZIQ) ¥ I\ p]— g2 exp(—rMNp)}(r/r?),
wherehp=(4mn.q%lg) "2 is the Debye screening lengtie the charge of macroions; ge the charge of
counterions| g the Bjerrum length, and, the number density of counterions. This force consists of two parts.
The first part results from the long-range, Coulomb interactions between macroions and is repulsive over a
short range of distances between macroions. The second part results from the pair correlations due to the
long-range, Coulomb interactions between macroions and counterions and is attractive over a broad range of
distances between macroions. This force is expected to describe the ordering phenomena in highly charged
colloidal suspension$S1063-651X%99)50903-3

PACS numbes): 82.70.Dd, 05.40tj, 61.20.Gy, 64.70.Pf

In recent years, there has been considerable experimentgly_(r)=q?g/r, for r>2a. and« for r<2a., wherer is

and theoretical interest in an understanding of the mechgpe interparticle distanceg=e€%ekgT the Bjerrum length,
nism for ordering in charged colloidd]. Charge-stabilized andg=1/kgT. In the following, we also restrict ourselves to
colloidal suspensions have been found experimentally to €Xhe special case whera/a,>1, m/m.>1, and Z/g>1.

hibit a rich variety of crystalline, liquidlike, and amorphous Hence, it is a reasonable approximation to neglect the size of
phaseq2,3]. Many theoretical investigations to understandcounterions as compared to that of macroions, i.e., to treat
these phase behavior have been done by using the Derjaguitive counterions as pointlike particles wih= 0. The fluctu-
Landau-Verwey-OverbeelDLVO) theory[4]. For the last ating velocity field of the fluid is assumed to be described by
decade, however, there has been growing evidence for thee fluctuating, linear Navier-Stokes equation, supplemented
existence of a long-range, attractive interaction betweefby stick boundary conditions at the surfaces of the spheres.
macroions[2,5], which cannot be explained by the DLVO  For simplicity, in the following we neglect the hydrody-
theory. There are several proposals for an explanation of thatamic interactions between macroions since their effects are
attractive interactiotisee, for examplgg)). In this paper, we ~small for largeZ [7]. Then, the system has two macroscopic
propose an effective potential that has an attractive minimur§haracteristic  lengths:a ~ and ~ Ap= (4mncg?l B)fl_/2

at long interparticle distances, based on the systematic theor_ya/(3¢F)1/2. where ¢=4ma’n,/3 is the volume fraction
recently developed for highly charged colloidal suspension®f macroions, and’=Zglg/a the dimensionless coupling
[7]. Thus, we show that the pair correlation due to manyparameter betwegen macroions and counterions. For h|ghly
body, long-range Coulomb interactions between macroiongharged suspensions, therefore, we have three characteristic

and counterions leads to an effective, long-range attractiv%mes:. the relaxatlo_n time of ‘29 momentum f:ontamed n
force, while the pair correlation due to many-body, long- € fluid volume of sizea, 7~ pa®/7; the Brownian relax-
range Coulomb interactions between macroions leads to afﬁt'on_ time of macr<)2!0nsrB~m/(6.7rna): the structural re-
effective, short-range repulsive force. axation time, rs~a“/Dg, which is a time required for a

We consider a three-dimensional charged colloidal parMacroion to diffuse over a distan@g wherep is the fluid
ticles suspended in a polar solvent. In the following, we re-mass density, and, the single-macroion diffusion coeffi-
strict ourselves to the simple case in which the concentratiofi€"t: FOr largeZ, we havep>a, and 7> 7g> ;. De-
of added salt is ignored. Thus, the system consists of tw@€nding on the space-time scales, therefore, there are two
ionized spherical particles in an incompressible fluid withcharacteristic stages: - a kinetic sta@® where the space-
viscosity 7 and the static dielectric constast the macro- UM CULOff Xeutorr: teutord) 1S SET @SAp>Xeuo™>a and g
ions of radiusa, massm, chargeZe, and position vector > teuo™7r, @nd a suspension-hydrodynamic sta@),

Xi(t) (i=1,2,...N,) with the number densityn, Where.xcumﬁ>)\D and 7=t o> 75 . In the following, we
=N,,/V, and the counterions of radiu& , massm,, and ©nly discuss the SH stage. _ _
charge— ge with the number densitp.=N./V, whereV is Let us define the single-macroion number density by
the total volume of the system. Here the global charge neu- N

trality requires thaZn,,=qn. . In the absence of added salt, N(r t)=2 8(r—X(1)). 1)
one can assume the following pair interaction potentials B =] '

Vi), Vidr), Vcc(r) between macroions and counterions

[8]: BVmm(r)=Z2%g/r for r>2a and «» for r<2a, Then, the number densit(r,t) can be split up into the
BVmdr)=—2Zqlg/r forr>a+a; and» forr<sa+a., and average number density(r,t)=N(r,t) and a fluctuating
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part SN(r,t) asN(r,t)=n(r,t)+ SN(r,t), where the bar de- 0f Eq.(5) screens the long-range interactions between a mac-
notes an average over a suitable initial ensemble. As wa®ion and a counterion with the length of ordes . Here we
shown in Ref[7], in the SH stage on the time scale of order should note that in order to derive H§), we have neglected

s, the diffusion equation fon(r,t) can be written, up to the terms due to the short-range interactions between macro-

lowest order inV and ¢, as ions since they lead only to corrections at small volume frac-
tions.
d B ) We next discuss the asymptotic solutions of Ed$.and
1 N(rY =DV n(r,t)=DoV - C(r,1) (@ (5)in the SH stage, where the length sciilg of interest is
longer than\, and the time scale is of ordeg, while the
with the correlation term of ordep’?, interparticle distancesr,—r,| and |r,—r5|, are of order
Ap - On the length scale longer thaw,, one can further
C(rl,t):ﬁUdf29(|r12|—23)FT2m M) expand n(r,,t) and nc(rg,t) about ra. Since DOII;)S
=ay/a<1, the dynamics of the counterions surrounding the

macroions follows the motion of the macroions in this stage.
+f dr50(|ri—r5|—a)FIsH™(r,r5,t) ¢, Hence, one can also assume th&?(r,t):(Z/q)n(r,t).
Since we can pudH™ ™ ot=9gH™%9t=0 on the time scale

3 of order g, from Egs.(4) and (5), we thus find, to lowest

. . R me orderinVanda/Z,

wherer; denotes the position of counterionF;™ and Fj;

the Coulomb forces between macroions and counterions, and - Zqlg

ri,=ri—r,. Here the step functiodi(r) arises from the fact H" (ry,r2,t)=-

that the particles are supposed to be nonoverlappio)

Z 2
(‘) exd —r i/ Ay(rq,t)In(rq,t)
ro \q

=1 forr=0 and§(r)=0 for r<0. The termH™™(r,,r,,t) X(14+7T15-V)n(rq,1), (6)
represents the pair correlation function between macroions
separated by a distance of ordar, while the term Zqlg

H™%(r,,rS,t) represents the pair correlation function be- H™(r1.r3,t)= exd —|ri—r3l/A(r,0In(ry,t)
tween macroions and counterions separated by a distance of
order \p. The functionsH™™(rq,r,,t) and H™%(rq,r$,t) X{1+(r5—ry)-Viin(ry,t), (7)

obey, to lowest order iV,, V5, and ¢,

[ri—rl

with the screening length
0
EHmm(rl,rz)=Do(1+e12)[ViH”‘m(rl,rz) A(r,t)=[4mn(r,t)Zqlg] Y2=a/[3D(r,t)[]Y2  (8)

mm where ®(r,t)=(4n/3)a®n(r,t) denotes the local volume
— BV Farn(rz)n(ry) fraction of macroions, andl (r,t)=(q/Z)Y?\(r,t). Use of
Egs.(3), (6), and(7) then leads to
+f drgFaan°(r)H™(ry,rg) ;
C(rl,t):(zha)zf dr20(r12—2a)%2

Mo
X[Z% exp{—r1p/\m(ry, D)}
—g?exp{—r2/N(ry,H)}]
XN(ry,t)ry-Van(ry,t). 9

+jdrgF?amn(rz)Hmm(rl,r3)H, (4)

d
ST 1) <DL+ 01| VEHT(r, 1)

Sne(r$)n(ry) Although the contribution from the terid™™ can be negli-
gible for largeZ, we have retained it in Eq9) to find a

reasonable force which should be valid not only for the long
+f drgF5sne(ro)H™M(r,r3) distance but also for the short distance. For lafgene can
obtain C(r,t)=T"%2/3®(r,t)Vn(r,t). Use of Eq.(2) then

CCCCy o Cr Lyme c leads to the nonlinear deterministic diffusion equation for

+f drgFasn (ra) HA(ry,.rs) n(r,t) in the absence of the hydrodynamic interactions be-

tween macroions

~BV;

+0O(Dy/Dg), (5)

(alat)n(r,t)=V-[Dg(®(r,t))Vn(r,t)] (10
whereDyg is the single-counterion diffusion coefficient with
Dg=(alac)Do(>Dy), n%(r5,t) the average number density with the  self-diffusion  coefficient Dg(®)=Dg[1
of the counterionsg;; the exchange operator betwdeandj, ~ —T'3/2,/3®], which leads to the glass transition volume frac-
and V5=4/dr5. Here we should note that the last term of tion ¢g=(1/3)1“*3. Here we note that as was shown in Ref.
Eq. (4) screens the long-range interactions between macrd-7], ¢ is slightly modified by the hydrodynamic interac-
ions with the length of ordergf/Z) Y2\, while the last term  tions.
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We now discuss the effective forces. Ll%@ff(rij ) denote
the effective force between macroionandj at timet. In the
absence of hydrodynamic interactions, one can then write the
Langevin equations for the position of macroignon the
timescale of orderrg, as

d i e,
G Xi0=Do X BF(IX;(HLU+R (D), (1) £
J(#1) >z

2

whereX;; (t) = X;(t) — X;(t), andR;(t) represents the Gauss-
ian, Markov random force and satisfies

(Ri(1)=0,

(12
(Ri(H)Rj(t))=2Dyd(t—t")5; ;1. 0 2 4 6 8

r/a
By taking the time derivative of Eq1) and then using Eq.
(11), we obtain FIG. 1. Effective potentialg(r) in units ofkgT vsT in units of
a for different suspension paramete, §); (a) (360, 0.0074, (b)
9 (280,0.03, (c) (280,0.0074, (d) (280,0.002, and(e) (900,0.0002,
Zn(ry,t)=DoV2n(r, ,t)— DV -fdr o(r where the other parameters are chosemjad, a=55.4nm, and
7 "(11:D=DoVin(ry,t) =DoV, 20" lg=7.29 A atT=293K.

—2a)F°f(r,t)[N(ry,Hn(r,t) .
+Go(re.r2,0)], (13 UEﬁ(rlz,t)ZikBTZZIZB

1 1 exd —rqio/Ap(rq,t)]
where the pair correlation function between macroidbs, X ZZ{ (—— X " pom
is given by ria Am(rg,t) r
_mEi[_rH/)\m(rl:t)]]
Go(rq,ro,t)=06N(r1,t) SN(r,,t)—(ry—ro)n(re,t). mi L
(14 B 2(( 11 )exp[—rlzl)\(rl,t)]
riz Mrg,t) EP)

Here we should note that in order to derive the first term of 1

Eqg. (13), we have averaged out the terms including the ran- _ T_

dom force by employing the formulation introduced by the X(fl.t)zE'[ rlzl)\(rl,t)]”, (18
present authof9] and retained the terms up to ordef.

The pair correlation functiofs, obeys the same equation where E;(—x) = —[ye S/sds Because of the long-range
as Eq.(4) without the term related to the counterions, exceptattractive term in addition to the repulsive term, the effective
that H™™ and Fy, are now replaced b, andF*", respec-  potential can have an attractive minimum at long interpar-
tively. On the length scale longer thap , thereforeG, can ticle distances, depending on the valueg@ind ¢. Here we
be safely negligible compared to the leading termnote that if the system is initially out of equilibrium, both
n(ry,t)n(rp,t) in Eq. (13) for largeZ since it is screened by effective force and potential depend on space and time
the length of ordei, (<\p), similar to Eq.(6). By com-  throughd(r,t), whose time evolution is described by Eq.
paring Eq.(2) with Eqg. (9) to Eq. (13), we thus find (10).

For long times, the system reaches the equilibrium state
2 where ®(r,0)=¢. Hence, we havex(r,»)=\p and
FEl(r10,0) = ke TZ215[ 2% eXp{ — T 12/ A (11, 1)} A(F,0) = (/) Y25 In Fig. 1 we show the equilibrium
—g2exp{—ro/N(ry,H)}](rp/rd,). (15  potential energ)Ugg(r), where the parameters are chosen as
g=1, a=55.4nm andlg=7.29A at T=293K [10]. The
depth of the potential well becomes large and the minimum
The first term of Eq(15) is repulsive over a short range of position of the potential decreases eitheiZaacreases with
order\,, while the second term is attractive over a broadfixed ¢ (see curvesa andc) or as ¢ increase with fixedZ
range of orden. SinceF®(ry,,t) is the conservative force, (see curved, ¢, andd). Even for sufficiently dilute suspen-
one can also find the potential energyr,,,t) through the sions, the depth can be finiteZfis large enouglisee curve
relation Fe(r ,,t) = — V,,U°f(r 5,t) as €). Hence, several phase behavior would be expected to exist
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since the macroions can get trapped in the potential welltential is thus expected to explain the experimental observa-

depending the values & and ¢. tions which suggest a long-range attractive interaction. The
In conclusion, we have found the effective force given byBrownian dynamics simulation of Eq(11) is now in

Eq. (15) and also the effective potential given by Ef6) for ~ Progress. The ordering phenomena in charged colloidal sus-

. . . ff . .
highly charged colloidal suspensions. The correlation®?€nsions with the effective force®(r.t) will be discussed

. . . elfc.ewhere.
among macroions and counterions separated by a distance o

order\p have been shown to be an origin of the long-range, This work was supported by the Tohwa Institute for Sci-
attractive interactions between macroions. This effective poence, Tohwa University.
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