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We compare time-dependent solutions of different phase-field models for dendritic solidification in two
dimensions, including a thermodynamically consistent model and several ad hoc models. The results are
identical when the phase-field equations are operating in their appropriate sharp interface limit. The long time
steady state results are all in agreement with solvability theory. No computational advantage accrues from
using a thermodynamically consistent phase-field md&063-651X99)50703-4

PACS numbes): 81.10.Aj, 05.70.Ln, 64.70.Dv, 81.30.Fb

Dendrites are the most commonly observed solidificatiorare performed at the asymptotic limit where the phase-field
microstructures in metals. The free growth of a single denmodel converges to the sharp interface lif8.
drite is a prototype for problems of pattern selection in ma- The purpose of this Rapid Communication is to compare
terials sciencd1-3] and has been extensively studied ex-the dynamics of several different phase-field models. While
perimentally and theoretically. It is still not possible to this issue has been addressed in one dimeriSipiit has not
compare theory with experiment due to the difficulties in been considered in the context of multidimensional dendritic
computing three-dimensional microstructures with therma@rowth. To this end, we have performed accurate and exten-
conditions and material parameters used in experiments. Sive computations using a specially developed adaptive mesh

Recently, a significant step forward was taken by Karmd€finement algorithni10]. We find that when properly used,
and Rappel[4], who not only showed how to accurately all phase-field models give precisely equivalent results; not
compute two-dimensional dendritic growth but were alsoonly does each phase-field model converge to the steady
able to compare their results with the predictions of solvabil-State predicted by solvability theory, but also the transient
ity theory. Their calculations used the so-caligiase-field ~dynamics approach the steady state uniquely. Indeed, once
formulation of solidification, in which a mathematically One has established that there is genuine universal dynamic
sharp solid-liquid interface is smeared out or regularized angehavior, the only remaining consideration is the computa-
treated as a boundary |ayer, with its own equation of motion:[ional effiCiency. Our results Clearly indicate that the CPU
The resulting formulation, described in more detail below,times required for the different models are identical. In par-
no longer requires front tracking and the imposition ofticular, we find no advantage for the thermodynamically con-
boundary conditions, but must be related to the sharp interSistent model. . _ S
face model by an asymptotic analysis. In fact, there are many A secondary purpose of this Rapid Communication is to
ways to prescribe a Smoothing and dynamics of a Sharp |rfjetect the limit of the Val|d|ty of phase'fiEId models in de-
terface consistent with the original sharp interface model. S&cribing the sharp interface problem. In the context of the
there is no unique phase-field model, but rather a family ofSymptotic analysis of Karma and Rappél, the ratio of the
related models. Langé8] was the first to consider the sharp- interface width to the diffusion lengtfreferred to as the
interface model as a limiting case of a phase-field modelinterface Pelet number(P;)] must be small in order for the
Caginalp and Chefi5] showed rigorously that the phase- different phase field-models to collapse to identical sharp
field model converges to the sharp interface limit when thdnterface problems. We show how finigg-discrepancies en-
interface width(and hence the grid spacinig much smaller countered between different models can be eliminated by
than the capillary length. An important part of Karma andadjusting the phase-field parameters. We emphasize that IPe
Rappel’'s work was an improved asymptotic analysis whichs @ free parameter and can be varied for numerical conve-
allows a larger ratio of the interface width to the capillary Nience by changing the interface widthi].
length to be used in the numerical computations than was The solidification of a pure substance is described by a
previously possible. free-boundary problem for the temperature in the solid and

Although the phase-field method has gained acceptance 44uid phases, and the position of the interface between them,
a useful way to study solidification problems, a debate still

exists over the interpretation and validity of the phase-field du=DV?uy, @
models themselves. Each model includes a double-well po-

tential field which enforces the above properties of the Vo =D(dqu| " = dpu| ), (2
phase-field. Some models can be shown rigorously to satisfy ) R

an entropy inequality{6,7]. These are sometimes called ui=—d(n)k—B(n)V,. 3)

“thermodynamically consistent” models. On the other hand,
it has been argued that the precise form of the phase-fieldihe temperatur@ has been rescaled as a dimensionless ther-
equations should be irrelevant so long as the computationsal fieldu=(T—T,,)/(L/C,), whereT,, L, andC, repre-
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sent the melting temperature, the latent heat of fusion, and TABLE I. Summary of phase-field models studied.
the specific heat at constant pressure, respectively. The ther

mal diffusivity D in Eq. (1) is assumed to be equal in both Model () h(¢) a; a,
phases. Equatiof2) describes energy conservation at the od

solid-liquid interface, wher&/, is the local outward normal

interface velocity and,, refers to the outward normal deriva- pr 1 5

tive at the interface for the soligh) and liquid (-) phases. ¢ ¢ ﬁ 3

Finally, Eq. (3) is known as the Gibbs-Thomson condition,

describing the deviation of the interface temperatyrébom 2 (1— ¢?)2 P o 48

equilibrium, due to the local curvature, and interface ki- 42 75

netics. d(n)= y(ﬁ)Tme/L2 is the anisotropic capillary 3 (1-¢?)?3 ¢ 1.0312  0.52082

length, proportional to the surface tensi@(ﬁ), and,li'(ﬁ) is 4 (1-¢%* ¢ 1.1601  0.45448

the anisotropic kinetic coefficient. 15 2 1 5
Equations(1)—(3) have been studied extensively to deter- 5 (1-¢%°  B(¢—34"+547) N 0.39809

mine the steady state features of dendritic gro\23].

These equations admit a family of discrete solutions. Only

the fastest growing of this set of solutions is stable, and this

is the dynamically selected “operating state” for the den- - de (¢’X)4+(¢’y)4

drite, corresponding to a unique tip shape and tip velocity. AM=(1-3¢) 1+ 1-3e |Ve<25|4 ©

This theoretical treatment is usually called solvability theory.
Recent calculations of dendritic growth using phase-field
models have been found to be in good agreement with the . . o
predictions of solvability theory4,10]. with A(n) €[0,1]. ¢, and ¢ , represent partial derivatives
The phase-field model finesses the computational difficulwith respect to x and y, and the vectorﬁ=(¢vxf<
ties associated with front-tracking on a discrete lattice by ¢‘y9) I( 2+ qb?y)l/z is the normal to the contours ab.

introducing an auxiliary continuous order parameter, or . i -
phase-field¢(r,t), that couples to the evolution of the ther- The constant parameterizes the deviation'i(n) from W,

mal field. The dynamics od(r,t) are designed to follow the and is a measure _Of the anisotropy _Stfe_”gth- we e_xpect the
evolving solidification fron{12—18. The phase-field inter- results to be similar for other definitions of anisotropy

polates between the solid and liquid phases, attaining a difL1,19. . ) )
ferent constant value in each phaggpically +1), with a We use the asymptotic relationships of Karma and Rappel

rapid transition region in the vicinity of the solidification [4] to map the phase-field model into the free-boundary
front. The liquid-solid interface is defined by the level set of Problem, where Eqg4) and (5) reduce to Eqs(1)—(3). In

$(r,t)=0. terms of A(n), B(N)=B,A(Nn), and d(n)=d,[A(n)

We consider phase-field equations of the form +d2A(n)], where g is the angle between and thex axis;
U 1 oh( ) notjng that tan@)=¢ /¢ , »these expressions become

E:DV2u+§ T (4)  B(n)=pB.(1+ ecos ) andd(n)=d,(1— 15¢ cos &) in the

free-boundary problem. The parameters of the phase-field
model are related to the free-boundary parametersi by

T(ﬁ)%:ﬁ.[wz(ﬁ)w]_%d’:“” =W,a, /d, and 7,=W3a,a,/(d,D)+W?38,/d,. The posi-
tive constantsa; and a, depend on the exact form of the
ol - R aW(ﬁ) phase-field equations. In choosing to simulate particular ma-
+t= |V ¢|2W(n) 7 ) terial characteristics, we fix the experimentally measurable
X quantitiesd,, B,, andD, leavingW, as a free parameter
ol . ) which determinea. and 7.
+W |V é|2W(n) i, ) (5) We compute fourfold symmetric dendrites in a quarter-

infinite space using a new finite-element adaptive grid

as in Refs[4]. The order parameter is defined By with method reporteq in Ref@l_O]. Solidification is initiaFe_d by a
#=+1 in the solid, andp=— 1 in the liquid. The interface small quarter d|sk_of_ra_u_j|u§2O centergd at thg_ origin. The
is defined by$=0. ord%r parameter is initially set to its equilibrium value
The functionF (¢, \u) = f($)+Aug(¢) is a phenomeno-  ¢o(X) = —tani (x| —R,)/\/2] along the interface. The initial
logical free energy wherf ¢) has the form of a double-well temperature i21=0 in the solid and decays exponentially
potential, A controls the coupling betweanand ¢, and the  from u=0 at the interface tai= —A as x— o, where the
relative height of the free energy minima is determinediby far-field undercoolings A = (Tm—T)/(L/Cp) andT.. is the
andg(¢). The functionh(¢) accounts for the liberation of temperature far ahead of the solidification front in the liquid.
latent heat. Anisotropy has been introduced in EX). by The different phase-field models we study are summa-
defining W(n) =W,A(n) and 7(n)=r7,A%(n). 7, is a time  rized in Table I. To satisfy the asymptotid{,¢) is chosen
characterizing atomic movement in the solid-liquid interfaceto be an even function, argl ¢) andh(¢) are odd. For all
W, is a length characterizing the width of the interface, andof the models,f(¢)= ¢*/4— ¢$?/2. For computational pur-
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TABLE Il. Summary of simulation parameters. 0.075 .
A L R, Ax At D d, v P, ‘ =—& Model f
0.065 | >—<> Model 2 _
045 1000 17 039 0010 3 05 000545 0011 2 G ) Model 3
' ' ' ' : : 3 >— Model 4
0.55 800 15 039 0016 2 05 0.0170 0.034 § ®—@ Model 5
0.65 800 15 039 0016 1 05 00469 0094 g 00| ~ — Solvability 4=0.65 1
065 800 15 0.39 0.004 2 15 0.0469 0.031 g
i::) - e R
g 0045 i
[
poses, theg(¢) are chosen such that the two minima of £

F(¢,\u) are fixed at¢p==+1. Model 1 is a form used by 0.035 - i
Almgren[20], Model 2 is a form used by Karma and Rappel
[4], and Model 5 is the thermodynamically consistent form
used by Wanet al.[7]. Models 3 and 4 are forms created by 0.025

I 1 I 1 I 1 I Il
0 200 400 600 800 1000 1200 1400 1600 1800

us that meet the above requirements. It should be noted tha Time
Model 1 requires thax<<1/A otherwise thep=—1 state be-
comes linearly unstable. FIG. 2. Time evolution of the dimensionless tip velocity for

In our simulations, the computational domain is an five phase-field models a=0.65 with d,=0.5 and P;=0.094.
XL square box. Computations were performed\at0.65 WhenP; is too large the different models do not exhibit universal
0.55, and 0.45. A summary of the parameters used for eactfavior.

simulation is given in Table Il, wher¥=Vd,/D is the di- o _
mensionless tip velocity predicted by solvability theofy is no longer small. The deviations are a signal that the_z solu-
is theminimum grid spacin@f our mesh10], andAt is the ~ tONS have not converged as a functlon_ of the expansion pa-
simulation time step. The phase-field parameters were chg@meter and that the phase-field equations are not operating
sen for each model so that they all simulated the same fredvithin the sharp interface limit. It should be possible to make
boundary problem. For all simulations=0.05, 8,=0, and these higher order terms negligible if one ma_laassmaller.
W,=1. Figure 1 shows the dimensionless tip velocity of theFigure 2 also shows that each model has different conver-
dendrite versus time for the simulations performed atdence properties. However, in other simulations we have
A=0.55 and 0.45. These results show that all of the phasdound that no single model consistently converges more rap-
field models studied produce identical results for the entirddly than the others; in general, the convergence appears to
temporal evolution of the dendrite and also converge tdl€pend on the initial conditions. _
steady state solutions that are within a few percent of those 10 test the hypothesis that the differences between the
predicted by solvability theory. In addition, the CPU times Phase-field models aA=0.65 is due toP; becoming too
required for each of the models were identical. large, we performed another simulation witg=1.5. This

At A=0.65 (with d,=0.5), however, there are significant Was motivated by the expressiéh=WoV/D=WoV/do, so
quantitative differences between the various phase-fieldhat increasingl, reducesP;. We note thad, is nota free
models, as shown in Fig. 2. This discrepancy is attributed t¢arameter, and thus this new simulation represents a differ-
finite-P; corrections at higher order in the asymptotic expan-€nt physical system. The purpose of this simulation is simply

sion. Note in Table Il that for this simulatiof;=0.094 and {0 demonstrate the importance Bf in the computations.
The results, shown in Fig. 3, confirm that universal behavior

of the different models is recovered for this case.

We have demonstrated that one can obtain identical re-
o Models 1-5 A0.55 sults_from different phase-fiel.d.models by choosing the ex-
— _ Solvability A<0.55 pansion parametd®?; to be sufficiently small. Unfortunately,
0.03 | &—O Models 1-5 A=0.45 . in practice, the interface width is the only parameter that can

-~ Solvablity 4=0.45 be used to control the size 8%, sinceV is fixed for a given
A ande, andd, is set by the particular material to be simu-
lated. Thus, there is only the one free paramefés, that
i e——————— o can be adjusted to make; smaller. This restriction can
hinder computational efficiency, as the number of grid points
necessary to resolve the interfa@nd thus the simulation
1 time) scales as W2 on an adaptive grid, and asvi} on a
fixed grid. In addition, with zero interface kineticg,~W>
which places a restriction on the computational time step if
0 . ‘ . ‘ ‘ ‘ an explicit scheme is used. For the simulationAat0.65
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 with d,=0.5, anP;=0.031 could be obtained by reducing
Time W, by a factor of 3, but this would require an impractical
FIG. 1. Time evolution of the dimensionless tip velocity for five amount of computing time. We note that the asymptotics of
different phase-field models @&=0.55 and 0.45. Each curve con- Karma and Rappel become most accurate at lower under-
sists of five solutions superimposed on one another. coolings[10], which is also an experimentally relevant re-
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0.1 We can extend the range of validity for these phase-field
models by carrying out the asymptotic analysis further so
0.09 1 that finite; corrections are pushed to higher orders. This
will lessen the restrictions on the interface width, thus ren-
2 008 t ©—Models 1-5A=0.65,d,=1.5 | dering the phase-field approach computationally more effi-
<] — — Solvability A=0.65 . . . . .
T cient. Detailed results will be presented in a forthcoming
g 007 - 1 paper[21]. There appears to be a general trend that as one
@ goes to higher orders in the asymptotic expansion more con-
% 0.06 - i straints are required on the functiofgp), g(#), andh(¢)
g in order to get rid of correction terms inconsistent with the
E 005 | L free-boundary formulation. These constraints can cause the
B - phase-field to have solutions that are not monotonic in the
0.04 - i interfacial region, thus requiring higher grid resolution and
computation timg20]. We are currently pursuing the devel-
0.03 opment of a phase-field model from a renormalization group

0 1000 2000 3000 4000 5000 approach with the goal of creating a more systematic conver-
Time gence to the free-boundary problem.
FIG. 3. Time evolution of the dimensionless tip velocity for five
phase-field models aA=0.65 with d,=1.5 andP;=0.031. De-
creasingP; recovers universal behavior.
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