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Universal dynamics of phase-field models for dendritic growth
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We compare time-dependent solutions of different phase-field models for dendritic solidification in two
dimensions, including a thermodynamically consistent model and several ad hoc models. The results are
identical when the phase-field equations are operating in their appropriate sharp interface limit. The long time
steady state results are all in agreement with solvability theory. No computational advantage accrues from
using a thermodynamically consistent phase-field model.@S1063-651X~99!50703-4#

PACS number~s!: 81.10.Aj, 05.70.Ln, 64.70.Dv, 81.30.Fb
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Dendrites are the most commonly observed solidificat
microstructures in metals. The free growth of a single d
drite is a prototype for problems of pattern selection in m
terials science@1–3# and has been extensively studied e
perimentally and theoretically. It is still not possible
compare theory with experiment due to the difficulties
computing three-dimensional microstructures with therm
conditions and material parameters used in experiments

Recently, a significant step forward was taken by Kar
and Rappel@4#, who not only showed how to accurate
compute two-dimensional dendritic growth but were a
able to compare their results with the predictions of solva
ity theory. Their calculations used the so-calledphase-field
formulation of solidification, in which a mathematicall
sharp solid-liquid interface is smeared out or regularized
treated as a boundary layer, with its own equation of moti
The resulting formulation, described in more detail belo
no longer requires front tracking and the imposition
boundary conditions, but must be related to the sharp in
face model by an asymptotic analysis. In fact, there are m
ways to prescribe a smoothing and dynamics of a sharp
terface consistent with the original sharp interface model.
there is no unique phase-field model, but rather a family
related models. Langer@8# was the first to consider the shar
interface model as a limiting case of a phase-field mod
Caginalp and Chen@5# showed rigorously that the phas
field model converges to the sharp interface limit when
interface width~and hence the grid spacing! is much smaller
than the capillary length. An important part of Karma a
Rappel’s work was an improved asymptotic analysis wh
allows a larger ratio of the interface width to the capilla
length to be used in the numerical computations than
previously possible.

Although the phase-field method has gained acceptanc
a useful way to study solidification problems, a debate s
exists over the interpretation and validity of the phase-fi
models themselves. Each model includes a double-well
tential field which enforces the above properties of
phase-field. Some models can be shown rigorously to sa
an entropy inequality@6,7#. These are sometimes calle
‘‘thermodynamically consistent’’ models. On the other han
it has been argued that the precise form of the phase-
equations should be irrelevant so long as the computat
PRE 591063-651X/99/59~3!/2546~4!/$15.00
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are performed at the asymptotic limit where the phase-fi
model converges to the sharp interface limit@8#.

The purpose of this Rapid Communication is to comp
the dynamics of several different phase-field models. Wh
this issue has been addressed in one dimension@9#, it has not
been considered in the context of multidimensional dendr
growth. To this end, we have performed accurate and ex
sive computations using a specially developed adaptive m
refinement algorithm@10#. We find that when properly used
all phase-field models give precisely equivalent results;
only does each phase-field model converge to the ste
state predicted by solvability theory, but also the transi
dynamics approach the steady state uniquely. Indeed, o
one has established that there is genuine universal dyna
behavior, the only remaining consideration is the compu
tional efficiency. Our results clearly indicate that the CP
times required for the different models are identical. In p
ticular, we find no advantage for the thermodynamically co
sistent model.

A secondary purpose of this Rapid Communication is
detect the limit of the validity of phase-field models in d
scribing the sharp interface problem. In the context of
asymptotic analysis of Karma and Rappel@4#, the ratio of the
interface width to the diffusion length@referred to as the
interface Pe´clet number~Pi!# must be small in order for the
different phase field-models to collapse to identical sh
interface problems. We show how finite-Pi discrepancies en
countered between different models can be eliminated
adjusting the phase-field parameters. We emphasize tha
is a free parameter and can be varied for numerical con
nience by changing the interface width@11#.

The solidification of a pure substance is described b
free-boundary problem for the temperature in the solid a
liquid phases, and the position of the interface between th

] tu5D¹2u, ~1!

Vn5D~]nuu12]nuu2!, ~2!

ui52d~nW !k2b~nW !Vn . ~3!

The temperatureT has been rescaled as a dimensionless th
mal field u5(T2Tm)/(L/Cp), whereTm , L, andCp repre-
R2546 ©1999 The American Physical Society
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sent the melting temperature, the latent heat of fusion,
the specific heat at constant pressure, respectively. The
mal diffusivity D in Eq. ~1! is assumed to be equal in bo
phases. Equation~2! describes energy conservation at t
solid-liquid interface, whereVn is the local outward norma
interface velocity and]n refers to the outward normal deriva
tive at the interface for the solid~1! and liquid ~-! phases.
Finally, Eq. ~3! is known as the Gibbs-Thomson conditio
describing the deviation of the interface temperatureui from
equilibrium, due to the local curvaturek, and interface ki-
netics. d(nW )5g(nW )TmCp /L2 is the anisotropic capillary
length, proportional to the surface tensiong(nW ), andb(nW ) is
the anisotropic kinetic coefficient.

Equations~1!–~3! have been studied extensively to dete
mine the steady state features of dendritic growth@2,3#.
These equations admit a family of discrete solutions. O
the fastest growing of this set of solutions is stable, and
is the dynamically selected ‘‘operating state’’ for the de
drite, corresponding to a unique tip shape and tip veloc
This theoretical treatment is usually called solvability theo
Recent calculations of dendritic growth using phase-fi
models have been found to be in good agreement with
predictions of solvability theory@4,10#.

The phase-field model finesses the computational diffic
ties associated with front-tracking on a discrete lattice
introducing an auxiliary continuous order parameter,
phase-field,f(r ,t), that couples to the evolution of the the
mal field. The dynamics off(r ,t) are designed to follow the
evolving solidification front@12–18#. The phase-field inter-
polates between the solid and liquid phases, attaining a
ferent constant value in each phase~typically 61!, with a
rapid transition region in the vicinity of the solidificatio
front. The liquid-solid interface is defined by the level set
f(r ,t)50.

We consider phase-field equations of the form

]u

]t
5D¹2u1

1

2

]h~f!

]t
, ~4!

t~nW !
]f

]t
5¹W •@W2~nW !¹W f#2

]F~f,lu!

]f

1
]

]x
S u¹W fu2W~nW !

]W~nW !

]f ,x
D

1
]

]y
S u¹W fu2W~nW !

]W~nW !

]f ,y
D , ~5!

as in Refs.@4#. The order parameter is defined byf, with
f511 in the solid, andf521 in the liquid. The interface
is defined byf50.

The functionF(f,lu)5 f (f)1lug(f) is a phenomeno-
logical free energy wheref (f) has the form of a double-wel
potential,l controls the coupling betweenu andf, and the
relative height of the free energy minima is determined bu
andg(f). The functionh(f) accounts for the liberation o
latent heat. Anisotropy has been introduced in Eq.~5! by
defining W(nW )5WoA(nW ) and t(nW )5toA2(nW ). to is a time
characterizing atomic movement in the solid-liquid interfa
Wo is a length characterizing the width of the interface, a
d
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A~nW !5~123e!F11
4e

123e

~f ,x!
41~f ,y!4

u¹W fu4 G , ~6!

with A(nW )P@0,1#. f ,x and f ,y represent partial derivative

with respect to x and y, and the vector nW 5(f ,xx̂

1f ,yŷ)/(f ,x
2 1f ,y

2 )1/2 is the normal to the contours off.

The constante parameterizes the deviation ofW(nW ) from Wo

and is a measure of the anisotropy strength. We expect
results to be similar for other definitions of anisotrop
@11,19#.

We use the asymptotic relationships of Karma and Rap
@4# to map the phase-field model into the free-bound
problem, where Eqs.~4! and ~5! reduce to Eqs.~1!–~3!. In

terms of A(nW ), b(nW )5boA(nW ), and d(nW )5do@A(nW )

1]u
2A(nW )#, whereu is the angle betweennW and thex axis;

noting that tan(u)5f ,y /f ,x , these expressions becom

b(nW )5bo(11e cos 4u) andd(nW )5do(1215e cos 4u) in the
free-boundary problem. The parameters of the phase-fi
model are related to the free-boundary parameters bl
5Woa1 /do andto5Wo

3a1a2 /(doD)1Wo
2bo /do . The posi-

tive constantsa1 and a2 depend on the exact form of th
phase-field equations. In choosing to simulate particular m
terial characteristics, we fix the experimentally measura
quantitiesdo , bo , and D, leaving Wo as a free paramete
which determinesl andto .

We compute fourfold symmetric dendrites in a quart
infinite space using a new finite-element adaptive g
method reported in Refs.@10#. Solidification is initiated by a
small quarter disk of radiusRo centered at the origin. The
order parameter is initially set to its equilibrium valu

fo(xW )52tanh@(uxWu2Ro)/A2# along the interface. The initia
temperature isu50 in the solid and decays exponential
from u50 at the interface tou52D as xW→`, where the
far-field undercoolingis D5(Tm2T`)/(L/Cp) andT` is the
temperature far ahead of the solidification front in the liqu

The different phase-field models we study are summ
rized in Table I. To satisfy the asymptotics,f (f) is chosen
to be an even function, andg(f) andh(f) are odd. For all
of the models,f (f)5f4/42f2/2. For computational pur-

TABLE I. Summary of phase-field models studied.

Model ]g~f!

]f

h(f) a1 a2

1 12f2 f
1

A2

5
6

2 (12f2)2 f
5

4A2

48
75

3 (12f2)3 f 1.0312 0.52082
4 (12f2)4 f 1.1601 0.45448

5 (12f2)2 15
8 (f2

2
3 f31

1
5 f5)

5

4A2
0.39809
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poses, theg(f) are chosen such that the two minima
F(f,lu) are fixed atf561. Model 1 is a form used by
Almgren @20#, Model 2 is a form used by Karma and Rapp
@4#, and Model 5 is the thermodynamically consistent fo
used by Wanget al. @7#. Models 3 and 4 are forms created b
us that meet the above requirements. It should be noted
Model 1 requires thatl,1/D otherwise thef521 state be-
comes linearly unstable.

In our simulations, the computational domain is anL
3L square box. Computations were performed atD50.65,
0.55, and 0.45. A summary of the parameters used for e
simulation is given in Table II, whereṼ5Vdo /D is the di-
mensionless tip velocity predicted by solvability theory,Dx
is theminimum grid spacingof our mesh@10#, andDt is the
simulation time step. The phase-field parameters were c
sen for each model so that they all simulated the same f
boundary problem. For all simulationse50.05, bo50, and
Wo51. Figure 1 shows the dimensionless tip velocity of t
dendrite versus time for the simulations performed
D50.55 and 0.45. These results show that all of the pha
field models studied produce identical results for the en
temporal evolution of the dendrite and also converge
steady state solutions that are within a few percent of th
predicted by solvability theory. In addition, the CPU tim
required for each of the models were identical.

At D50.65 ~with do50.5), however, there are significan
quantitative differences between the various phase-fi
models, as shown in Fig. 2. This discrepancy is attributed
finite-Pi corrections at higher order in the asymptotic expa
sion. Note in Table II that for this simulation,Pi50.094 and

TABLE II. Summary of simulation parameters.

D L Ro Dx Dt D do Ṽ Pi

0.45 1000 17 0.39 0.010 3 0.5 0.00545 0.0
0.55 800 15 0.39 0.016 2 0.5 0.0170 0.0
0.65 800 15 0.39 0.016 1 0.5 0.0469 0.0
0.65 800 15 0.39 0.004 2 1.5 0.0469 0.0

FIG. 1. Time evolution of the dimensionless tip velocity for fiv
different phase-field models atD50.55 and 0.45. Each curve con
sists of five solutions superimposed on one another.
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is no longer small. The deviations are a signal that the so
tions have not converged as a function of the expansion
rameter and that the phase-field equations are not opera
within the sharp interface limit. It should be possible to ma
these higher order terms negligible if one makesPi smaller.
Figure 2 also shows that each model has different con
gence properties. However, in other simulations we h
found that no single model consistently converges more r
idly than the others; in general, the convergence appear
depend on the initial conditions.

To test the hypothesis that the differences between
phase-field models atD50.65 is due toPi becoming too
large, we performed another simulation withdo51.5. This
was motivated by the expressionPi5WoV/D5WoV/do , so
that increasingdo reducesPi . We note thatdo is not a free
parameter, and thus this new simulation represents a di
ent physical system. The purpose of this simulation is sim
to demonstrate the importance ofPi in the computations.
The results, shown in Fig. 3, confirm that universal behav
of the different models is recovered for this case.

We have demonstrated that one can obtain identical
sults from different phase-field models by choosing the
pansion parameterPi to be sufficiently small. Unfortunately
in practice, the interface width is the only parameter that c
be used to control the size ofPi , sinceṼ is fixed for a given
D ande, anddo is set by the particular material to be sim
lated. Thus, there is only the one free parameter,Wo , that
can be adjusted to makePi smaller. This restriction can
hinder computational efficiency, as the number of grid poi
necessary to resolve the interface~and thus the simulation
time! scales as 1/Wo

2 on an adaptive grid, and as 1/Wo
3 on a

fixed grid. In addition, with zero interface kinetics,to;Wo
3

which places a restriction on the computational time step
an explicit scheme is used. For the simulation atD50.65
with do50.5, anPi50.031 could be obtained by reducin
Wo by a factor of 3, but this would require an impractic
amount of computing time. We note that the asymptotics
Karma and Rappel become most accurate at lower un
coolings @10#, which is also an experimentally relevant r

FIG. 2. Time evolution of the dimensionless tip velocity fo
five phase-field models atD50.65 with do50.5 and Pi50.094.
When Pi is too large the different models do not exhibit univers
behavior.
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gime. At lowD, Ṽ;D4, allowing the use of larger values fo
Wo /do . Simulating at lowD requires larger system size
This, however, adds very little computational complexity f
adaptive mesh based codes.

FIG. 3. Time evolution of the dimensionless tip velocity for fiv
phase-field models atD50.65 with do51.5 and Pi50.031. De-
creasingPi recovers universal behavior.
a-
an

R

We can extend the range of validity for these phase-fi
models by carrying out the asymptotic analysis further
that finite-Pi corrections are pushed to higher orders. T
will lessen the restrictions on the interface width, thus re
dering the phase-field approach computationally more e
cient. Detailed results will be presented in a forthcomi
paper@21#. There appears to be a general trend that as
goes to higher orders in the asymptotic expansion more c
straints are required on the functionsf (f), g(f), andh(f)
in order to get rid of correction terms inconsistent with t
free-boundary formulation. These constraints can cause
phase-field to have solutions that are not monotonic in
interfacial region, thus requiring higher grid resolution a
computation time@20#. We are currently pursuing the deve
opment of a phase-field model from a renormalization gro
approach with the goal of creating a more systematic con
gence to the free-boundary problem.
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also acknowledge the support of the National Center for
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