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Surface variations of the density and scalar order parameter and the elastic constants
of a uniaxial nematic phase
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The elastic constants,, andK ;5 of a spatially restricted nematic phase are found to essentially depend on
behavior of the densitp and orientational order parametgrat the surface. The cancellation of the effective
constant 3, recently revealed by Faetti and Riccafdli Phys. 115, 1165(1995], is obtained as a particular
case of a constany and arbitraryp; whereas a spatial-dependeptiolates this cancellation and restores a
finite K45 term.[S1063-651X%99)51802-3

PACS numbg(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION The infinite-medium elastic constanks,, and K3 can be

More than a quarter of a century ago the elastic theory ofalculated  provided  the  pairwise interaction
a uniaxial nematic liquid crystal had taken the final form in G(n(x"),n(x),x" —Xx) between two infinitesimal nematic vol-
the series of papefd] by Nehring and Saupe. In this theory, umes centered at the poimnts and x is known, whileKy,
the nematic phase is described by the direotay, whichis = (K;+K,,+2K;3)/4 [1]. The form ofF; will be discussed
a unit vector pointing along the average direction of the longsomewhat below. The scal& depends on the vectors

molecular axes in the vicinity of the point The director  =n(x’), n, andr=x’—x only through the scalar combina-
deformations associated with nonvanishing director derivagions o =n.n’ B=r-n, B'=r-n’, and r=|r|, ie., G
tives gn are assumed to be sufficiently weak, i€=Iyin  _g(, 5 g r)’ ’ ' ’ '

<1, wherel, is the molecular lengtlfof order of the inter- . .
action rang'}):fI This approach, hovgever, essentially presup- Second, thez, andK terms in Eq.(2) are total diver-
poses that the local symmetry in the vicinity of any spatial9€Nces and in a restricted body can be written as surface
point inside the nematic body is theymmetry of infinite integrals with the density linear iAn. In spite of this, in
nematic mediumBy virtue of this symmetry, leading terms three dimensions thK,, andK 3 terms do not reduce to a
in the deformation free enerd¥E) appear to be quadratic in surface tensiorfanchoring [3,4] and, possessing a unique
. The studies of the recent decade have shown that incorpadility to gain the FE for finite deformations, are an impor-
rating spatial boundedness into the elastic approach is neant source of pattern formatiaisee reviewg5,6]). For in-
trivial and does not reduce to just considering a surface terstance, it was found that both thé,, and K5 terms are
sion. _ . _responsible for the stripe domains in thin nematic fi[hs§].

First, _surfaqe was shown to_mducg an a_ddmonal elastic Third, the very possibility of having a nonzeo,; re-
Erer::annl:%rllen?:a:dlinng npvath(J)setod?;r?nltZOV(agl)s]hg?twetngzlrﬁr%(]é quires justification. The problem derives from the important

) € - i i

tion FE of a nematic liquid crystal contained in the voluke r_esKuZI:Ft;i/ j? it:lj:nd_ %R(ICKCETEE]ZZSTZV;?lzi dthf?rfut: ethseurfe%

actually takes the form F i3 is cancelled out. Recently, this cancellation was shown
to be dictated by the FE symmet¥Q]. In this situation, the
F= 5 KaaFaa™KagFaat KagFaat Py, (1) problem of status of thi 5 term has turned into a search for
possible additional sources thereof hidden in subsurface phe-
wherea=1,2,3, and the standard infinite-medium quadraticnomena. Presently, the only such source of nonKgracon-
FE termsF .z are given by[1] sidered in the literaturel0—12 is nondeformational, the so-
called homogeneous part of the nematic FE giving rise to the
Fn:J dV(V-n)?, Fzzzf dV(n-Vxn)?, intrinsic anchoring. However, in Ref3] where this source
was pointed out, the derivative-dependent terms and, in par-
ticular, the term apparently similar to th€,; term, were
F33=f dV(nXVxn)? shown to be much smaller than the anchoring. Thus, this
source cannot provide a non-negligible valuekaf.
2) Nonetheless, the resuit;3=0 obtained in[9,10] might
F24=f dVvV-[(V-n)=(n-V)n], be inconclusive for another reason recently considered by
Pergamenshchik4]. Indeed, it assumes an unrealistic ideal
surface where the densigyand order parametey constant
|:13:f dvv-[n-(V-n)]. everywhere in the nematic body abruptly vanish. However,
in the general case of a nonideal surface wheeand » are
spatially dependent the value Kf; can chang¢4]. Physi-
*Electronic address: pergam@victor.carrier.kiev.ua cally, substantial surface variations pfvere suggested to be
"Electronic address: slobodan.zumer@fmf.uni-Ij.si essential for anchoring related phenomena
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[13,14,4, and were reportedly observed in experimgl. =G(n,n")—G(n,n) is the deformational part of the poten-
Mathematically,p smoothly vanishing at the surface brings tial. Substituting Eq(4) into Eq. (3) the elastic fractiorF is
the lower boundary to the FE with a nonzdfg; term[4]  obtained in the form

which is missing for the ideal surface with stepliké16,3].

This provides the minimization procedure that yields a stable _ /

director field forK,3# 0 [4]. In this Rapid Communication F{n}—f dxdx’AGnia, ®
we incorporate a realistic nonideal surface into the elastic

theory. We report formulas for all the elastic constants in the AG,ig=A,,AG,,+AAG,. (6)
general case whep and » are constant in the bulk and
arbitrary functions of coordinates in a thin subsurface laye
of a microscopic thicknesks. It is shown that the master
role in theK 5 cancellation is played by surface variation of 9
the order parameter: the cancellation takes place ornyisf G, (a,BB")= ﬁj dwde' (nw)?Ug,(hew')?,
constant, whereas for spatial-dependena finite K5 re- (4m)

stores. The constant§,, do not depend on the surface be-

havior, whereas bottK,3 and K,, do. This justifies the 3

theory[4] with a finite K ;3 term and means that the behavior G, (%,8'%)= —ZJ dwdo'[(nw)?+(n'w')?]Ug,.
in a microscopically thin surface layer can have an observ- (4m)

HereA, =pp' 7' andA,=3pp’ (7' — 7), and the kernels
entering this formula can be written as

)

able elastic effect in the bulk. (8)
The indicated arguments of the functio@s, andG,, follow
Il. SPATIAL-DEPENDENT DENSITY AND SCALAR immediately from their scalar character and the arguments of
ORDER PARAMETER AND THE EFFECTIVE the functionUg,, while the explicit symmetric dependence
PAIRWISE POTENTIAL on x andx’ is not indicated for simplicity. The form of the
) ) o last term in Eq(6) takes into account tha&¥G,, is antisym-
Here we incorporate surface nonideality in the form of etric in x and X', ie, AG.(n,nx xr)=

spatial variations ofp and » in the macroscopic approach _aAg (n,n’,x,x’,r).
neglecting biaxiality. For brevity, we denote function of a Fornmulas(S)—(S) connect the microscopic description to
primed argument by the function with prime. Then the en-he effective pairwise potential G,,;y, which is the starting
ergy (_)f a pairwise mte_ractlon o_f particles with orientational point of the elastic theorj/L]. If the functionsp(x) and 7(x)
coordinatesw and spatial coordinateshas the form are constant in the volum¥ and abruptly vanish on its
boundary, one has an ideally restricted body, and the kernel
AG,iq becomesG;y=Gjq(«,B8,8',r), which has been con-
sidered in the elastic theory of a nematic liquid crystal. We
see that compared to the case of an ideal surigee€onst,
wheref=f(x,w) is the one-particle distribution functiokl p=const, the surface nonideality gives rise to an additional
is the microscopic pairwise interaction potential, ajdis  term with the density;pp'[ 7(x')— 7(x)]JAG,, which is
the pair correlation function. The scalbk depends on the nonzero only if5(x) is not a constant. We will see that this
available scalar pairwise combinations of its arguments anéerm alone contributes to the effective constéry. The full
the absolute valug of the separation vector, i.e., U  physical information that Eq$3)—(8) might convey goes far
=U(ww',(rw)(re’),r). At the same time, can explicitly beyond the subject of this paper. Here we will consider only
depend on the coordinates through the functigns’, 7and  the consequences of these formulas to the elastic theory of a
7', i.e., g,=0(ww',(rm)(re’),r,x,x"). Both U and g, nematic phasénote, however, that these can be applied to
are invariant under permutations @fande’, andx andx’. ~ any uniaxial phase, e.g., for $jrassuming(x) and 7(x) to

In a uniaxial phase, the distribution function of a systembe given functions which is justified far from the phase tran-
of molecules with long axes along depends on the angle SItions.
between the macroscopic axiéx) andw, f=f(nhw,x). The

E=f dxdx’f dode fUg,f', 3)

general form of this function is an expansion series in the Ill. ELASTIC CONSTANTS OF A NEMATIC LIQUID
Legendre polynomials. As usual, restricting this expansion to CRYSTAL WITH NONIDEAL SURFACE
the first nontrivial nematic-symmetry-allowed polynomial

Both A, , andA, enteringAG,;4 (6) are assumed to dif-
fer from their constant bulk value only close to the surface
(x) where bothx and x’ are separated from the surface by a

f(nw,x)=p—[l—n(x)+3n(x)(nw)2], (4) distance less thahg~fewly . Obviously, the bulk value
Am A= P5m5, Where p, and 7, are the bulk density and
order parameter; whilé, ,=0. The functionsA,, andA,
which automatically satisfies the density definitigrix) represent a general nonideal surface.
= [dw f; the order parametey is normalized in such a way Let us first show that the only elastic term affected by the
that the isotropic fraction vanishes and the system is maxinonideality in the leading order B;, whereas the changes
mally ordered forp=1. of all other terms can be neglected. Indeed, any quadratic

The deformation FE can be separated fiérhy using the  term has density-K/d?, whered is of order of the system

identity G(n,n")=G(n,n)+AG(n,n') where AG(n,n’) size. Then any bulk quadratic terid,zF,sz is of order

P,, one has
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d(Kd~?)=K/d whereas its change in the surface layer carAs a result, the kerneDMG,, and its antisymmetric part
be estimated ad,,(Kd 2)=eK/d<K/d. Similarly, any AG,, - produce the same linear teril) and hence the
surface-induced quadratic term with the density nonvanishsameK,; andF,. This will be employed below in Eq16).
ing only in the intermediate layer is of the negligible order Now we consider the identity

eK/d [that is why these terms introduced[iti7] are absent

in FE (1)]. The only exclusion is the surface tetffq~K/d ,

whose surface densitiK/(dly,) is very high: its change F,=J dxdx'A,,AG,,, -

~IwK/(dly)=K/d which is of the same order as the value

of the bulk terms and thus must be considered. This impliegyhich follows from the fact that the integrand is antisymmet-
that spatial dependence of the functioks, andA, in the  yic with respect to permutation afandx’. It implies that the
surface layer must be taken into account onlyFin which  gjastic energyF_ of the kernelA,,AG,, _ is zero. The
thus is the sunf,=F, ,,+F, , of the terms corresponding correspondent formulas for this case can be obtained from
to A,,AG,, andA AG, . In particular, the termA,AG,  Egs. (9)—(13) by replacing F with F_, AGpq4 Wwith
contributes solely to the subsurface teffim, sinceA, van- A,,AG,, _, and the constants, with K,z _ . In the con-
ishes in the bulk; whereas in the bulk tern#s,, can be text of Eqs.(13) and(14), equating to zero the positive defi-

replaced by its bulk value. _ _ nite splay, twist, and bend terms in thus obtained elastic
Further, it is known that in order to obtain the elastic FEexpansion of F_ yields K(ﬁ),,Z —Ké%),,ZZKlg,,:ZKlg,

in a local form the pairwise po,tentl_al is expanded in a powefic () _ o This shows that all the constants calculated for
series of the componentsn;(x’,x)=n{ —n; of the director

; ; A,y,;AG,,,,,_ can be expressed in terms of a single constant
rotation vector up to the second order. In our case this exK13 calculated for the original kerndi,,AG,, . In particu-
pansion takes the form lar, the coefficienK{)_+K.)_ of the termFy, is equal to
2K 3. Now equating to zero the sum of the remaining terms

in the elastic expansion &f _, one obtains the relation

0, (15)

F=L+Q

IAGpig 1 9°AGq
:dedx’ ———Ani+ 5 ———AnjAn; |, (9)
V (9ni 2 (9ni &nj

1
F1y9=~KiAyyp| Fist §Fz4) : (16)

where the derivatives are takenrdt=n, andL andQ stand
for the terms linear and quadratic &m, respectively. Then, Equation(16) implies that the ternf 5 is absentirl,, (11).
combining the above said with the known infinite-medium This means that if therder parameters is constant and
results[1] yields the quadratic term F1,%n —n=0, the nonideal surfacewith whatever p(x)
does not violate the k& cancellationobtained in[9] for an
ideal surface.

Now we address the last remaining tefim,, (12). This is
the total FE contribution of the second termAiG,,;4, which
and the linear term.=L,, +L,,, where the contributions of is finite, since bothA,, and AG,, are antisymmetric. Inas-

A,nb
_ 77,
Q= 2

aa aa

1
K{OF —§<K&%>+K§%>>F24}. (10

A,,AG,, andA AG, have the form much as the form of the surface-induced term does not de-
pend on a specific nonideality that can change only its coef-
Lyn=F1npT Ay, oK1 —F11+FastFig), (1)  ficient, one can write
L,=Fq,. 12
7o (12 F1,77=J' dxdx'A,AG,=—yFy,,. (17)
\Y

The barek(%) andK ;5 are the standard Nehring-Saupe elastic
constants for the potentié, , taken for the bulk values of
andp (on whichG, , can depend through the pair correlation
function g,). The renormalizedK ,, entering FE(1) ob-

tained from the above formulas in the standard f¢fh

Here y=—F,,/F4,, is the coefficient that characterizes
restoration of a finitek ;3 by given nonideality:y=0 if A,
=0. Since the expression féf, ,, is known[17], y is de-
termined by Eq.(17) (the formula is given beloyw From
Eqgs.(16) and(17), the general form oF; can be written as
Ki1=K{P—2K13,  Kga=KE+2Kys, 9s-18 10 g '

Y
—5Fa

(13

Kaoo=K%) . F1+A,7,,,bK13F13=A,7,,,bK13( yF1s— . (19

To calculateF, ,, we consider the antisymmetric part ) . . .
AG of the kernel AG which is of the form The Ky cancellation[9] obtains from this formula only in
/i nn?

_1 —12'2y_ —1 2 ) the particular case= 0. This means thahe effective Kj is
AGyy - =2lGyyla=1p7) Gyyla=167] A simple nonzero if the order parameter in the intermediate layer is
spatially dependent and A 7" — 7#0.

Now we can write down formulas for the deformation FE
IAG . of a nematic body with a nonideal surface for giyeand 7.
—”,”) An;. (14  Substituting Eqs(10)—(12), and (18) into the deformation

M n FEF=L+Q yields

direct calculation shows that, sina®=1 and thusAa
=n-An is negligible, one has

IAG
( 7777) Ani:
n’=n

an{
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. . . does not vanish angl# 0. Thus, botHK’; andK%, depend on
F= EKaaFaa K2dF 24t KigFis, (19 the surface behavior of and » through y; whereasK¥ ,
remain surface independent and take their infinite-medium
whereK?, ; are the effective elastic constants of a nonideallyvalues. If5(x) is suff|C|entIy smooth, a simple estimate gives
restricted body. These constants are connected to th€i3~(7p— 7,-0) pbKlgb, i.e., the effective value is propor-
Nehring-Saupe infinite-medium constants,z ,,, corre-  tional to the drop of the order parameter over the intermedi-
sponding to the kerneb, ,, (7) (above the symbokz in the  ate layer. A similar contribution ti 5 (up to a factor can be
subscripts of the elastic constants was omitted for brgvityobtained in the Landau—de Gennes theft§]. However,
and the bulk values of the density and scalar order parametéhe relation(18) cannot be obtained in this pure phenomeno-
as logical approach. Moreover, in contrast to this theory which
. ) 5 to the leading order;” predicts the ratick?,/K%,=1, our
Kaa=PbMKaa,ny, @=12,3; result (20) is that the ratio remains arbitrary as in the
. ) Nehring-Saupe theory. In another recent papkd], the
K1s= Yo 10K 13,97 20 terms linear inn were not considered in the Landau—de
Gennes FE.
(K +K3,— 2K, The final goal of the elastic theory is to find the equilib-
17 ez = rium director field. The boundary condition, which deter-
. ) ) . mines the director along with the Euler-Lagrange equations,
Direct calculation using the definition of the terfy (see, depends on the surface behaviormfnd p solely through

244

e.g.,[17]) results in the following formula fory: the effective values of the elastic constajts This makes

K*.n K n possible the elastic description of a nematic body with a
1313= 705 76K 13,513 nonideal surface. The elastic constants obtained above give a

1 (ls o o necessary connection of this elastic theory with the micro-
=§f dzf dr3r§f drdrop(2)p(z+r3) scopic properties and details of the surface behavior. In par-

0 oz o ticular, our result justifies a finite effective const#éng. The
G, LG, above estimate shows that the maximum valuekgf is
X[n(z+r3)— 77(2)]<r3 9B nsrz(wz po K13, WhereK, 3, is the standard constant correspon-

ing to the kernelG,,.
(21
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