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Switching manifold approach to chaos synchronization

Jin-Qing Fang
China Institute of Atomic Energy, P.O. Box 27%, Beijing 102413, People’s Republic of China

Yiguang Hong
Institute of Systems Science, Academia Sinica, Beijing 100080, People’s Republic of China

Guanrong Chen
Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204-4793
(Received 26 June 1998

In this Rapid Communication, a switching manifold approach is proposed for synchronizing chaos. The
effectiveness of this nonlinear control strategy is demonstrated by both theoretical analysis and numerical
simulations on two typical chaotic systems: the Lorenz and the modified Lorenz systems.
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I. INTRODUCTION state of the slave system is driven to move toward the mani-
fold from any nearby place. In much the same way, another
The problems of controlling and synchronizing chaos carswitching manifold is obtained for a chaotic state nearby the
be formulated under a unified framewqrq. These two sub- target, and the trajectory is forced to slide onto it. The con-
jects have been intensively studied in the last dedagd.  trol law so designed can be in a very simple nonlinear form.
Chaos synchronization has many potential applications in laThe effectiveness of such a control strategy can be analyzed
ser physics, chemical reactor, secure communication, bidy both theoretical analysis and numerical simulation, as

medical science, and so ¢8]. demonstrated below.
It is known that linear or linearized control methods are
not always possible for controlling nonlinear systems, and II. ANALYSIS OF SWITCHING MANIFOLDS

nonlinear control methods prove to be often necessary, espe-

cially for chaotic systemE3,4]. Some nonlinear control tech- ~ T0 illustrate the proposed control method and design pro-

niques have even been extended to synchronization of hypegedure, it is especially convenient to use examples. The well-

chaos and spatiotemporal chdds5]. One typical method is known Lorenz system and its modified versiaf) are taken

the variable structuréor sliding modg control, which has as examples for this purpose.

some successful applications for chaotic systgéis Example 1. Consider two coupled Lorenz systems, where
In this Rapid Communication, we further extend our the first system is given by

method [6] to performing synchronization of two chaotic

systems with different initial conditions. In addition to theo- X1= = 0(Xg = Xp)
retical analysis, two Lorenz systems and two modified Lo- .
renz systems are simulated to demonstrate the effectiveness Xo= pX1—Xo—X1X3 3
of this method.
Consider twon-dimensional chaotic systems, Xa=X1Xo— bXa,
x=F(x), xeR", (1) and the second one has the same form, wijitheing replaced
_ by y;,i=1,2,3, respectively, which are assumed to have two
y=F(y)+G(x)u, yeR", ueR™ (2)  sets of different initial conditions.

Example 2. Consider two coupled modified Lorenz sys-
where F is a vector-valued nonlinear function satisfying tems[7], in which the two product terms;x; andx;x, in
some defining conditions, an@(x) is an nXm matrix-  Eq.(3) are replaced by 2Qx; and 5¢;x,, respectively, with
valued nonlinear function to be determined along with thetwo different initial conditions.
controlleru=u(x,y) To simplify our presentation, we only analyze Example 1

The goal here is to force the two coupled systems to béiere. By adding a controller into the right-hand side of the
synchronized even if they have different initial conditions. first equation of the slave system, we have
As usual, we call systertl) the master system, and system .
(2), the slave system. yi=—0a(y;—Yys)+u. (4)
The basic controller design principle is outlined as fol-
lows. To start with, a switching manifold containing the de- Then, by subtracting Eq3) from the slave system, with the
sired chaotic targeffor synchronizatioh of the master sys- first equation being replaced by E@), and by defining the
tem, is found. Then, using a nonlinear control strategy, thesynchronization error as
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&=Yi— X, 1=123, aslou=—2e,, (10)

we obtain the synchronization error dynamics, and this does not vanish along manifqi8) except when

e;=0. Therefore, where;# 0, s can be directly controlled

élz _U(el_e2)+u

by u.
A te)— 5 Next, we study the dynamical behavior of the error sys-
€2=pe1~ €~ €1(Xgt+€3) —e3Xy 5) tem (5) when it is confined on the manifold by the controller
: u.
e3=e(Xp+ey) +x;e—bes, Remark 1. IfG is taken as (0,1,0), then the controlled

where, compared with Eq2), G=(1,0,0)". Moreover, let Lorenz system becomes

the controller be -
e,=—o(ey—ey)

U=Ueqt Ug, |UO|$61 (6) .
e,=pe;—e,—e(Xzt+ez)—exx +u (17
where ugq and u, are to be determined, ang>0 is the
allowable bound for the control inputs. e3=€;(Xo+€,) + X,8,— bes.

For synchronization purpose, as mentioned above, the
first step is to find a suitable switching manifold, and then toln this case, a switching manifold can be selected as
design an effective nonlinear control to drive the error state

to move toward this stable manifold. In so doing, the error s(x):be3—e§=0. (12
state will eventually approach zero alof@ neaj the mani-
fold. Select the manifold to be in the form The manifolds(8) and (12) can be used simultaneously for
the two examples studied in this paper, as shown below by
s=s(e), (1) numerical simulations.
which has to be specified such thatit contains the target, 20 ¢
e=0, and(ii) 9s/du#0 almost everywheréneare=0). g
For the error dynamical syste(B), the desired manifold 1 -
(usually not uniquecan be taken as 10 F W\ ‘\ i
s(e)=be;—e3=0, (8) 5 5 \ }A M
g b
whereb is a positive constant. For this chosen manifold, it is § 0 . f Y |
easy to verify that the two condition§) and (ii) described B 5L L
above, can be satisfied: firg=0 is contained in the mani- s U
fold; second, the vecto&=(1,0,0)" is transversal to the 10 ¢ |
manifold at the poine=0. This is because 15 b
s=ble;(xp+ eZ)+Xlez_b63]_Zel[_0(el_ez)+u]v( 0 e o g o
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1 FIG. 2. Total dynamical erroe=3?>_,e, for Example 1 with

FIG. 1. Synchronization betweeyy and x; after a transient different initial conditions controlled by the same controll&B), as
(2000 stepsfor Example 1 with different initial conditions con- in Fig. 1. In this figure(a) ueq=0; (b)uey# 0. (All of ordinate is
trolled by the controlle(13) with ug,#0. dimensionless.
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FIG. 3. Synchronization betweeyy, and x, after a transient 2
(2000 stepsfor Example 2 with different initial conditions con-
trolled by the controlle(13) with ueq# 0. (Ordinate is dimension- 15 TA
less) 1 ” {\
IIl. CONTROLLER DESIGN PROCEDURE e % /\/\/
g :
. . 2] or
Recall that the task of control is to foreein Eg. (9) to o :
tend to zero. Therefore, the controller design must follow £ 05F
this principle: to drive all the error states, typically those 2 Ak
nearby the manifold, to converge onto the stable manifold. ; i \ /
Consider Eq(9) again. If all the variableg;,e,,e; can 18 ; ]f
be directly measured, then the control law can be chosen i 2
the form of Eq.(6), in which u.q is designed to ensure 25 L i i '
=0 wheneveis=0. Intuitively, u.4 plays the dominant con- 0 1000 2000 3000 4000 5000 6000 7000

trol, wheneveu, fails to achieve synchronization alone. Ob- (b) Number of time steps T

serve that-b%e;=—bs— bef, so that Eq(9) can be rewrit-
ten as

FIG. 4. Total dynamical erroe=2i3:1ei for Example 2 with

different initial conditions controlled by the same controll8), as
in Fig. 3. In this figure (a) ueq=0; (b) Ueq# 0. (All of ordinate is

- _ _ 2 _ _
S—b[el(X2+ez)+X162] bs bel+20'el(el eZ) Zelu- dimen3i0n|95$-

Based on this, it is easy to see that we can use synchronization is still possible. In this case, however, the
robustness enhanced by the additional control wess gen-
erally lost. With a suitable>0, the convergence rate can be
significantly improved.

Ueqg=(0—Db/2)(e1—€y)

and Remark 3. If system(1l) is considered along with the
Up=€ Sgr e;s]; manifold (12), the following control law works as well:
that is U=Ugq™T Eng{ez(bea—eg)], (16)
u=(0—bi2)(e;—e,) +esgriey(be;—ef)]. (13 Ueq=€1[€3~ (p—b/2)]+(1-bI2)e,. a7

To this end, the controlled systef@) with controller (13)
becomes

This is similar to the controller&€l3) and (15).

Remark 4. Ifug,,=0 is used in the controller, then the
above control task fails, at least in our simulations.

Remark 5. If only a simple linear feedbadks= — ke ,k
>0,i=1 or 3, is used, the above control task also fails in our
whered=Db(e;x,+Xx,€,) may be viewed as a disturbance. simulations.

Because this type of controller is robust, such disturbance
can be attenuated, as well documented in the conventional
nonlinear control literature.

s=—bs—esge;s]+d(t), (14)

IV. SIMULATION AND DISCUSSION

Remark 2. Even ife=0 is used in the control law,
namely,

U=Ueq=(0—Db/2)(e;—€y), (15

The Lorenz system has a familiar chaotic attractor for the
parameters set=10,b=8/3, andp =28, whereas the modi-
fied Lorenz system has a chaotic attractor der 16, b=4,
and p=45.92.
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To demonstrate the effectiveness of the developed control Figure 4 shows the total dynamical ere=3>_,e;, as-
method, we have studied various numerical simulations fosociated with Figure 3. In Fig.(d), ueq=0; in 4(b), Ueq
synchronization between two identical Lorenz systdsee  =0. Simulation results using controll€t6) for Examples 1
Examples 1 and)2with different initial conditions. and 2 are very similar to Fig. 4.

Figure 1 shows the dynamical behavior of the synchroni- It is clear from Figs. 1—-4 that these numerical simulations
zation betweeny, and x, after a transient2000 steps indeed have verified that the above theoretical analysis is
for Example 1 with different initial conditions:x(0) correct and our non_linear control strategy is effec;tive. More
=(0,—1,0)" andy(0)=(0.050.05,0.01) . The controller ~ Specifically, using either controll&d.3) or (16), precise syn-
is given by Eq.(13), namely, chronization is achieved for the two examples. However, the

control fails for synchronizing these two coupled systems, as
2 shown in Figs. 2) and 4b), if u.q=0 is taken in Eq(13) or

U=UgqtUo=(o—b/2)(e;—e,) +esgrie;(be;—el)]. (16). The control also fails if only a simple linear feedback

u=ke (i=1 or 3 is used. This demonstrates the advantage

Figure 2 shows the total dynamical erm zi?’: 1€, as- of the proposed co_ntrol strategy. _The main idea and the
sociated with Fig. 1. In Fig. @), Ugq=0; in 2(b), Ugq#O. method of this Rapid Communication can be extended to

Figure 3 shows the synchronization behavior betwegn Other chaotic/hyperchaotic systems in principle.
and x, after a transien{2000 steps for Example 2 with
different initial conditions:x(0)=(0.01,-0.01,0.05) and
y(0)=(0.05-0.05,0.01) . The controller is also given by This work was supported by the NNSFC, NCPC, and
Eq. (13). NNISFC.
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