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Synchronization of coupled systems with spatiotemporal chaos
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~Received 20 August 1998!

We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently
by Morelli et al. @Phys. Rev. E58, R8 ~1998!#, is generically in the directed percolation universality class. In
particular this holds numerically for the specific example studied by these authors, in contrast to their claim.
For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchro-
nization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear
growth limiting term.@S1063-651X~99!50303-6#

PACS number~s!: 05.45.2a, 05.70.Jk, 61.25.Hq
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Since the pioneering work of Fujisakaet al. @1–4# and
others@5–7#, synchronization of chaotic systems has beco
a very intensely studied subject, partially due to hopes
this could lead to applications in control and secure comm
nications@8#. In spatially extended systems, synchronizat
can appear in~at least! two forms. On the one hand, one ca
ask whether distant regions in a single such systems
oscillate in phase. After this phenomenon was observed
Chatéand Manneville@9# in high dimensional cellular au
tomata, it was realized that it can be mapped onto
Kardar-Parisi-Zhang~KPZ! problem of the growth of a ran
dom surface@10#, with a synchronized state corresponding
a globally smooth phasef5f(x) @11–13#.

In the present paper we shall deal with another proble
namely that of mutual synchronization of two identical l
cally coupled systems. If these systems are described by
variablesxi

t and yi
t @for simplicity we assume here discre

one-dimensional~1D! spacei and discrete timet#, we write
the evolution in general as

xi
t115 f ~ ...xi 21

t ,xi
t ,xi 11

t ...!1eg~xi
t2yi

t!,
~1!

yi
t115 f ~ ...yi 21

t ,yi
t ,yi 11

t ...!1eg~yi
t2xi

t!.

The functionf is nonlinear such that the evolution is chao
for e50. Due to sensitive dependence on initial conditio
xt andyt will be completely uncorrelated in this case, unle
they started with identical initial conditions. Synchronizati
should only be expected fore.0 if g(x) is negative for
positive smallx, so that any small differencexi

t2yi
t will be

damped by the last terms in Eq.~1!.
For chaotic systems with a finite number of degrees

freedom, there is a finite synchronization thresholdec , with
intermittent behavior and ‘‘riddled’’@14# attractor basins
neare5ec @1–4,16#. Recently, it was found numerically tha
essentially the same phenomena occur in spatially exten
systems@17–19#. While chaos in systems with few degre
of freedom requiresxt to be real valued, spatiotempor
chaos can occur also in systems with discretexi

t , so-called
cellular automata~CA!. Therefore, one can ask whether t
phenomenon of mutual synchronization can occur also in
latter @15#, and whether there are universal scaling laws
the synchronization threshold that apply both to real-valu
systems~coupled map lattices and partial differential equ
PRE 591063-651X/99/59~3!/2520~3!/$15.00
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tions! and to CA. While the former question was assert
positively in @17#, we shall argue that the latter has a neg
tive answer. For CA, the synchronization threshold is gen
cally in the directed percolation universality class@20#, while
it is for continuous systems in the universality class of KP
growth with a nonlinear growth limiting term@20–23#.

Let us first study the case of 1D cellular automata. T
specific system studied in@17# was two copies evolving ac
cording to Wolfram’s@24# rule 18 with periodic boundary
conditions, and endowed with an additional stochastic c
pling term. In rule 18,xi

t can assume two values 0 or 1, an
the evolution functionf depends only onxi

t itself and its
two nearest neighbors, f (0,0,1)5 f (1,0,0)51 and
f (xi 21 ,xi ,xi 11)50 else. The coupling was realized as fo
lows: after applying the above rule to bothx and y, it was
checked whetherxi5yi . If not, a random number is draw
uniformly from @0,1#. If this number is less than some fixe
numberp, a second random number is drawn and, depend
on that, eitherxi is put equal toyi or yi is put equal toxi .
Thusxi5yi is enforced with probabilityp, while bothxi and
yi are left untouched with probability 12p. It was found
numerically that the system synchronizes forp.pc50.193
60.001. Forp,pc the density of sites withxiÞyi scales for
t→` as (pc2p)b with b50.3460.01, while it decays for
p.pc with a characteristic timeT which scales asT;(p
2pc)

2n i with n i51. Since these exponents disagree gros
with the DP valuesb50.2765,n i51.7338@25#, it was con-
cluded that this transition is not in the DP universality cla

While a second order synchronization transition certai
exists in this model, details are flawed for several reaso
and we claim that the transition is in the DP class. The fi
problem is that it is notoriously difficult to measureb di-
rectly in DP and similar processes, due to the very sl
convergence towards the stationary state. Atp5pc , the den-
sity of ‘‘active’’ sites in DP ~corresponding to sites withxi
Þyi in the present model! scales asr;t2d with d50.1595
@25#. Near pc , this means that one has to wait excessiv
long until the stationary state is reached. Much more relia
results are obtained by following the approach towards
asymptotic state, e.g., by measuring the decay ofr with time.

The second problem is that rule 18 is well known to ha
very slow convergence towards its asymptotic state@26#, in
contrast to claims made in@17#. Therefore the strategy o
R2520 ©1999 The American Physical Society
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discarding a transient of a few hundred time steps use
@17# is bound to induce errors. When starting with a rand
initial state, rule 18 orders into domains in whichxi

t is zero
either for eveni 1t or for oddi 1t. The boundaries betwee
these domains move according to annihilating random wa
so that the domain sizes grow;At and the density of do-
main walls decreases as 1/At. Asymptotically, the entire lat-
tice is one single domain. On the sublattice wherexi

t is not
identically zero, its evolution follows the ‘‘additive’’ rule 90
given by f (0,0,1)5 f (1,0,0)5 f (0,1,1)5 f (1,1,0)51. The
invariant state of the latter is completely random. Therefo
rule 90 must show the same synchronization threshold
rule 18 and the same critical exponents, but it involvesno
transient whatsoever if one starts with random initial con
tions.

The densityr(t) for rule 90 is shown in Fig. 1 for severa
values ofp. To obtain these data we used circa 1000 latti
of sizeL510 000 for eachp, which gave a sample more tha
100 times larger that that of@17#. We see clearly a powe
behavior for larget ~with strong small-t corrections! for p
5pc50.190 6160.000 03. This is quite far from the valu
given in @17# and implies immediately that the insets in Fig
2 and 3 of that paper are very misleading. We also see f
Fig. 1 thatd50.15960.003 in excellent agreement with DP
After having determinedpc in this way, we performed very
long runs~with up to 400 000 time steps and withL up to
40 000! for p,pc in order to estimater(t5`). Such long
runs were needed, since otherwise we would have suffe
from systematic errors. Results are shown in Fig. 2 and g
b50.27760.007, again in perfect agreement with DP@27#.

FIG. 1. Log-log plot ofr(t) for rule 90, for several values ofp:
0.1902, 0.190 59, 0.190 65, 0.1910 from top to bottom. Statist
errors are smaller than the thickness of the lines. The stra
dashed line has slope20.1595, as predicted by DP.

FIG. 2. Log-log plot ofr(t5`) againstpc2p, with pc as ob-
tained from Fig. 1. The dashed line has slope 0.2765, as pred
by DP.
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Finally, we show in Fig. 3 the density decayr(t) for rule
18, with random initial conditions and without discardin
any transient. We see indeed rather large corrections to s
ing for times@102. If we would locate the critical point by
means of least square fits including the short time region,
would systematically overestimatepc andd, just as was done
in @17#.

We also studied rule 22. This is not an additive rule, a
it has a nontrivial invariant measure with maybe zero e
tropy, but nonzero Lyapunov exponent@28# ~for the notions
of chaos, entropy and Lyapunov exponents for CA, see@29#!.
Even if the entropy is not zero, there are very long rang
correlations in the invariant measure of rule 22@28#. It is
thus of interest to see whether there is still a synchroniza
transition, and whether it is still in the DP universality clas
We found again perfect agreement with DP. The critic
point is atpc50.227 3560.000 05. It is easily seen that th
sum of right- and left-moving Lyaponov exponents has to
positive for pc to be non-zero in any one-dimensional CA
But the above values forpc and the known values for the
Lyaponov exponents for rules 22 and 90@28,29# suggest that
there is no simple relationship beyond this qualitative cri
rion.

On the theoretical side we also have no formal proof
the universality with DP, but we can use exactly the sa
heuristic arguments which were used in@30# to argue that
damage spreading transitions are generically in the DP
versality class. We refer to@30# for a detailed discussion
including caveats and limitations of the expected univers
ity. Our present results underline again the remarkable
bustness of DP critical behavior. In contrast to a statem
made in@17#, up to now DP universality was verified in a
tested cases~even if the original authors often found viola
tions, such as in the present case!, provided the criteria listed
in @30# were met.

Let us now briefly discuss systems with continuous va
ables such as coupled map lattices. The main difference
tween these and CA is that synchronization is never per
for finite time, even if e.ec . Instead, the difference
uxi

t2yi
tu decrease exponentially witht when the systems syn

chronize. But this means that close to threshold statistica
chaotic fluctuations can make the system desynchro
again, at least locally. Technically spoken, the system d
not enter an absorbing state when it synchronizes locally

al
ht

ed

FIG. 3. Same as Fig. 1, but for rule 18 and for two values op
only: 0.1906 ~top! and 0.192~bottom!. The first gives perfect
agreement with DP for larget but large deviations at smallt. The
second would give a better least square fit to a straight line for
,t,5000, but this would yield wrong estimates ofpc andd.
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contrast to the discrete case. This implies very different s
ing exponents, as first noticed in@21# and verified in
@20,22,23#. The generic stochastic partial differential equ
tion with these features contains a diffusion term, a lo
nonlinear term, and a multiplicative noise term. The log
rithm of the field appearing in this stochastic PDE satisfi
the KPZ equation with an additional term, which preven
the height variable from overcoming a barrier that we c
conveniently place ath50. The synchronization transition i
this version corresponds to a transition from a surface pin
at h'0 ~desynchronized state!, to a surface drifting towards
h52` ~synchronized state!.

We conjecture that transitions found in neural netwo
models similar to that of@18# but with local couplings are in
this universality class. The precise model of of@18# is not in
this class since it has a layered structure with long ra
couplings in one direction. In the complementary directio
one should therefore expect mean field type correlation
would be interesting to make detailed simulations of
or
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model of @18# and of similar models with local couplings t
verify this numerically.

On the other hand, we conjecture that the synchroniza
transition studied in@19# is not an this universality class
although it involves only local interactions. In@19# the cou-
pling strength was calledg, and perfect synchronization oc
curred exactly atg51. As seen from Eq.~1! of @19#, the
equivariance group of the coupled system changes atg51.
For gÞ1 the system is invariant under phase transformati
A1,2→A1,2e

if1,2 and under the exchangeA1↔A2 . For g51
one has the additional symmetry under phase rotationsA1

6A2→(A16A2)eif6. As stressed in@31#, ~de!synchroniza-
tion is essentially a phenomenon of spontaneous symm
breakdown. As in other transitions with spontaneous symm
try breaking, the universality class of such transitions sho
depend crucially on the type of symmetry broken, and sho
be particularly sensitive to symmetry changes at the crit
point.
on
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