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Synchronization of coupled systems with spatiotemporal chaos
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We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently
by Morelli et al.[Phys. Rev. 58, R8(1998], is generically in the directed percolation universality class. In
particular this holds numerically for the specific example studied by these authors, in contrast to their claim.
For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchro-
nization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear
growth limiting term.[S1063-651X%99)50303-9

PACS numbe(s): 05.45~a, 05.70.Jk, 61.25.Hq

Since the pioneering work of Fujisalet al. [1-4] and  tions) and to CA. While the former question was asserted
others[5—7], synchronization of chaotic systems has becomepositively in[17], we shall argue that the latter has a nega-
a very intensely studied subject, partially due to hopes thative answer. For CA, the synchronization threshold is generi-
this could lead to applications in control and secure commucally in the directed percolation universality cl4g§], while
nications[8]. In spatially extended systems, synchronizationit is for continuous systems in the universality class of KPZ
can appear iffat least two forms. On the one hand, one can growth with a nonlinear growth limiting terf20—23.
ask whether distant regions in a single such systems can | et ys first study the case of 1D cellular automata. The
OSC|I]ate in phase. _After t_h|s _phenpmen(_)n was observed b¥pecific system studied §i17] was two copies evolving ac-
Chateand Manneville[9] in high dimensional cellular au- cording to Wolfram's[24] rule 18 with periodic boundary

tomata, it was realized that it can be mapped onto th‘:‘condltlons, and endowed with an additional stochastic cou-
Kardar-Parisi-ZhangKPZ) problem of the growth of a ran- . t

. . . pling term. In rule 18x; can assume two values 0 or 1, and
dom surfacg10], with a synchronized state corresponding to

a globally smooth phasé= $(x) [11-13. the evolution functipnf depends only orx! itself and its
In the present paper we shall deal with another problemW© nearest neighbors, £(0,0,1)=f(1,0,0)=1  and
namely that of mutual synchronization of two identical lo- f(Xi-1.Xi.Xi+1)=0 else. The coupling was realized as fol-

cally coupled systems. If these systems are described by stdf@vs: after applying the above rule to bothandy, it was
variablesx! andy! [for simplicity we assume here discrete checked whethex;=y;. If not, a random number is drawn
one-dimensional1D) spacei and discrete timé], we write  uniformly from [0,1]. If this number is less than some fixed

the evolution in general as numberp, a second random number is drawn and, depending
on that, eithelx; is put equal toy; ory; is put equal tox; .
X=X XX ) eg(Og =Y, Thusx;=y; is enforced with probability, while bothx; and
(1) v; are left untouched with probability 1p. It was found
Yyt =f( Ly vy ) Feg(yi—xD). numerically that the system synchronizes for p.=0.193

+0.001. Fomp<p, the density of sites with; #y; scales for

The functionf is nonlinear such that the evolution is chaotic t -« as (p,—p)# with 8=0.34+0.01, while it decays for
for e=0. Due to sensitive dependence on initial conditions,p>p_ with a characteristic tim&@ which scales ag~ (p
x' andy" will be completely uncorrelated in this case, unless— pe) " with v, =1. Since these exponents disagree grossly
they started with identical initial conditions. Synchronization with the DP valueg3=0.2765,v,=1.7338[25], it was con-
should only be expected for>0 if g(x) is negative for cluded that this transition is not in the DP universality class.
positive smallx, so that any small difference —y; will be While a second order synchronization transition certainly
damped by the last terms in E(). exists in this model, details are flawed for several reasons,

For chaotic systems with a finite number of degrees ofand we claim that the transition is in the DP class. The first
freedom, there is a finite synchronization threshgld with problem is that it is notoriously difficult to measug di-
intermittent behavior and “riddled’[14] attractor basins rectly in DP and similar processes, due to the very slow
neare= e [1-4,16. Recently, it was found numerically that convergence towards the stationary statepAtp,, the den-
essentially the same phenomena occur in spatially extendegity of “active” sites in DP (corresponding to sites witk,
systemq17—-19. While chaos in systems with few degrees #vy; in the present modebkcales ap~t~? with §=0.1595
of freedom requires<' to be real valued, spatiotemporal [25]. Nearp., this means that one has to wait excessively
chaos can occur also in systems with discodteso-called  long until the stationary state is reached. Much more reliable
cellular automatdCA). Therefore, one can ask whether the results are obtained by following the approach towards the
phenomenon of mutual synchronization can occur also in thasymptotic state, e.g., by measuring the decgywith time.
latter [15], and whether there are universal scaling laws at The second problem is that rule 18 is well known to have
the synchronization threshold that apply both to real-valuedrery slow convergence towards its asymptotic sfa@@, in
systems(coupled map lattices and partial differential equa-contrast to claims made ifL7]. Therefore the strategy of
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FIG. 1. Log-log plot ofp(t) for rule 90, for several values @t
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FIG. 3. Same as Fig. 1, but for rule 18 and for two valuegp of

0.1902, 0.19059, 0.190 65, 0.1910 from top to bottom. Statisticabnly: 0.1906 (top) and 0.192(bottorm). The first gives perfect
errors are smaller than the thickness of the lines. The straighagreement with DP for largebut large deviations at smatil The
dashed line has slope0.1595, as predicted by DP.

second would give a better least square fit to a straight line for 10
<t<<5000, but this would yield wrong estimates mf and 6.

discarding a transient of a few hundred time steps used in
[17] is bound to induce errors. When starting with a random Finally, we show in Fig. 3 the density decagt) for rule

initial state, rule 18 orders into domains in whighis zero

18, with random initial conditions and without discarding

either for everi +t or for oddi +t. The boundaries between any transient. We see indeed rather large corrections to scal-
these domains move according to annihilating random Walkqng for times>10%. If we would locate the critical point by
so that the domain sizes grow+/t and the density of do- means of least square fits including the short time region, we
main walls decreases asﬁ/ Asymptotically, the entire lat-  would systematically overestimapg and 8, just as was done

tice is one single domain. On the sublattice wherés not
identically zero, its evolution follows the “additive” rule 90
given by f(0,0,1)=f(1,0,0=1(0,1,1)=1(1,1,0)=1. The

in [17].
We also studied rule 22. This is not an additive rule, and
it has a nontrivial invariant measure with maybe zero en-

invariant state of the latter is completely random. Thereforetropy, but nonzero Lyapunov expondi28] (for the notions
rule 90 must show the same synchronization threshold asf chaos, entropy and Lyapunov exponents for CA,[288.
rule 18 and the same critical exponents, but it involmes Even if the entropy is not zero, there are very long ranged
transient whatsoever if one starts with random initial condi-correlations in the invariant measure of rule Z8]. It is

tions.

thus of interest to see whether there is still a synchronization

The densityp(t) for rule 90 is shown in Fig. 1 for several transition, and whether it is still in the DP universality class.
values ofp. To obtain these data we used circa 1000 latticedVe found again perfect agreement with DP. The critical
of sizeL =10 000 for eaclp, which gave a sample more than point is atp.=0.227 35-0.000 05. It is easily seen that the
100 times larger that that dfL7]. We see clearly a power sum of right- and left-moving Lyaponov exponents has to be

behavior for larget (with strong smallt correction$ for p

positive forp; to be non-zero in any one-dimensional CA.

=p.=0.190 61 0.000 03. This is quite far from the value But the above values fop, and the known values for the
given in[17] and implies immediately that the insets in Figs. Lyaponov exponents for rules 22 and [28,29 suggest that

2 and 3 of that paper are very misleading. We also see frorthere is no simple relationship beyond this qualitative crite-
Fig. 1 that6=0.159+ 0.003 in excellent agreement with DP. rion.

After having determinegb, in this way, we performed very
long runs(with up to 400000 time steps and withup to
40000 for p<p, in order to estimatg(t=«). Such long

On the theoretical side we also have no formal proof of
the universality with DP, but we can use exactly the same
heuristic arguments which were used[B0] to argue that

runs were needed, since otherwise we would have sufferedamage spreading transitions are generically in the DP uni-
from systematic errors. Results are shown in Fig. 2 and giveersality class. We refer tf30] for a detailed discussion,

B=0.277+0.007, again in perfect agreement with [#].
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including caveats and limitations of the expected universal-
ity. Our present results underline again the remarkable ro-
bustness of DP critical behavior. In contrast to a statement
made in[17], up to now DP universality was verified in all
tested casegeven if the original authors often found viola-
tions, such as in the present cagmovided the criteria listed

in [30] were met.

Let us now briefly discuss systems with continuous vari-
ables such as coupled map lattices. The main difference be-
tween these and CA is that synchronization is never perfect
for finite time, even if e>e¢.. Instead, the differences
|xI—yi| decrease exponentially withwhen the systems syn-
chronize. But this means that close to threshold statistical or

FIG. 2. Log-log plot ofp(t=) againstp.— p, with p. as ob-  chaotic fluctuations can make the system desynchronize

tained from Fig. 1. The dashed line has slope 0.2765, as predicte@gain, at least locally. Technically spoken, the system does
by DP. not enter an absorbing state when it synchronizes locally, in
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contrast to the discrete case. This implies very different scalmodel of[18] and of similar models with local couplings to
ing exponents, as first noticed if21] and verified in verify this numerically.

[20,22,23. The generic stochastic partial differential equa- On the other hand, we conjecture that the synchronization
tion with these features contains a diffusion term, a locakransition studied if19] is not an this universality class,
nonlinear term, and a multiplicative noise term. The loga-although it involves only local interactions. [A9] the cou-
rithm of the field appearing in this stochastic PDE Satisﬁe%)“ng Strength was Ca”ed/, and perfect Synchronization ocC-
the KPZ equation with an additional term, which preventscrred exactly aty=1. As seen from Eq(1) of [19], the

the height variable from overcoming a barrier that we Cargquivariance group of the coupled system changeg=at.

f{:r:)_nveme_ntly place dizo.tThetsynq?ron;zatmn tra?smon_ N For y# 1 the system is invariant under phase transformations
is version corresponds to a transition from a surface plnneglyz_,Alyzel #12 and under the exchangg < A,. For y=1

ath~0 (desynchronized stateto a surface drifting towards one has the additional symmetry under phase rotatins

h= —o (synchronized staje 6, . .
We conjecture that transitions found in neural network= A2 (A1Az)€'%=. As stressed in31], (desynchroniza-

models similar to that of18] but with local couplings are in tion is essentially a phenomenon of spontaneous symmetry
this universality class. The precise model of ©8] is not in breakdown. As in other transitions with spontaneous symme-
this class since it has a layered structure with long rang&y breaking, the universality class of such transitions should
couplings in one direction. In the complementary directionsdepend crucially on the type of symmetry broken, and should
one should therefore expect mean field type correlations. Ipe particularly sensitive to symmetry changes at the critical
would be interesting to make detailed simulations of thepoint.
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